Systems Biology Applications in Revealing Plant Defense Mechanisms in Disease Triangle
Abstract
1. Introduction
2. The Role of Microbiomes in Disease Triangle
3. Recent Advancement in Systems Biology of the Disease Triangle: Plant, Pathogen, and Environment Interactions
3.1. Molecular Imaging Toward Studying Plant–Microbe Interactions
3.2. Single-Cell Systems Biology to Revealing Plant Cell Responses to Pathogens
3.3. Metagenomics, SynComs, and Multi-Omics Integration/Systems Biology
4. Isotope Labeling Technique: A Powerful Tool for Distinguishing Plant and Microbial Metabolites
5. Concluding Remarks and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bentham, A.R.; De la Concepcion, J.C.; Mukhi, N.; Zdrzałek, R.; Draeger, M.; Gorenkin, D.; Hughes, R.K.; Banfield, M.J. A molecular roadmap to the plant immune system. J. Biol. Chem. 2020, 295, 14916–14935. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Tyagi, A.; Bae, H. Plant Microbiome: An ocean of possibilities for improving disease resistance in plants. Microorganisms 2023, 11, 392. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, R.; Ahmad, F.; Kaya, C.; Upadhyay, S.K.; Muneer, S.; Kumar, V.; Meena, M.; Liu, H.; Upadhyaya, H.; Seth, C.S. Decrypting proteomics, transcriptomics, genomics, and integrated omics for augmenting the abiotic, biotic, and climate change stress resilience in plants. J. Plant Physiol. 2025, 305, 154430. [Google Scholar] [CrossRef] [PubMed]
- Pandit, M.A.; Kumar, J.; Gulati, S.; Bhandari, N.; Mehta, P.; Katyal, R.; Rawat, C.D.; Mishra, V.; Kaur, J. Major biological control strategies for plant pathogens. Pathogens 2022, 11, 273. [Google Scholar] [CrossRef]
- Kim, J.H.; Hilleary, R.; Seroka, A.; He, S.Y. Crops of the future: Building a climate-resilient plant immune system. Curr. Opin. Plant Biol. 2021, 60, 101997. [Google Scholar] [CrossRef]
- Leveau, J.H.J. Re-envisioning the plant disease triangle by integration of host microbiota and a pivot in focus to health outcomes. Annu. Rev. Phytopathol. 2024, 62, 31–47. [Google Scholar] [CrossRef]
- Bostock, R.M.; Pye, M.F.; Roubtsova, T.V. Predisposition in plant disease: Exploiting the nexus in abiotic and biotic stress perception and response. Annu. Rev. Phytopathol. 2014, 52, 517–549. [Google Scholar] [CrossRef]
- Roman-Reyna, V.; Crandall, S.G. Seeing in the dark: A metagenomic approach can illuminate the drivers of plant disease. Front. Plant Sci. 2024, 15, 1405042. [Google Scholar] [CrossRef]
- Maqsood, H.; Munir, F.; Amir, R.; Gul, A. Genome-wide identification, comprehensive characterization of transcription factors, cis-regulatory elements, protein homology, and protein interaction network of DREB gene family in Solanum lycopersicum. Front. Plant Sci. 2022, 13, 1031679. [Google Scholar] [CrossRef]
- Singh, B.K.; Delgado-Baquerizo, M.; Egidi, E.; Guirado, E.; Leach, J.E.; Liu, H.; Trivedi, P. Climate change impacts on plant pathogens, food security and paths forward. Nat. Rev. Microbiol. 2023, 21, 640–656. [Google Scholar] [CrossRef]
- Mishra, R.; Shteinberg, M.; Shkolnik, D.; Anfoka, G.; Czosnek, H.; Gorovits, R. Interplay between abiotic (drought) and biotic (virus) stresses in tomato plants. Mol. Plant Pathol. 2022, 23, 475–488. [Google Scholar] [CrossRef] [PubMed]
- Ramegowda, V.; Da Costa, M.V.J.; Harihar, S.; Karaba, N.N.; Sreeman, S.M. Chapter 17—Abiotic and biotic stress interactions in plants: A cross-tolerance perspective. In Priming-Mediated Stress and Cross-Stress Tolerance in Crop Plants; Hossain, M.A., Liu, F., Burritt, D.J., Fujita, M., Huang, B., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 267–302. [Google Scholar]
- Son, S.; Park, S.R. Climate change impedes plant immunity mechanisms. Front. Plant Sci. 2022, 13, 1032820. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Han, X.; Tsuda, K. Microbiome-mediated plant disease resistance: Recent advances and future directions. J. Gen. Plant Pathol. 2025, 91, 1–17. [Google Scholar] [CrossRef]
- de Vries, F.T.; Griffiths, R.I.; Knight, C.G.; Nicolitch, O.; Williams, A. Harnessing rhizosphere microbiomes for drought-resilient crop production. Science 2020, 368, 270–274. [Google Scholar] [CrossRef]
- Martin, F.M.; Uroz, S.; Barker, D.G. Ancestral alliances: Plant mutualistic symbioses with fungi and bacteria. Science 2017, 356, eaad4501. [Google Scholar] [CrossRef]
- Miyauchi, S.; Kiss, E.; Kuo, A.; Drula, E.; Kohler, A.; Sánchez-García, M.; Morin, E.; Andreopoulos, B.; Barry, K.W.; Bonito, G. Large-scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiotic traits. Nat. Commun. 2020, 11, 5125. [Google Scholar] [CrossRef]
- Simon, J.-C.; Marchesi, J.R.; Mougel, C.; Selosse, M.-A. Host-microbiota interactions: From holobiont theory to analysis. Microbiome 2019, 7, 5. [Google Scholar] [CrossRef]
- Trivedi, P.; Leach, J.E.; Tringe, S.G.; Sa, T.; Singh, B.K. Plant–microbiome interactions: From community assembly to plant health. Nat. Rev. Microbiol. 2020, 18, 607–621. [Google Scholar] [CrossRef]
- Bakker, P.A.H.M.; Pieterse, C.M.J.; de Jonge, R.; Berendsen, R.L. The soil-borne legacy. Cell 2018, 172, 1178–1180. [Google Scholar] [CrossRef]
- Berendsen, R.L.; Vismans, G.; Yu, K.; Song, Y.; de Jonge, R.; Burgman, W.P.; Burmølle, M.; Herschend, J.; Bakker, P.A.H.M.; Pieterse, C.M.J. Disease-induced assemblage of a plant-beneficial bacterial consortium. ISME J. 2018, 12, 1496–1507. [Google Scholar] [CrossRef]
- Schulz-Bohm, K.; Gerards, S.; Hundscheid, M.; Melenhorst, J.; de Boer, W.; Garbeva, P. Calling from distance: Attraction of soil bacteria by plant root volatiles. ISME J. 2018, 12, 1252–1262. [Google Scholar] [CrossRef]
- Yuan, J.; Zhao, J.; Wen, T.; Zhao, M.; Li, R.; Goossens, P.; Huang, Q.; Bai, Y.; Vivanco, J.M.; Kowalchuk, G.A. Root exudates drive the soil-borne legacy of aboveground pathogen infection. Microbiome 2018, 6, 156. [Google Scholar] [CrossRef]
- Durán, P.; Thiergart, T.; Garrido-Oter, R.; Agler, M.; Kemen, E.; Schulze-Lefert, P.; Hacquard, S. Microbial interkingdom interactions in roots promote Arabidopsis survival. Cell 2018, 175, 973–983. [Google Scholar] [CrossRef]
- Gao, M.; Xiong, C.; Gao, C.; Tsui, C.K.M.; Wang, M.-M.; Zhou, X.; Zhang, A.-M.; Cai, L. Disease-induced changes in plant microbiome assembly and functional adaptation. Microbiome 2021, 9, 187. [Google Scholar] [CrossRef]
- Lu, H.; Wei, T.; Lou, H.; Shu, X.; Chen, Q. A Critical review on communication mechanism within plant-endophytic fungi interactions to cope with biotic and abiotic stresses. J. Fungi 2021, 7, 719. [Google Scholar] [CrossRef]
- Grilli, J.; Rogers, T.; Allesina, S. Modularity and stability in ecological communities. Nat. Commun. 2016, 7, 12031. [Google Scholar] [CrossRef] [PubMed]
- Roussin-Léveillée, C.; Rossi, C.A.M.; Castroverde, C.D.M.; Moffett, P. The plant disease triangle facing climate change: A molecular perspective. Trends Plant Sci. 2024, 29, 895–914. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Hewezi, T.; Lebeis, S.L.; Pantalone, V.; Grewal, P.S.; Staton, M.E. Soil indigenous microbiome and plant genotypes cooperatively modify soybean rhizosphere microbiome assembly. BMC Microbiol. 2019, 19, 201. [Google Scholar] [CrossRef] [PubMed]
- Walters, W.A.; Jin, Z.; Youngblut, N.; Wallace, J.G.; Sutter, J.; Zhang, W.; González-Peña, A.; Peiffer, J.; Koren, O.; Shi, Q. Large-scale replicated field study of maize rhizosphere identifies heritable microbes. Proc. Natl. Acad. Sci. USA 2018, 115, 7368–7373. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Y.-X.; Zhang, N.; Hu, B.; Jin, T.; Xu, H.; Qin, Y.; Yan, P.; Zhang, X.; Guo, X. NRT1. 1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nat. Biotechnol. 2019, 37, 676–684. [Google Scholar] [CrossRef]
- Maqsood, H.; Ahad, A.; Khan, S.; Gul, A.; Mehboob, M.; Shaukat, R.; Jamil, M. Chapter 13—Genome engineering in barley. In Targeted Genome Engineering via CRISPR/Cas9 in Plants; Gul, A., Ed.; Academic Press: Cambridge, MA, USA, 2024; pp. 257–272. [Google Scholar]
- Compant, S.; Samad, A.; Faist, H.; Sessitsch, A. A review on the plant microbiome: Ecology, functions, and emerging trends in microbial application. J. Adv. Res. 2019, 19, 29–37. [Google Scholar] [CrossRef]
- Jacoby, R.; Peukert, M.; Succurro, A.; Koprivova, A.; Kopriva, S. The role of soil microorganisms in plant mineral nutrition—Current knowledge and future directions. Front. Plant Sci. 2017, 8, 1617. [Google Scholar] [CrossRef] [PubMed]
- Knief, C.; Delmotte, N.; Chaffron, S.; Stark, M.; Innerebner, G.; Wassmann, R.; Von Mering, C.; Vorholt, J.A. Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. ISME J. 2012, 6, 1378–1390. [Google Scholar] [CrossRef] [PubMed]
- David, L.; Harmon, A.C.; Chen, S. Plant immune responses—From guard cells and local responses to systemic defense against bacterial pathogens. Plant Signal. Behav. 2019, 14, e1588667. [Google Scholar] [CrossRef] [PubMed]
- de Souza, R.S.C.; Armanhi, J.S.L.; Arruda, P. From microbiome to traits: Designing synthetic microbial communities for improved crop resiliency. Front. Plant Sci. 2020, 11, 1179. [Google Scholar] [CrossRef]
- Joyner, J.C.; Keuper, K.D.; Cowan, J.A. Analysis of RNA cleavage by MALDI-TOF mass spectrometry. Nucleic Acids Res. 2013, 41, e2. [Google Scholar] [CrossRef]
- Chokkathukalam, A.; Kim, D.-H.; Barrett, M.P.; Breitling, R.; Creek, D.J. Stable isotope-labeling studies in metabolomics: New insights into structure and dynamics of metabolic networks. Bioanalysis 2014, 6, 511–524. [Google Scholar] [CrossRef]
- Gupta, S.; Schillaci, M.; Roessner, U. Metabolomics as an emerging tool to study plant–microbe interactions. Emerg. Top. Life Sci. 2022, 6, 175–183. [Google Scholar] [CrossRef]
- Thomas, T.; Gilbert, J.; Meyer, F. Metagenomics—A guide from sampling to data analysis. Microb. Inform. Exp. 2012, 2, 3. [Google Scholar] [CrossRef]
- Dini-Andreote, F. Endophytes: The Second Layer of Plant Defense. Trends Plant Sci. 2020, 25, 319–322. [Google Scholar] [CrossRef]
- Carrión, V.J.; Perez-Jaramillo, J.; Cordovez, V.; Tracanna, V.; de Hollander, M.; Ruiz-Buck, D.; Mendes, L.W.; van Ijcken, W.F.J.; Gomez-Exposito, R.; Elsayed, S.S.; et al. Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome. Science 2019, 366, 606–612. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Zhu, F.; Carrion, V.J.; Cordovez, V. Beyond plant microbiome composition: Exploiting microbial functions and plant traits via integrated approaches. Front. Bioeng. Biotechnol. 2020, 8, 896. [Google Scholar] [CrossRef] [PubMed]
- Bashir, I.; War, A.F.; Rafiq, I.; Reshi, Z.A.; Rashid, I.; Shouche, Y.S. Phyllosphere microbiome: Diversity and functions. Microbiol. Res. 2022, 254, 126888. [Google Scholar] [CrossRef] [PubMed]
- Kumawat, K.C.; Razdan, N.; Saharan, K. Rhizospheric microbiome: Bio-based emerging strategies for sustainable agriculture development and future perspectives. Microbiol. Res. 2022, 254, 126901. [Google Scholar] [CrossRef]
- Ling, N.; Wang, T.; Kuzyakov, Y. Rhizosphere bacteriome structure and functions. Nat. Commun. 2022, 13, 836. [Google Scholar] [CrossRef]
- Pantigoso, H.A.; Newberger, D.; Vivanco, J.M. The rhizosphere microbiome: Plant-microbial interactions for resource acquisition. J. Appl. Microbiol. 2022, 133, 2864–2876. [Google Scholar] [CrossRef]
- Cordovez, V.; Rotoni, C.; Dini-Andreote, F.; Oyserman, B.; Carrion, V.J.; Raaijmakers, J.M. Successive plant growth amplifies genotype-specific assembly of the tomato rhizosphere microbiome. Sci. Total Environ. 2021, 772, 144825. [Google Scholar] [CrossRef] [PubMed]
- Velasquez, A.C.; Castroverde, C.D.M.; He, S.Y. Plant-pathogen warfare under changing climate conditions. Curr. Biol. 2018, 28, R619–R634. [Google Scholar] [CrossRef]
- Rodriguez, P.A.; Rothballer, M.; Chowdhury, S.P.; Nussbaumer, T.; Gutjahr, C.; Falter-Braun, P. Systems Biology of plant-microbiome interactions. Mol. Plant 2019, 12, 804–821. [Google Scholar] [CrossRef]
- Dastogeer, K.M.G.; Tumpa, F.H.; Sultana, A.; Akter, M.A.; Chakraborty, A. Plant microbiome—An account of the factors that shape community composition and diversity. Curr. Plant Biol. 2020, 23, 100161. [Google Scholar] [CrossRef]
- Gowtham, H.G.; Singh, S.B.; Shilpa, N.; Aiyaz, M.; Nataraj, K.; Udayashankar, A.C.; Amruthesh, K.N.; Murali, M.; Poczai, P.; Gafur, A.; et al. Insight into recent progress and perspectives in improvement of antioxidant machinery upon PGPR augmentation in plants under drought stress: A review. Antioxidants 2022, 11, 1763. [Google Scholar] [CrossRef] [PubMed]
- Michavila, G.; Adler, C.; De Gregorio, P.R.; Lami, M.J.; Caram Di Santo, M.C.; Zenoff, A.M.; de Cristobal, R.E.; Vincent, P.A. Pseudomonas protegens CS1 from the lemon phyllosphere as a candidate for citrus canker biocontrol agent. Plant Biol. 2017, 19, 608–617. [Google Scholar] [CrossRef] [PubMed]
- D’Alessandro, M.; Erb, M.; Ton, J.; Brandenburg, A.; Karlen, D.; Zopfi, J.; Turlings, T.C.J. Volatiles produced by soil-borne endophytic bacteria increase plant pathogen resistance and affect tritrophic interactions. Plant Cell Environ. 2014, 37, 813–826. [Google Scholar] [CrossRef] [PubMed]
- Dudenhöffer, J.H.; Scheu, S.; Jousset, A.; Cahill, J. Systemic enrichment of antifungal traits in the rhizosphere microbiome after pathogen attack. J. Ecol. 2016, 104, 1566–1575. [Google Scholar] [CrossRef]
- Jousset, A.; Rochat, L.; Lanoue, A.; Bonkowski, M.; Keel, C.; Scheu, S. Plants respond to pathogen infection by enhancing the antifungal gene expression of root-associated bacteria. Mol. Plant-Microbe Interact. 2010, 24, 352–358. [Google Scholar] [CrossRef]
- Dhar Purkayastha, G.; Mangar, P.; Saha, A.; Saha, D. Evaluation of the biocontrol efficacy of a Serratia marcescens strain indigenous to tea rhizosphere for the management of root rot disease in tea. PLoS ONE 2018, 13, e0191761. [Google Scholar] [CrossRef]
- Nishioka, T.; Marian, M.; Kobayashi, I.; Kobayashi, Y.; Yamamoto, K.; Tamaki, H.; Suga, H.; Shimizu, M. Microbial basis of Fusarium wilt suppression by Allium cultivation. Sci. Rep. 2019, 9, 1715. [Google Scholar] [CrossRef]
- Elshakh, A.S.A.; Anjum, S.I.; Qiu, W.; Almoneafy, A.A.; Li, W.; Yang, Z.; Cui, Z.-Q.; Li, B.; Sun, G.-C.; Xie, G.-L. Controlling and defence-related mechanisms of bacillus strains against bacterial leaf blight of rice. J. Phytopathol. 2016, 164, 534–546. [Google Scholar] [CrossRef]
- Radhakrishnan, R.; Hashem, A.; Abd Allah, E.F. bacillus: A biological tool for crop improvement through bio-molecular changes in adverse environments. Front. Physiol. 2017, 8, 667. [Google Scholar] [CrossRef]
- Luo, C.; He, Y.; Chen, Y. Rhizosphere microbiome regulation: Unlocking the potential for plant growth. Curr. Res. Microb. Sci. 2025, 8, 100322. [Google Scholar] [CrossRef]
- Yin, C.; Casa Vargas, J.M.; Schlatter, D.C.; Hagerty, C.H.; Hulbert, S.H.; Paulitz, T.C. Rhizosphere community selection reveals bacteria associated with reduced root disease. Microbiome 2021, 9, 86. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Wei, Z.; Wang, X.; Friman, V.-P.; Huang, J.; Wang, X.; Mei, X.; Xu, Y.; Shen, Q.; Jousset, A. Pathogen invasion indirectly changes the composition of soil microbiome via shifts in root exudation profile. Biol. Fertil. Soils 2016, 52, 997–1005. [Google Scholar] [CrossRef]
- Dang, K.; Hou, J.; Liu, H.; Peng, J.; Sun, Y.; Li, J.; Dong, Y. Root exudates of ginger induced by Ralstonia solanacearum infection could inhibit bacterial wilt. J. Agric. Food Chem. 2023, 71, 1957–1969. [Google Scholar] [CrossRef] [PubMed]
- Yin, C.; Hagerty, C.H.; Paulitz, T.C. Synthetic microbial consortia derived from rhizosphere soil protect wheat against a soilborne fungal pathogen. Front. Microbiol. 2022, 13, 908981. [Google Scholar] [CrossRef]
- Grosskopf, T.; Soyer, O.S. Synthetic microbial communities. Curr. Opin. Microbiol. 2014, 18, 72–77. [Google Scholar] [CrossRef]
- Minchev, Z.; Kostenko, O.; Soler, R.; Pozo, M.J. Microbial consortia for effective biocontrol of root and foliar diseases in Tomato. Front. Plant Sci. 2021, 12, 756368. [Google Scholar] [CrossRef]
- Jia, H.M.; Li, B.; Wu, Y.R.; Ma, Y.T.; Yan, Z.Y. The construction of synthetic communities improved the yield and quality of Salvia miltiorrhiza Bge. J. Appl. Res. Med. Aromat. Plants 2023, 34, 100462. [Google Scholar] [CrossRef]
- You, T.; Liu, Q.; Chen, M.; Tang, S.; Ou, L.; Li, D. Synthetic microbial communities enhance pepper growth and root morphology by regulating rhizosphere microbial communities. Microorganisms 2025, 13, 148. [Google Scholar] [CrossRef]
- Pang, Q.; Zhang, T.; Wang, Y.; Kong, W.; Guan, Q.; Yan, X.; Chen, S. Metabolomics of early stage plant cell-microbe interaction using stable isotope labeling. Front. Plant Sci. 2018, 9, 760. [Google Scholar] [CrossRef]
- Xiang, Q.; Lott, A.A.; Assmann, S.M.; Chen, S. Advances and perspectives in the metabolomics of stomatal movement and the disease triangle. Plant Sci. 2021, 302, 110697. [Google Scholar] [CrossRef]
- Chen, X.F.; Hou, X.; Xiao, M.; Zhang, L.; Cheng, J.W.; Zhou, M.L.; Huang, J.J.; Zhang, J.J.; Xu, Y.C.; Hsueh, P.R. Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) analysis for the identification of pathogenic microorganisms: A Review. Microorganisms 2021, 9, 1536. [Google Scholar] [CrossRef]
- Sivanesan, I.; Gopal, J.; Hasan, N.; Muthu, M. A systematic assessment of matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) application for rapid identification of pathogenic microbes that affect food crops: Delivered and future deliverables. RSC Adv. 2023, 13, 17297–17314. [Google Scholar] [CrossRef]
- Angeletti, S. Matrix assisted laser desorption time of flight mass spectrometry (MALDI-TOF MS) in clinical microbiology. J. Microbiol. Methods 2017, 138, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Sivanesan, I.; Gopal, J.; Surya Vinay, R.; Luke, E.H.; Oh, J.-W.; Muthu, M. Consolidating the potency of matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) in viral diagnosis: Extrapolating its applicability for COVID diagnosis? Trends Anal. Chem. 2022, 150, 116569. [Google Scholar] [CrossRef] [PubMed]
- Costa, L.V.D.; Miranda, R.; Reis, C.; Andrade, J.M.; Cruz, F.V.; Frazao, A.M.; Fonseca, E.L.D.; Ramos, J.N.; Brandao, M.L.L.; Vieira, V.V. MALDI-TOF MS database expansion for identification of Bacillus and related genera isolated from a pharmaceutical facility. J. Microbiol. Met. 2022, 203, 106625. [Google Scholar] [CrossRef] [PubMed]
- Barth, P.O.; Roesch, E.W.; Lutz, L.; de Souza, A.C.; Goldani, L.Z.; Pereira, D.C. Rapid bacterial identification by MALDI-TOF MS directly from blood cultures and rapid susceptibility testing: A simple approach to reduce the turnaround time of blood cultures. Braz. J. Infect. Dis. 2023, 27, 102721. [Google Scholar] [CrossRef]
- Emonet, S.; Shah, H.N.; Cherkaoui, A.; Schrenzel, J. Application and use of various mass spectrometry methods in clinical microbiology. Clin. Microbiol. Infect. 2010, 16, 1604–1613. [Google Scholar] [CrossRef]
- Fonseca-Guerra, I.; Chiquillo, C.; Padilla, M.J.; Benavides-Rozo, M. First report of bacterial leaf spot on Chenopodium quinoa caused by Pseudomonas syringae in Colombia. J. Plant Dis. Prot. 2021, 128, 871–874. [Google Scholar] [CrossRef]
- Sawada, H.; Horita, H.; Misawa, T.; Takikawa, Y. Pseudomonas grimontii, causal agent of turnip bacterial rot disease in Japan. J. Gen. Plant Pathol. 2019, 85, 413–423. [Google Scholar] [CrossRef]
- Toubal, S.; Bouchenak, O.; Elhaddad, D.; Yahiaoui, K.; Boumaza, S.; Arab, K. MALDI-TOF MS detection of endophytic bacteria associated with Great nettle (L.), grown in Algeria. Pol. J. Microbiol. 2018, 67, 67–72. [Google Scholar] [CrossRef]
- Sura-de Jong, M.; Reynolds, R.J.B.; Richterova, K.; Musilova, L.; Staicu, L.C.; Chocholata, I.; Cappa, J.J.; Taghavi, S.; van der Lelie, D.; Frantik, T.; et al. Selenium hyperaccumulators harbor a diverse endophytic bacterial community characterized by high selenium resistance and plant growth promoting properties. Front. Plant Sci. 2015, 6, 113. [Google Scholar] [CrossRef]
- Martínez-Hidalgo, P.; Flores-Félix, J.D.; Sánchez-Juanes, F.; Rivas, R.; Mateos, P.F.; Santa Regina, I.; Peix, Á.; Martínez-Molina, E.; Igual, J.M.; Velázquez, E. Identification of canola roots endophytic bacteria and analysis of their potential as biofertilizers for canola crops with special emphasis on sporulating bacteria. Agronomy 2021, 11, 1796. [Google Scholar] [CrossRef]
- Costa Júnior, P.S.P.; Cardoso, F.P.; Martins, A.D.; Teixeira Buttrós, V.H.; Pasqual, M.; Dias, D.R.; Schwan, R.F.; Dória, J. Endophytic bacteria of garlic roots promote growth of micropropagated meristems. Microbiol. Res. 2020, 241, 126585. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.; Bai, Y.; Liu, H. Recent advances in ambient mass spectrometry imaging. Trends Anal. Chem. 2019, 120, 115659. [Google Scholar] [CrossRef]
- Chowdappa, P.; Lakshmi, M.J.; Madhura, S. Matrix assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectrometry for identification of plant pathogenic Alternaria species. Phytoparasitica 2013, 41, 169–179. [Google Scholar] [CrossRef]
- Galeano Garcia, P.; Neves Dos Santos, F.; Zanotta, S.; Eberlin, M.N.; Carazzone, C. Metabolomics of Solanum lycopersicum infected with Phytophthora infestans leads to early detection of late blight in asymptomatic plants. Molecules 2018, 23, 3330. [Google Scholar] [CrossRef]
- Yu, J.; Gonzalez, J.M.; Dong, Z.; Shan, Q.; Tan, B.; Koh, J.; Zhang, T.; Zhu, N.; Dufresne, C.; Martin, G.B.; et al. Integrative proteomic and phosphoproteomic analyses of pattern- and effector-triggered immunity in Tomato. Front. Plant Sci. 2021, 12, 768693. [Google Scholar] [CrossRef]
- Tsers, I.; Gorshkov, V.; Gogoleva, N.; Parfirova, O.; Petrova, O.; Gogolev, Y. Plant soft rot development and regulation from the viewpoint of transcriptomic profiling. Plants 2020, 9, 1176. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, H.; Bhatti, S.; Zhou, S.; Yang, Y.; Fish, T.; Thannhauser, T.W. Development of a laser capture microscope-based single-cell-type proteomics tool for studying proteomes of individual cell layers of plant roots. Hortic. Res. 2016, 3, 16026. [Google Scholar] [CrossRef]
- Montes, C.; Zhang, J.; Nolan, T.M.; Walley, J.W. Single-cell proteomics differentiates Arabidopsis root cell types. New Phytol. 2024, 244, 1750–1759. [Google Scholar] [CrossRef]
- Moussaieff, A.; Rogachev, I.; Brodsky, L.; Malitsky, S.; Toal, T.W.; Belcher, H.; Yativ, M.; Brady, S.M.; Benfey, P.N.; Aharoni, A. High-resolution metabolic mapping of cell types in plant roots. Proc. Natl. Acad. Sci. USA 2013, 110, E1232–E1241. [Google Scholar] [CrossRef]
- Nwachukwu, B.C.; Babalola, O.O. Metagenomics: A tool for exploring key microbiome with the potentials for improving sustainable agriculture. Front. Sustain. Food Syst. 2022, 6, 886987. [Google Scholar] [CrossRef]
- Tang, B.; Feng, L.; Hulin, M.T.; Ding, P.; Ma, W. Cell-type-specific responses to fungal infection in plants revealed by single-cell transcriptomics. Cell Host Microbe 2023, 31, 1732–1747.e5. [Google Scholar] [CrossRef]
- Bai, Y.; Liu, H.; Lyu, H.; Su, L.; Xiong, J.; Cheng, Z.M. Development of a single-cell atlas for woodland strawberry (Fragaria vesca) leaves during early Botrytis cinerea infection using single cell RNA-seq. Hortic. Res. 2022, 9, uhab055. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Lolle, S.; Tang, A.; Guel, B.; Kvitko, B.; Cole, B.; Coaker, G. Single-cell profiling of Arabidopsis leaves to Pseudomonas syringae infection. Cell Rep. 2023, 42, 112676. [Google Scholar] [CrossRef] [PubMed]
- Schmid, M.W.; Schmidt, A.; Grossniklaus, U. The female gametophyte: An emerging model for cell type-specific systems biology in plant development. Front. Plant Sci. 2015, 6, 907. [Google Scholar] [CrossRef] [PubMed]
- Alseekh, S.; Fernie, A.R. Metabolomics 20 years on: What have we learned and what hurdles remain? Plant J. 2018, 94, 933–942. [Google Scholar] [CrossRef]
- Boddu, R.S.; K, A.P.; K, D. Metagenomic bioprospecting of uncultivable microbial flora in soil microbiome for novel enzymes. Geomicrobiol. J. 2021, 39, 97–106. [Google Scholar] [CrossRef]
- Louca, S.; Doebeli, M.; Parfrey, L.W. Correcting for 16S rRNA gene copy numbers in microbiome surveys remains an unsolved problem. Microbiome 2018, 6, 41. [Google Scholar] [CrossRef]
- Levy, A.; Salas Gonzalez, I.; Mittelviefhaus, M.; Clingenpeel, S.; Herrera Paredes, S.; Miao, J.; Wang, K.; Devescovi, G.; Stillman, K.; Monteiro, F.; et al. Genomic features of bacterial adaptation to plants. Nat. Genet. 2018, 50, 138–150. [Google Scholar] [CrossRef]
- Yurgel, S.N.; Nearing, J.T.; Douglas, G.M.; Langille, M.G.I. Metagenomic functional shifts to plant induced environmental changes. Front. Microbiol. 2019, 10, 1682. [Google Scholar] [CrossRef]
- Salem, M.A.; Perez de Souza, L.; Serag, A.; Fernie, A.R.; Farag, M.A.; Ezzat, S.M.; Alseekh, S. Metabolomics in the context of plant natural products research: From sample preparation to metabolite analysis. Metabolites 2020, 10, 37. [Google Scholar] [CrossRef]
- Braga, R.M.; Dourado, M.N.; Araujo, W.L. Microbial interactions: Ecology in a molecular perspective. Braz. J. Microbiol. 2016, 47 (Suppl. 1), 86–98. [Google Scholar] [CrossRef]
- Fu, R.; Cheng, R.; Wang, S.; Li, J.; Zhang, J. Succinoglycan Riclin reshaped the soil microbiota by accumulating plant probiotic to improve the soil suppressiveness on Fusarium wilt of cucumber seedlings. Int. J. Biol. Macromol. 2021, 182, 1883–1892. [Google Scholar] [CrossRef] [PubMed]
- Toju, H.; Peay, K.G.; Yamamichi, M.; Narisawa, K.; Hiruma, K.; Naito, K.; Fukuda, S.; Ushio, M.; Nakaoka, S.; Onoda, Y.; et al. Core microbioms for sustainable agroecosystems. Nat. Plants 2018, 4, 247–257. [Google Scholar] [CrossRef] [PubMed]
- de Souza, R.S.C.; Armanhi, J.S.L.; Damasceno, N.B.; Imperial, J.; Arruda, P. Genome sequences of a plant beneficial synthetic bacterial community reveal genetic features for successful plant colonization. Front. Microbiol. 2019, 10, 1779. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, A.; Senthil-Kumar, M. Drought attenuates plant defence against bacterial pathogens by suppressing the expression of CBP60g/SARD1 during combined stress. Plant Cell Environ. 2022, 45, 1127–1145. [Google Scholar] [CrossRef]
- Prasch, C.M.; Sonnewald, U. Simultaneous application of heat, drought, and virus to Arabidopsis plants reveals significant shifts in signaling networks. Plant Physiol. 2013, 162, 1849–1866. [Google Scholar] [CrossRef]
- Upasani, M.L.; Limaye, B.M.; Gurjar, G.S.; Kasibhatla, S.M.; Joshi, R.R.; Kadoo, N.Y.; Gupta, V.S. Chickpea-Fusarium oxysporum interaction transcriptome reveals differential modulation of plant defense strategies. Sci. Rep. 2017, 7, 7746. [Google Scholar] [CrossRef]
- Ribeiro, D.G.; Bezerra, A.C.M.; Santos, I.R.; Grynberg, P.; Fontes, W.; de Souza Castro, M.; de Sousa, M.V.; Lisei-de-Sá, M.E.; Grossi-de-Sá, M.F.; Franco, O.L.; et al. Proteomic insights of cowpea response to combined biotic and abiotic stresses. Plants 2023, 12, 1900. [Google Scholar] [CrossRef]
- Vemanna, R.S.; Bakade, R.; Bharti, P.; Kumar, M.K.P.; Sreeman, S.M.; Senthil-Kumar, M.; Makarla, U. Cross-talk signaling in rice during combined drought and bacterial blight stress. Front. Plant Sci. 2019, 10, 193. [Google Scholar] [CrossRef] [PubMed]
- Kosová, K.; Vítámvás, P.; Skuhrovec, J.; Vítámvás, J.; Planchon, S.; Renaut, J.; Saska, P. Proteomic responses of two spring wheat cultivars to the combined water deficit and aphid (Metopolophium dirhodum) treatments. Front. Plant Sci. 2022, 13, 1005755. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Molina, A.; Pastor, V. Systemic analysis of metabolome reconfiguration in Arabidopsis after abiotic stressors uncovers metabolites that modulate defense against pathogens. Plant Commun. 2024, 5, 100645. [Google Scholar] [CrossRef] [PubMed]
- Khaling, E.; Agyei, T.; Jokinen, S.; Holopainen, J.K.; Blande, J.D. The phytotoxic air-pollutant O3 enhances the emission of herbivore-induced volatile organic compounds (VOCs) and affects the susceptibility of black mustard plants to pest attack. Environ. Pollut. 2020, 265, 115030. [Google Scholar] [CrossRef]
- Chojak-Kozniewska, J.; Kuzniak, E.; Zimny, J. The effects of combined abiotic and pathogen stress in plants: Insights from salinity and Pseudomonas syringae pv lachrymans interaction in Cucumber. Front. Plant Sci. 2018, 9, 1691. [Google Scholar] [CrossRef]
- Yang, L.; Fountain, J.C.; Ji, P.; Ni, X.; Chen, S.; Lee, R.D.; Kemerait, R.C.; Guo, B. Deciphering drought-induced metabolic responses and regulation in developing maize kernels. Plant Biotechnol. J. 2018, 16, 1616–1628. [Google Scholar] [CrossRef]
- Christensen, S.A.; Santana, E.L.A.; Alborn, H.T.; Block, A.K.; Chamberlain, C.A. Metabolomics by UHPLC-HRMS reveals the impact of heat stress on pathogen-elicited immunity in maize. Metabolomics 2021, 17, 6. [Google Scholar] [CrossRef]
- Diethelm, A.C.; Kost, K.E.; Pringle, E.G. Plant water limitation and its impact on the oviposition preferences of the monarch butterfly (Lepidoptera: Nymphalidae). J. Insect Sci. 2023, 23, iead075. [Google Scholar] [CrossRef]
- Zhong, J.; Zhang, J.; Zhang, Y.; Ge, Y.; He, W.; Liang, C.; Gao, Y.; Zhu, Z.; Machado, R.A.R.; Zhou, W. Heat stress reprograms herbivory-induced defense responses in potato plants. BMC Plant Biol. 2024, 24, 677. [Google Scholar] [CrossRef]
- Nam, K.-H.; Kim, Y.-J.; Moon, Y.S.; Pack, I.-S.; Kim, C.-G. Salinity affects metabolomic profiles of different trophic levels in a food chain. Sci. Total Environ. 2017, 599–600, 198–206. [Google Scholar] [CrossRef]
- Sacco Botto, C.; Matić, S.; Moine, A.; Chitarra, W.; Nerva, L.; D’Errico, C.; Pagliarani, C.; Noris, E. Tomato Yellow Leaf Curl Sardinia virus increases drought tolerance of Tomato. Int. J. Mol. Sci. 2023, 24, 2893. [Google Scholar] [CrossRef]
- Arbona, V.; Ximénez-Embún, M.G.; Echavarri-Muñoz, A.; Martin-Sánchez, M.; Gómez-Cadenas, A.; Ortego, F.; González-Guzmán, M. Early molecular responses of Tomato to combined moderate water stress and tomato red spider mite Tetranychus evansi attack. Plants 2020, 9, 1131. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Dixit, S.K.; Senthil-Kumar, M. Drought stress predominantly endures Arabidopsis thaliana to Pseudomonas syringae infection. Front. Plant Sci. 2016, 7, 808. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, N.J.; Lilley, C.J.; Urwin, P.E. Identification of genes involved in the response of Arabidopsis to simultaneous biotic and abiotic stresses. Plant Physiol. 2013, 162, 2028–2041. [Google Scholar] [CrossRef] [PubMed]
- Gill, G.S.; Haugen, R.; Matzner, S.L.; Barakat, A.; Siemens, D.H. Effect of drought on herbivore-induced plant gene expression: Population comparison for range limit inferences. Plants 2016, 5, 13. [Google Scholar] [CrossRef]
- Krokene, P.; Børja, I.; Carneros, E.; Eldhuset, T.D.; Nagy, N.E.; Volařík, D.; Gebauer, R. Effects of combined drought and pathogen stress on growth, resistance and gene expression in young Norway spruce trees. Tree Physiol. 2023, 43, 1603–1618. [Google Scholar] [CrossRef]
- Bidzinski, P.; Ballini, E.; Ducasse, A.; Michel, C.; Zuluaga, P.; Genga, A.; Chiozzotto, R.; Morel, J.B. Transcriptional basis of drought-induced susceptibility to the rice blast fungus Magnaporthe oryzae. Front. Plant Sci. 2016, 7, 1558. [Google Scholar] [CrossRef]
- Zhang, Q.; Teng, R.; Yuan, Z.; Sheng, S.; Xiao, Y.; Deng, H.; Tang, W.; Wang, F. Integrative transcriptomic analysis deciphering the role of rice bHLH transcription factor Os04g0301500 in mediating responses to biotic and abiotic stresses. Front. Plant Sci. 2023, 14, 1266242. [Google Scholar] [CrossRef]
- Ramu, V.S.; Paramanantham, A.; Ramegowda, V.; Mohan-Raju, B.; Udayakumar, M.; Senthil-Kumar, M. Transcriptome analysis of sunflower genotypes with contrasting oxidative stress tolerance reveals individual- and combined- biotic and abiotic stress tolerance mechanisms. PLoS ONE 2016, 11, e0157522. [Google Scholar] [CrossRef]
- Bai, Y.; Kissoudis, C.; Yan, Z.; Visser, R.G.F.; van der Linden, G. Plant behaviour under combined stress: Tomato responses to combined salinity and pathogen stress. Plant J. 2018, 93, 781–793. [Google Scholar] [CrossRef]
- Su, Z.; Gao, S.; Zheng, Z.; Stiller, J.; Hu, S.; McNeil, M.D.; Shabala, S.; Zhou, M.; Liu, C. Transcriptomic insights into shared responses to Fusarium crown rot infection and drought stresses in bread wheat (Triticum aestivum L.). Theor. Appl. Genet. 2024, 137, 34. [Google Scholar] [CrossRef] [PubMed]
- Wood, T.D.; Tiede, E.R.; Izydorczak, A.M.; Zemaitis, K.J.; Ye, H.; Nguyen, H.T. Chemical informatics combined with kendrick mass analysis to enhance annotation and identify pathways in soybean metabolomics. Metabolites 2025, 15, 73. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Han, X.; Wang, J.; Wang, H.; Yan, R.; Yu, N. Comparative metabolomic in-depth exploration of red raspberry: New insights into changes in phytochemicals between different breeds. Anal. Methods 2025, 17, 2112–2124. [Google Scholar] [CrossRef] [PubMed]
- Kruaweangmol, P.; Ekchaweng, K.; Morakul, S.; Phaonakrop, N.; Roytrakul, S.; Tunsagool, P. Metabolomic and proteomic changes in leaves of rubber seedlings infected by Phytophthora palmivora. Tree Physiol. 2025, 45, tpaf010. [Google Scholar] [CrossRef]
- Munoz Hoyos, L.; Anisha, W.P.; Meng, C.; Kleigrewe, K.; Dawid, C.; Huckelhoven, R.; Stam, R. Untargeted metabolomics reveals PTI-associated metabolites. Plant Cell Environ. 2024, 47, 1224–1237. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, T.; Li, Z.; Wang, X.; Bao, H.; Zhao, C.; Zhao, X.; Lu, X.; Xu, G. Fine-scale characterization of plant diterpene glycosides using energy-resolved untargeted LC-MS/MS metabolomics analysis. J. Am. Soc. Mass Spectrom. 2024, 35, 603–612. [Google Scholar] [CrossRef]
- Nguyen, T.D.; Lesani, M.; Forrest, I.; Lan, Y.; Dean, D.A.; Gibaut, Q.M.R.; Guo, Y.; Hossain, E.; Olvera, M.; Panlilio, H.; et al. Local phenomena shape backyard soil metabolite composition. Metabolites 2020, 10, 86. [Google Scholar] [CrossRef]
- Hayden, H.L.; Rochfort, S.J.; Ezernieks, V.; Savin, K.W.; Mele, P.M. Metabolomics approaches for the discrimination of disease suppressive soils for Rhizoctonia solani AG8 in cereal crops using (1)H NMR and LC-MS. Sci. Total Environ. 2019, 651 Pt 1, 1627–1638. [Google Scholar] [CrossRef]
- Van Aubel, G.; Van Cutsem, E.; Emond, A.; Métillon, G.; Cordier, É.; Van Cutsem, P. Dual transcriptomic and metabolomic analysis of elicited flax sheds light on the kinetics of immune defense activation against the biotrophic pathogen Oidium lini. Phytopathology 2024, 114, 1904–1916. [Google Scholar] [CrossRef]
- Ren, X.; Zhang, G.; Jin, M.; Wan, F.; Day, M.D.; Qian, W.; Liu, B. Metabolomics and transcriptomics reveal the response mechanisms of Mikania micrantha to Puccinia spegazzinii infection. Microorganisms 2023, 11, 678. [Google Scholar] [CrossRef]
- Shu, J.; Ma, X.; Ma, H.; Huang, Q.; Zhang, Y.; Guan, M.; Guan, C. Transcriptomic, proteomic, metabolomic, and functional genomic approaches of Brassica napus L. during salt stress. PLoS ONE 2022, 17, e0262587. [Google Scholar] [CrossRef]
- Sobhanian, H.; Motamed, N.; Jazii, F.R.; Nakamura, T.; Komatsu, S. Salt stress induced differential proteome and metabolome response in the shoots of Aeluropus lagopoides (Poaceae), a halophyte C4 plant. J. Proteome Res. 2010, 9, 2882–2897. [Google Scholar] [CrossRef]
- Zhu, W.; Han, H.; Liu, A.; Guan, Q.; Kang, J.; David, L.; Dufresne, C.; Chen, S.; Tian, J. Combined ultraviolet and darkness regulation of medicinal metabolites in Mahonia bealei revealed by proteomics and metabolomics. J. Proteom. 2021, 233, 104081. [Google Scholar] [CrossRef]
- David, L.; Kang, J.; Nicklay, J.; Dufresne, C.; Chen, S. Identification of DIR1-dependent cellular responses in guard cell systemic acquired resistance. Front. Mol. Biosci. 2021, 8, 746523. [Google Scholar] [CrossRef]
- Wang, S.; Liu, L.; Mi, X.; Zhao, S.; An, Y.; Xia, X.; Guo, R.; Wei, C. Multi-omics analysis to visualize the dynamic roles of defense genes in the response of tea plants to gray blight. Plant J. 2021, 106, 862–875. [Google Scholar] [CrossRef]
- Li, J.; Gmitter, F.G., Jr.; Zhang, B.; Wang, Y. Uncovering interactions between plant metabolism and plant-associated bacteria in huanglongbing-affected citrus cultivars using multiomics analysis and machine learning. J. Agric. Food Chem. 2023, 71, 16391–16401. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Wang, X.; Hu, Y.; Huang, G. Analysis of huanglongbing-associated RNA-seq data reveals disturbances in biological processes within Citrus spp. triggered by Candidatus Liberibacter asiaticus infection. Front. Plant Sci. 2024, 15, 1388163. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, Y.Z.; Gmitter, F.G.; Wang, Y. Identifying the earliest citrus responses to Candidatus Liberibacter asiaticus infection: A temporal metabolomics study. Front. Plant Sci. 2024, 15, 1455344. [Google Scholar] [CrossRef] [PubMed]
- Wan, T.; Feng, Y.; Liang, C.; Pan, L.; He, L.; Cai, Y. Metabolomics and transcriptomics analyses of two contrasting cherry rootstocks in response to drought stress. Biology 2021, 10, 201. [Google Scholar] [CrossRef] [PubMed]
- Allwood, J.W.; Williams, A.; Uthe, H.; van Dam, N.M.; Mur, L.A.J.; Grant, M.R.; Petriacq, P. Unravelling plant responses to stress-the importance of targeted and untargeted metabolomics. Metabolites 2021, 11, 558. [Google Scholar] [CrossRef]
- Mohd Kamal, K.; Mahamad Maifiah, M.H.; Zhu, Y.; Abdul Rahim, N.; Hashim, Y.Z.H.; Abdullah Sani, M.S. Isotopic tracer for absolute quantification of metabolites of the pentose phosphate pathway in bacteria. Metabolites 2022, 12, 1085. [Google Scholar] [CrossRef]
- Baccolini, C.; Arrivault, S. Stable isotope labeling and quantification of photosynthetic metabolites. In Photosynthesis: Methods and Protocols; Covshoff, S., Ed.; Springer: New York, NY, USA, 2024; pp. 439–466. [Google Scholar]
- Kunz, K.; Hu, Y.; Schmidhalter, U. Carbon isotope discrimination as a key physiological trait to phenotype drought/heat resistance of future climate-resilient German winter wheat compared with relative leaf water content and canopy temperature. Front. Plant Sci. 2022, 13, 1043458. [Google Scholar] [CrossRef]
- Wang, Y.; Wondisford, F.E.; Song, C.; Zhang, T.; Su, X. Metabolic flux analysis-linking isotope labeling and metabolic fluxes. Metabolites 2020, 10, 447. [Google Scholar] [CrossRef]
- Chu, K.L.; Koley, S.; Jenkins, L.M.; Bailey, S.R.; Kambhampati, S.; Foley, K.; Arp, J.J.; Morley, S.A.; Czymmek, K.J.; Bates, P.D.; et al. Metabolic flux analysis of the non-transitory starch tradeoff for lipid production in mature tobacco leaves. Metab. Eng. 2022, 69, 231–248. [Google Scholar] [CrossRef]
- Roychowdhury, R.; Das, S.P.; Gupta, A.; Parihar, P.; Chandrasekhar, K.; Sarker, U.; Kumar, A.; Ramrao, D.P.; Sudhakar, C. Multi-omics pipeline and omics-integration approach to decipher plant’s abiotic stress tolerance responses. Genes 2023, 14, 1281. [Google Scholar] [CrossRef]
- Allwood, J.W.; Heald, J.; Lloyd, A.J.; Goodacre, R.; Mur, L.A.J. Separating the inseparable: The metabolomic analysis of plant–pathogen interactions. In Plant Metabolomics: Methods and Protocols; Hardy, N.W., Hall, R.D., Eds.; Humana Press: Totowa, NJ, USA, 2012; pp. 31–49. [Google Scholar]
- Ceranic, A.; Doppler, M.; Buschl, C.; Parich, A.; Xu, K.; Koutnik, A.; Burstmayr, H.; Lemmens, M.; Schuhmacher, R. Preparation of uniformly labelled (13)C- and (15)N-plants using customised growth chambers. Plant Methods 2020, 16, 46. [Google Scholar] [CrossRef] [PubMed]
Proteomics | ||||
---|---|---|---|---|
Host Plant | Abiotic | Biotic | Molecular Changes | Ref. |
Arabidopsis (A. thaliana) | Drought (moderate) | Pseudomonas syringae pv. tomato | Drought suppressed SA-mediated defense by repressing CBP60g and SARD1, which decreased PR proteins. ABA levels increased under drought | [109] |
Arabidopsis (A. thaliana) | Heat stress (with drought) | Turnip mosaic virus(TuMV) | Heat stress suppressed R-gene-mediated defense, allowing increased virus replication. Heat shock proteins and chaperones were highly induced, prioritizing abiotic stress tolerance over antiviral defense | [110] |
Chickpea (Cicer arietinum) | Drought | Fusarium oxysporum sp. | Combined stress led to higher expression of PR proteins (chitinases, β-1,3-glucanases), antioxidant proteins, and osmoprotectants | [111] |
Cowpea (Vigna unguiculata) | Drought | Meloidogyne spp. | Upregulation of disease-resistance proteins (NBS-LRR class), pathogenesis-related (PR) proteins (e.g., chitinase, PR-1, thaumatin), and antioxidant enzymes | [112] |
Rice (Oryza sativa) | Drought | Xanthomonas oryzae | Decrease in photosynthesis and carbon metabolism proteins. Increase in receptor-like kinases, MAP kinases, ribosomal proteins, and stress-responsive translational regulators | [113] |
Wheat (Triticum aestivum) | Drought | Sitobion avenae/Metopolophium dirhodum | Photosynthesis proteins were repressed under combined stress. Increased expression of mitochondrial respiratory enzymes and ATP synthase subunits, contributing to stress tolerance | [114] |
Metabolomics | ||||
Arabidopsis (A. thaliana) | Light, humidity, drought, heat and cold | P. syringae/Botrytis cinerea | Sustained metabolome changes in osmoprotectants and antioxidants (fumaric acid, flavonoids and anthocyanins) configured in response to abiotic stresses can act as modulators of plant immune responses | [115] |
Black mustard (Brassica nigra) | Ozone (O3) pollution | Pieris brassicae | Ozone inhibited photosynthesis; herbivory increased volatiles and defense metabolites | [116] |
Cucumber (Cucumis sativus) | Salinity | P. syringae pv. lachrymans | Salt and pathogen caused redox imbalance, ABA increase, SA suppression | [117] |
Maize (Z. mays) | Drought | Aspergillus (aflatoxin) | Accumulation of simple sugars and polyunsaturated fatty acids; increased ROS | [118] |
Maize (Z. mays) | Heat stress | Cochliobolus heterostrophus | Elevated hydroxycinnamic and p-coumaric acid levels, increasing heat-induced susceptibility | [119] |
Milkweed (Asclepias fascicularis) | Drought | Danaus plexippus | Herbivory suppressed drought-induced flavanol glycosides; reduced defense metabolites | [120] |
Potato (Solanum tuberosum) | Heat stress | Phthorimaea operculella | Heat suppressed herbivory-induced defensive metabolites (jasmonates, glycoalkaloids) | [121] |
Rice (O. sativa) | Salinity | Sitobion avenae | Salt stress altered aphid metabolism, reducing sugar and fatty acid accumulation in aphids | [122] |
Tomato (S. lycopersicum) | Severe drought | Tomato yellow leaf curl virus | Higher proline content | [123] |
Tomato (S. lycopersicum) | Moderate drought | Tetranychus evansi | Drought and herbivory increased ABA and SA, respectively; mite altered osmolytes and defense metabolites | [124] |
Transcriptomics | ||||
Arabidopsis (A. thaliana) | Drought | Pseudomona syringae | Combined stress differentially regulated drought and pathogen responsive genes, including AtNCED3, AtPR5, and AtNAC6 | [125] |
Arabidopsis (A. thaliana) | Drought | Heterodera schachtii | Over 50 genes were uniquely regulated under dual stress conditions, including AtRALFL8 | [126] |
Arabidopsis (A. thaliana) | Heat (38 °C) and Drought | TuMV | Triple stresses altered 61% of gene expressions non-additively, suppressing anti-ethylene TF Rap2.9 (DEAR5) under heat and drought | [110] |
Boechera stricta | Drought | Spodoptera exigua | 290 genes were upregulated under drought-herbivory stress, and MYB13 was suppressed | [127] |
Norway Spruce (Picea abies) | Drought (mild vs. severe) | Endoconidiophora polonica | Mild drought pre-stress increased resistance, severe drought suppressed defense genes | [128] |
Rice (O. sativa) | Drought (intermittent) | Magnaporthe oryzae | Drought pre-stress dampened defense-related transcripts, increasing pathogen virulence | [129] |
Rice (O. sativa) | Heat and Cold | X. oryzae | bHLH gene Os04g0301500 acts as a key regulator in coordinating heat/cold and bacterial responses | [130] |
Sunflower (Helianthus annuus) | Drought | Mixed fungal pathogens | Shared oxidative stress genes upregulated under combined stress, overlapping with defense pathways | [131] |
Tomato (S. lycopersicum) | Salinity | Oidium neolycopersici | Stress responses varied based on salt levels; hormonal signaling (ABA, JA/ET) played a role in stress adaptation | [132] |
Wheat (T. aestivum) | Drought | F. pseudo- graminearum | Gene co-expression analysis showed shared and distinct stress-responsive pathways; candidate genes on chromosome 2D identified (including TraesCS2D03G1055700) | [133] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akter, T.; Maqsood, H.; Castilla, N.; Song, W.; Chen, S. Systems Biology Applications in Revealing Plant Defense Mechanisms in Disease Triangle. Int. J. Mol. Sci. 2025, 26, 7318. https://doi.org/10.3390/ijms26157318
Akter T, Maqsood H, Castilla N, Song W, Chen S. Systems Biology Applications in Revealing Plant Defense Mechanisms in Disease Triangle. International Journal of Molecular Sciences. 2025; 26(15):7318. https://doi.org/10.3390/ijms26157318
Chicago/Turabian StyleAkter, Tahmina, Hajra Maqsood, Nicholas Castilla, Wenyuan Song, and Sixue Chen. 2025. "Systems Biology Applications in Revealing Plant Defense Mechanisms in Disease Triangle" International Journal of Molecular Sciences 26, no. 15: 7318. https://doi.org/10.3390/ijms26157318
APA StyleAkter, T., Maqsood, H., Castilla, N., Song, W., & Chen, S. (2025). Systems Biology Applications in Revealing Plant Defense Mechanisms in Disease Triangle. International Journal of Molecular Sciences, 26(15), 7318. https://doi.org/10.3390/ijms26157318