Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (317)

Search Parameters:
Keywords = planar transformer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 4124 KiB  
Article
High-Power Coupled Wideband Low-Frequency Antenna Design for Enhanced Long-Range Loran-C Timing Synchronization
by Jingqi Wu, Xueyun Wang, Juncheng Liu, Chenyang Fan, Chenxi Zhang, Zilun Zeng, Liwei Wang and Jianchun Xu
Sensors 2025, 25(14), 4352; https://doi.org/10.3390/s25144352 - 11 Jul 2025
Viewed by 128
Abstract
Precise timing synchronization remains a fundamental requirement for modern navigation and communication systems, where the miniaturization of Loran-C infrastructure presents both technical challenges and practical significance. Conventional miniaturized loop antennas cannot simultaneously meet the requirements of the Loran-C signal for both radiation intensity [...] Read more.
Precise timing synchronization remains a fundamental requirement for modern navigation and communication systems, where the miniaturization of Loran-C infrastructure presents both technical challenges and practical significance. Conventional miniaturized loop antennas cannot simultaneously meet the requirements of the Loran-C signal for both radiation intensity and bandwidth due to inherent quality factor (Q) limitations. A sub-cubic-meter impedance matching (IM) antenna is proposed, featuring a −20 dB bandwidth of 18 kHz and over 7-fold radiation enhancement. The proposed design leverages a planar-transformer-based impedance matching network to enable efficient 100 kHz operation in a compact form factor, while a resonant coil structure is adopted at the receiver side to enhance the system’s sensitivity. The miniaturized Loran-C timing system incorporating the IM antenna achieves an extended decoding range of >100 m with merely 100 W input power, exceeding conventional loop antennas limited to 30 m operation. This design successfully achieves overall miniaturization of the Loran-C timing system while breaking through the current transmission distance limitations of compact antennas, extending the effective transmission range to the hundred-meter scale. The design provides a case for developing compact yet high-performance Loran-C systems. Full article
(This article belongs to the Section Communications)
Show Figures

Graphical abstract

16 pages, 7834 KiB  
Proceeding Paper
Exploring the Connection Between Design and Materials Through the Digitalization of Modular Solutions
by Mihaela Gadzheva-Nedelcheva and Ivelina Daulova
Eng. Proc. 2025, 100(1), 10; https://doi.org/10.3390/engproc2025100010 - 3 Jul 2025
Viewed by 181
Abstract
This research presents a methodically consistent creative act related to the digitization of planar pictorial images. After the transformation based on the modular grids, completely new images are created—different from their original source. The successful solutions found in this way are applicable to [...] Read more.
This research presents a methodically consistent creative act related to the digitization of planar pictorial images. After the transformation based on the modular grids, completely new images are created—different from their original source. The successful solutions found in this way are applicable to various areas of graphic and product design. Multiple experiments were conducted in a digital environment on the same image applied to different material carriers in relation to the function of the product—different types of textiles and paper. To more accurately describe the experiments, three-dimensional realistic shapes from different materials have been created, onto which the modular designs have been applied. The report provides a methodical modular principle of thinking and action, justified by the applied results of the set experiment. The experiment was conducted and directly implemented under a scientific research project for an R&DS (The Research and Development Sector) project (Agrmt. 241XTД0006-06) at the Technical University, Sofia. The study involved three students from the Engineering Design Department, as well as the authors of this article—all supporters of the creative principle. Full article
Show Figures

Figure 1

33 pages, 15773 KiB  
Article
Surface Change and Stability Analysis in Open-Pit Mines Using UAV Photogrammetric Data and Geospatial Analysis
by Abdurahman Yasin Yiğit and Halil İbrahim Şenol
Drones 2025, 9(7), 472; https://doi.org/10.3390/drones9070472 - 2 Jul 2025
Cited by 1 | Viewed by 465
Abstract
Significant morphological transformations resulting from open-pit mining activities always present major problems with site safety and slope stability. This study investigates an active marble quarry in Dinar, Türkiye by combining geospatial analysis and photogrammetry based on unmanned aerial vehicles (UAV). Acquired in 2024 [...] Read more.
Significant morphological transformations resulting from open-pit mining activities always present major problems with site safety and slope stability. This study investigates an active marble quarry in Dinar, Türkiye by combining geospatial analysis and photogrammetry based on unmanned aerial vehicles (UAV). Acquired in 2024 and 2025, high-resolution images were combined with dense point clouds produced by Structure from Motion (SfM) methods. Iterative Closest Point (ICP) registration (RMSE = 2.09 cm) and Multiscale Model-to-Model Cloud Comparison (M3C2) analysis was used to quantify the surface changes. The study found a volumetric increase of 7744.04 m3 in the dump zones accompanied by an excavation loss of 8359.72 m3, so producing a net difference of almost 615.68 m3. Surface risk factors were evaluated holistically using a variety of morphometric criteria. These measures covered surface variation in several respects: their degree of homogeneity, presence of any unevenness or texture, verticality, planarity, and linearity. Surface variation > 0.20, roughness > 0.15, and verticality > 0.25 help one to identify zones of increased instability. Point cloud modeling derived from UAVs and GIS-based spatial analysis were integrated to show that morphological anomalies are spatially correlated with possible failure zones. Full article
Show Figures

Figure 1

14 pages, 27914 KiB  
Article
Inversion Motion of Xanthene and Detection of Its Oxidation Product Xanthone from Gas-Phase Rotational Spectroscopy
by Celina Bermúdez, Manuel Goubet and Elias M. Neeman
Molecules 2025, 30(13), 2801; https://doi.org/10.3390/molecules30132801 - 29 Jun 2025
Viewed by 254
Abstract
The rotational spectra of xanthene and its oxidation product xanthone were investigated by combining quantum chemical calculations with Fourier transform microwave spectroscopy in a jet-cooled environment. Xanthone was unexpectedly generated in the experiment when water was present in the reservoir of xanthene leading [...] Read more.
The rotational spectra of xanthene and its oxidation product xanthone were investigated by combining quantum chemical calculations with Fourier transform microwave spectroscopy in a jet-cooled environment. Xanthone was unexpectedly generated in the experiment when water was present in the reservoir of xanthene leading to the total disappearance of xanthene after few hours. Structurally, xanthone shows a near planar disposition, whereas xanthene exhibits a non-planar geometry with both benzene rings twisted out of the molecular plane. This geometry enables an inversion motion between two equivalent conformers, giving rise to a splitting in the ground vibrational state. A two-state analysis of the vibration–rotation interaction for the v=0 and v=1 states gives an energy separation between these states (inversion splitting) of ΔE01=4689.7095(10)MHz. This large-amplitude motion leads to vibration–rotation coupling of energy levels. A symmetric double-minimum inversion potential function was determined, resulting in a barrier of about 45 cm−1 in good agreement with that obtained by DFT quantum chemical calculations. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Physical Chemistry, 3nd Edition)
Show Figures

Graphical abstract

25 pages, 3109 KiB  
Article
Generalized Modified Unstable Nonlinear Schrödinger’s Equation: Optical Solitons and Modulation Instability
by Jamilu Sabi’u, Ibrahim Sani Ibrahim, Khomsan Neamprem, Surattana Sungnul and Sekson Sirisubtawee
Mathematics 2025, 13(12), 2032; https://doi.org/10.3390/math13122032 - 19 Jun 2025
Viewed by 715
Abstract
This paper proposes the generalized modified unstable nonlinear Schrödinger’s equation with applications in modulated wavetrain instabilities. The extended direct algebra and generalized Ricatti equation methods are applied to find innovative soliton solutions to the equation. The solutions are obtained in the form of [...] Read more.
This paper proposes the generalized modified unstable nonlinear Schrödinger’s equation with applications in modulated wavetrain instabilities. The extended direct algebra and generalized Ricatti equation methods are applied to find innovative soliton solutions to the equation. The solutions are obtained in the form of elliptic, hyperbolic, and trigonometric functions. Moreover, a Galilean transformation is used to convert the problem into a dynamical system. We use the theory of planar dynamical systems to derive the equilibrium points of the dynamical system and analyze the Hamiltonian polynomial. We further investigate the bifurcation phase portrait of the system and study its chaotic behaviors when an external force is applied to the system. Graphical 2D and 3D plots are explored to support our mathematical analysis. A sensitivity analysis confirms that the variation in initial conditions has no substantial effect on the stability of the solutions. Furthermore, we give the modulation instability gain spectrum of the considered model and graphically indicate its dynamics using 2D plots. The reported results demonstrate not only the dynamics of the analyzed equation but are also conceptually relevant in establishing the temporal development of modest disturbances in stable or unstable media. These disturbances will be critical for anticipating, planning treatments, and creating novel mechanisms for modulated wavetrain instabilities. Full article
Show Figures

Figure 1

15 pages, 3537 KiB  
Article
High-Efficiency Broadband Selective Photothermal Absorbers Based on Multilayer Chromium Films
by Chu Li, Er-Tao Hu, Yu-Xiang Zheng, Song-You Wang, Yue-Mei Yang, Young-Pak Lee, Jun-Peng Guo, Qing-Yuan Cai, Wei-Bo Duan and Liang-Yao Chen
Crystals 2025, 15(6), 562; https://doi.org/10.3390/cryst15060562 - 14 Jun 2025
Viewed by 312
Abstract
Photothermal conversion is a pivotal energy transformation mechanism in solar energy systems. Achieving high-efficiency and broadband photothermal conversion within the solar radiation spectrum holds strategic significance in driving the innovative development of renewable energy technologies. In this study, a transmission matrix method was [...] Read more.
Photothermal conversion is a pivotal energy transformation mechanism in solar energy systems. Achieving high-efficiency and broadband photothermal conversion within the solar radiation spectrum holds strategic significance in driving the innovative development of renewable energy technologies. In this study, a transmission matrix method was employed to design an interference-type solar selective absorber based on multilayer Cr-SiO2 planar films, successfully achieving an average absorption of 94% throughout the entire solar spectral range. Further analysis indicates that this newly designed absorber shows excellent absorption performance even at a relatively large incident angle (up to 60°). Additionally, the newly designed absorber demonstrates lower polarization sensitivity, enabling efficient operation under complicated incident conditions. With its simple fabrication process and ease of preparation, the proposed absorber holds substantial potential for applications in photothermal conversion fields such as solar thermal collectors. Full article
(This article belongs to the Special Issue Preparation and Characterization of Optoelectronic Functional Films)
Show Figures

Figure 1

19 pages, 5665 KiB  
Article
A Novel Two-Stage Power Conversion Method Suitable for 1MHz-LDC of Electric Vehicles
by Tran Manh Tuan, Abdul Shakoor Akram and Woojin Choi
Electronics 2025, 14(12), 2403; https://doi.org/10.3390/electronics14122403 - 12 Jun 2025
Viewed by 274
Abstract
Low-Voltage DC-DC converters (LDCs) in electric vehicles require high power density and high efficiency operation over the wide range of load and input voltage variations. This paper introduces a novel topology which combines three 1 MHz half-bridge (HB) LLC resonant converters and an [...] Read more.
Low-Voltage DC-DC converters (LDCs) in electric vehicles require high power density and high efficiency operation over the wide range of load and input voltage variations. This paper introduces a novel topology which combines three 1 MHz half-bridge (HB) LLC resonant converters and an inverting buck–boost (IBB) converter to adjust the output voltage without frequency modulation. The switching frequency of the proposed converter is fixed at 1 MHz to achieve a constant frequency operation for the resonant converter. In the proposed topology, Gallium Nitride (GaN) devices and planar transformers are employed to optimize the converter operation at high frequency. A 1-MHz/1.8 kW-400/14 V prototype converter is built to verify the feasibility and the validity of the proposed LDC topology. Full article
Show Figures

Figure 1

19 pages, 3128 KiB  
Article
Slow Translation and Rotation of a Composite Sphere Parallel to One or Two Planar Walls
by Yu F. Chou and Huan J. Keh
Fluids 2025, 10(6), 154; https://doi.org/10.3390/fluids10060154 - 12 Jun 2025
Viewed by 652
Abstract
A semi-analytical investigation is conducted to examine the coupled translational and rotational motions of a composite spherical particle (consisting of an impermeable hard core surrounded by a permeable porous shell) immersed in a viscous fluid parallel to one or two planar boundaries under [...] Read more.
A semi-analytical investigation is conducted to examine the coupled translational and rotational motions of a composite spherical particle (consisting of an impermeable hard core surrounded by a permeable porous shell) immersed in a viscous fluid parallel to one or two planar boundaries under the steady condition of a low Reynolds number. The fluid flow is described using the Stokes equations outside the porous shell and the Brinkman equation within it. A general solution is formulated by employing fundamental solutions in both spherical and Cartesian coordinate systems. The boundary conditions on the planar walls are implemented using the Fourier transform method, while those on the inner and outer boundaries of the porous shell are applied via a collocation technique. Numerical calculations yield hydrodynamic force and torque results with good convergence across a broad range of physical parameters. For validation, the results corresponding to an impermeable hard sphere parallel to one or two planar walls are shown to be in close agreement with established solutions from the literature. The hydrodynamic drag force and torque experienced by the composite particle increase steadily with larger values of the ratio of the particle radius to the porous shell’s permeation length, the ratio of the core radius to the total particle radius, and the separations between the particle and the walls. It has been observed that the influence of the walls on translational motion is significantly stronger than that on rotational motion. When comparing motions parallel versus normal to the walls, the planar boundaries impose weaker hydrodynamic forces but stronger torques during parallel motions. The coupling between the translation and rotation of the composite sphere parallel to the walls exhibits complex behavior that does not vary monotonically with changes in system parameters. Full article
(This article belongs to the Section Flow of Multi-Phase Fluids and Granular Materials)
Show Figures

Figure 1

26 pages, 3262 KiB  
Article
Dynamical Analysis of a Soliton Neuron Model: Bifurcations, Quasi-Periodic Behaviour, Chaotic Patterns, and Wave Solutions
by Adel Elmandouh
Mathematics 2025, 13(12), 1912; https://doi.org/10.3390/math13121912 - 7 Jun 2025
Viewed by 343
Abstract
This research explores the dynamic characteristics of the soliton neuron model, a mathematical approach used to describe various complicated processes in neuroscience, including the unclear mechanisms of numerous anesthetics. An appropriate wave transformation converts the neuron model into a two-dimensional dynamical system, which [...] Read more.
This research explores the dynamic characteristics of the soliton neuron model, a mathematical approach used to describe various complicated processes in neuroscience, including the unclear mechanisms of numerous anesthetics. An appropriate wave transformation converts the neuron model into a two-dimensional dynamical system, which takes the form of a conservative Hamiltonian system with a single degree of freedom. This study utilizes qualitative methods from planar integrable systems theory to analyze and interpret phase portraits. The conditions under which periodic, super-periodic, and solitary wave solutions exist are clearly defined and organized into theorems. These solutions are obtained analytically, with several examples depicted through 2D- and 3D-dimensional graphical illustrations. The research also examines how key physical parameters, such as frequency and sound velocity, affect the nature of these solutions, specifically on the width and the amplitude of those solutions. In addition, by inserting a generalized periodic external force, the model exhibits quasi-periodic and chaotic dynamics. These complicated dynamics are visualized using 2D and 3D phase portraits and time series plots. To further assess chaotic behavior, Lyapunov exponents are calculated. Numerical results indicate that the system’s overall behavior is strongly impacted by changes in the external force’s frequency and amplitude. Full article
Show Figures

Figure 1

20 pages, 10304 KiB  
Article
Use of a Flexible Two-Dimensional Textile Dosimeter with a Kilogray Dose Range to Measure the Dose Distribution for a 60Co Source
by Marek Kozicki, Radosław Wach, Elżbieta Sąsiadek-Andrzejczak and Piotr Maras
Materials 2025, 18(12), 2685; https://doi.org/10.3390/ma18122685 - 6 Jun 2025
Viewed by 424
Abstract
The two-dimensional (2D) measurement of radiation dose distribution on non-planar surfaces requires the use of a flexible dosimeter. This work concerns the use of a unique cotton textile-based dosimeter to characterize the dose distribution of a 60Co source used in the research [...] Read more.
The two-dimensional (2D) measurement of radiation dose distribution on non-planar surfaces requires the use of a flexible dosimeter. This work concerns the use of a unique cotton textile-based dosimeter to characterize the dose distribution of a 60Co source used in the research and sterilization of products. Alternatively, for high-dose-rate experiments, an electron beam accelerator has been used. The dosimeter was prepared by the padding-squeezing-drying of a cotton textile made of cellulose, where a 10% solution of nitrotetrazolium blue chloride (NBT) was used for the padding process. NBT served as a radiation-sensitive compound, which transformed into a purple-brown NBT formazan upon exposure to ionizing radiation. The NBT dosimeter is scanned after irradiation using a flatbed scanner, and the data is processed using dedicated software packages, which together constitute a 2D dose distribution measurement system. The green channel of the RGB color model contributes the most to the color change of the dosimeter. The calibration relation obtained for the green channel showed that the dosimeter responds to doses of 0.8–45 kGy. Conversions of the green channel signal were performed using the calibration relation to analyze the 2D dose at a large distance and close to a 60Co source shielded by a solid metal and a cylindrical metal structure with holes. Additionally, the dose distribution was assessed using a dosimeter placed on metal implant models undergoing radiation serialization. This work demonstrates the potential of such a dosimeter for characterizing high-dose-rate 60Co sources and measuring the dose distribution on non-planar surfaces. Full article
(This article belongs to the Section Smart Materials)
Show Figures

Figure 1

19 pages, 3943 KiB  
Article
Dynamics of Abundant Wave Solutions to the Fractional Chiral Nonlinear Schrodinger’s Equation: Phase Portraits, Variational Principle and Hamiltonian, Chaotic Behavior, Bifurcation and Sensitivity Analysis
by Yu Tian, Kang-Hua Yan, Shao-Hui Wang, Kang-Jia Wang and Chang Liu
Axioms 2025, 14(6), 438; https://doi.org/10.3390/axioms14060438 - 3 Jun 2025
Viewed by 374
Abstract
The central objective of this study is to develop some different wave solutions and perform a qualitative analysis on the nonlinear dynamics of the time-fractional chiral nonlinear Schrodinger’s equation (NLSE) in the conformable sense. Combined with the semi-inverse method (SIM) and traveling wave [...] Read more.
The central objective of this study is to develop some different wave solutions and perform a qualitative analysis on the nonlinear dynamics of the time-fractional chiral nonlinear Schrodinger’s equation (NLSE) in the conformable sense. Combined with the semi-inverse method (SIM) and traveling wave transformation, we establish the variational principle (VP). Based on this, the corresponding Hamiltonian is constructed. Adopting the Galilean transformation, the planar dynamical system is derived. Then, the phase portraits are plotted and the bifurcation analysis is presented to expound the existence conditions of the various wave solutions with the different shapes. Furthermore, the chaotic phenomenon is probed and sensitivity analysis is given in detail. Finally, two powerful tools, namely the variational method (VM) which stems from the VP and Ritz method, as well as the Hamiltonian-based method (HBM) that is based on the energy conservation theory, are adopted to find the abundant wave solutions, which are the bell-shape soliton (bright soliton), W-shape soliton (double-bright solitons or double bell-shaped soliton) and periodic wave solutions. The shapes of the attained new diverse wave solutions are simulated graphically, and the impact of the fractional order δ on the behaviors of the extracted wave solutions are also elaborated. To the authors’ knowledge, the findings of this research have not been reported elsewhere and can enable us to gain a profound understanding of the dynamics characteristics of the investigative equation. Full article
(This article belongs to the Special Issue Fractional Differential Equations and Dynamical Systems)
Show Figures

Figure 1

21 pages, 8909 KiB  
Article
A Methodology for Acceleration Signals Segmentation During Forming Regular Reliefs Patterns on Planar Surfaces by Ball Burnishing Operation
by Stoyan Dimitrov Slavov and Georgi Venelinov Valchev
J. Manuf. Mater. Process. 2025, 9(6), 181; https://doi.org/10.3390/jmmp9060181 - 29 May 2025
Viewed by 547
Abstract
In the present study, an approach for determining the different states of ball burnishing (BB) operations aimed at forming regular reliefs’ patterns on planar surfaces is introduced. The methodology involves acquiring multi-axis accelerometer data from CNC-driven milling machine to capture the dynamics of [...] Read more.
In the present study, an approach for determining the different states of ball burnishing (BB) operations aimed at forming regular reliefs’ patterns on planar surfaces is introduced. The methodology involves acquiring multi-axis accelerometer data from CNC-driven milling machine to capture the dynamics of the BB tool and workpiece, mounted on the machine table. Following data acquisition from an AISI 304 stainless steel workpiece, which is subjected to BB treatments at different toolpaths and feed rates, the recorded signals are preprocessed through noise reduction techniques, DC component removal, and outlier correction. The refined data are then transformed using a root mean square (RMS) operation to simplify further analysis. A Gaussian Mixture Model (GMM) is subsequently employed to decompose the compressed RMS signal into distinct components corresponding to various operational states during BB. The experimental trials at feed rates of 500 and 1000 mm/min reveal that increased feed rates enhance the distinguishability of these states, thus leading to an augmented number of statistically significant components. The results obtained from the proposed GMM based algorithm applied on compressed RMS accelerations signals is compared with two other methods, i.e., Short-Time Fourier Transforms and Continuous Wavelet Transform. The results from the comparison show that the proposed GMM method has the advantage of segmenting three to five different states of the BB-process from nonstationary accelerations signals measured, while the other tested methods are capable only to distinguish the state of work of the deforming tool and state of its rapid (re-)positioning between the areas of working, when there is no contact between the BB-tool and workpiece. Full article
Show Figures

Figure 1

10 pages, 3321 KiB  
Article
Growth Kinetics of Ni3Ga7 in Ni/Ga System During Interfacial Reaction Diffusion
by Jun Peng, Tao Wang and Shuai Zhang
Crystals 2025, 15(6), 520; https://doi.org/10.3390/cryst15060520 - 29 May 2025
Viewed by 315
Abstract
In order to apply Ga alloys to flexible and wearable electronic devices, it is crucial to verify the mechanical reliability of interconnections between Ga and various metal electrodes. This study investigated the phase transformation kinetics and microstructural evolution in the Ni/Ga couple. The [...] Read more.
In order to apply Ga alloys to flexible and wearable electronic devices, it is crucial to verify the mechanical reliability of interconnections between Ga and various metal electrodes. This study investigated the phase transformation kinetics and microstructural evolution in the Ni/Ga couple. The diffusion reaction behavior between nickel and gallium was characterized from 323 K to 623 K for different annealing times. At temperatures lower than 323 K, no obvious intermetallic compound was identified after annealing, according to SEM observation. For reactions at temperatures higher than 423 K, the Ni3Ga7 phase was identified as the only reaction product formed, occurring in a planar morphology along the Ni/Ga interface. The activation energy for the growth of Ni3Ga7 was determined as 58.58 kJ/mol. The kinetic equation expressing the relationship between the thickness of interfacial intermetallic compound, annealing temperature, and time, is the following: d=417174.55exp58579RTt2.040.0024T. Full article
(This article belongs to the Section Crystal Engineering)
Show Figures

Figure 1

15 pages, 2061 KiB  
Article
Defect Recognition in Composite Materials Using Terahertz Spectral Imaging with ResNet18-SVM Approach
by Zhongmin Wang, Jiaojie Chen, Yilong Xin, Yongbin Guo, Yizhang Li, Huanyu Sun and Xiuwei Yang
Materials 2025, 18(11), 2444; https://doi.org/10.3390/ma18112444 - 23 May 2025
Viewed by 438
Abstract
Multilayer composite materials often develop internal defects at varying depths due to manufacturing and environmental factors. Traditional planar scanning methods lack the ability to pinpoint defect locations in depth. This study proposes a terahertz time-domain spectroscopy (THz-TDS)-based defect detection method using continuous wavelet [...] Read more.
Multilayer composite materials often develop internal defects at varying depths due to manufacturing and environmental factors. Traditional planar scanning methods lack the ability to pinpoint defect locations in depth. This study proposes a terahertz time-domain spectroscopy (THz-TDS)-based defect detection method using continuous wavelet transform (CWT) to convert spectral signals into time-frequency images. These are analyzed by the ResNet18 model combined with a support vector machine (SVM) classifier. Comparative experiments with four classical deep learning models and three classifiers show that the Residual Network with 18 layers (ResNet18-SVM) approach achieves the highest accuracy of 98.56%, effectively identifying three types of defects. The results demonstrate the method’s strong feature extraction, depth resolution, and its potential for nondestructive evaluation of multilayer structures. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

24 pages, 4690 KiB  
Article
Advanced Sustainable Architectural Acoustics Through Robotic Extrusion-Based Additive Manufacturing (EAM) of Fungal Biomaterials
by Alale Mohseni, Özgüç Bertuğ Çapunaman, Alireza Zamani, Natalie Walter and Benay Gürsoy
Appl. Sci. 2025, 15(10), 5587; https://doi.org/10.3390/app15105587 - 16 May 2025
Viewed by 529
Abstract
While prior studies have explored developing mycelium paste for EAM of this material, this research streamlined the EAM workflow for preparing living, extrudable mycelium mixtures, involving alterations in the preparation sequence and adjustments in the admixture ratios. The resultant mycelium mixture was employed [...] Read more.
While prior studies have explored developing mycelium paste for EAM of this material, this research streamlined the EAM workflow for preparing living, extrudable mycelium mixtures, involving alterations in the preparation sequence and adjustments in the admixture ratios. The resultant mycelium mixture was employed in a series of experiments to optimize the parameters of robotic EAM using Artificial Neural Networks. Next, a performance-based acoustic wall was designed informed by simulation in Pachyderm. Building upon previous research by authors, two adjacent panels with high complex geometric features were selected for fabrication, presenting a challenging test scenario, as conventional planar slicing introduces stair-stepping phenomena, while non-planar slicing introduces irregularities in layer height. To address these, a hybrid slicing strategy was used by integrating both slicing techniques. Next, an experimental framework was established to assess the influence of EAM toolpath planning factors on the acoustic properties of the designed acoustic panels. Lastly, two panels were fabricated using an ABB IRB 2400 robotic arm. The alignment of the toolpath planning factors and EAM parameters resulted in a uniform material deposition in the final fabricated panels. This study underscores the transformative capacity of robotic EAM and conformal toolpath planning, presenting the development of biodegradable building materials and advanced acoustic solutions. Full article
Show Figures

Figure 1

Back to TopTop