Dynamics of Abundant Wave Solutions to the Fractional Chiral Nonlinear Schrodinger’s Equation: Phase Portraits, Variational Principle and Hamiltonian, Chaotic Behavior, Bifurcation and Sensitivity Analysis
Abstract
1. Introduction
2. The Variational Principle and Hamiltonian
3. The Bifurcation, Chaotic and Sensitivity Analysis, and the Existence Condition of the Various Wave Solutions
3.1. Bifurcation Analysis
3.2. The Existence Conditions of the Various Wave Solutions
- (1)
- When and , Equation (20) has the bell-shaped soliton and periodic wave solutions (see Figure 1a).
- (2)
- When and , Equation (20) has unbounded traveling wave solutions (see Figure 1b).
- (3)
- When and , Equation (20) has the kink soliton and periodic wave solutions (see Figure 1c).
- (4)
- When and , Equation (20) has the periodic wave solutions (see Figure 1d).
3.3. The Quasi-Periodic and Chaotic Behaviors
3.4. The Sensitivity Analysis
4. The Abundant Wave Solutions
4.1. The Variational Method
4.2. The Hamiltonian-Based Method
4.3. The Discussion
5. Results and Physical Explanation
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Duran, S. An investigation of the physical dynamics of a traveling wave solution called a bright soliton. Phys. Scr. 2021, 96, 125251. [Google Scholar] [CrossRef]
- Duran, S.; Yokus, A.; Kilinc, G. A study on solitary wave solutions for the Zoomeron equation supported by two-dimensional dynamics. Phys. Scr. 2023, 98, 125265. [Google Scholar] [CrossRef]
- Wang, K.L.; Wei, C.F. Novel optical soliton solutions to nonlinear paraxial wave model. Mod. Phys. Lett. B 2025, 39, 2450469. [Google Scholar] [CrossRef]
- Seadawy, A.R.; Ahmad, A.; Rizvi, S.T.R.; Ahmed, S. Bifurcation solitons, Y-type, distinct lumps and generalized breather in the thermophoretic motion equation via graphene sheets. Alex. Eng. J. 2024, 87, 374–388. [Google Scholar] [CrossRef]
- Hosseini Kamyar Mirzazadeh, M.; Baleanu, D.; Raza, N.; Park, C.; Ahmadian, A.; Salahshour, S. The generalized complex Ginzburg–Landau model and its dark and bright soliton solutions. Eur. Phys. J. Plus 2021, 136, 709. [Google Scholar]
- Hosseini Kamyar Samadani, F.; Kumar, D.; Faridi, M. New optical solitons of cubic-quartic nonlinear Schrödinger equation. Optik 2018, 157, 1101–1105. [Google Scholar] [CrossRef]
- Aldousari, A.; Qurban, M.; Hussain, I.; Al-Hajeri, M. Development of novel hybrid models for the prediction of COVID-19 in Kuwait. Kuwait J. Sci. 2021, 49. [Google Scholar]
- Liu, J.-G.; Ye, Q. Stripe solitons and lump solutions for a generalized Kadomtsev-Petviashvili equation with variable coefficients in fluid mechanics. Nonlinear Dyn. 2019, 96, 23–29. [Google Scholar] [CrossRef]
- Sohail Muhammad Naz, R.; Shah, Z.; Thounthong, P. Exploration of temperature dependent thermophysical characteristics of yield exhibiting non-Newtonian fluid flow under gyrotactic microorganisms. AIP Adv. 2019, 9, 125016. [Google Scholar] [CrossRef]
- Wang, K.L. New computational approaches to the fractional coupled nonlinear Helmholtz equation. Eng. Comput. 2024, 41, 1285–1300. [Google Scholar] [CrossRef]
- Wang, K.-J.; Liu, X.-L.; Wang, W.-D.; Li, S.; Zhu, H.-W. Novel singular and non-singular complexiton, interaction wave and the complex multi-soliton solutions to the generalized nonlinear evolution equation. Mod. Phys. Lett. B 2025, 39, 2550135. [Google Scholar] [CrossRef]
- Bai, Y.S.; Zheng, L.N.; Ma, W.X.; Yun, Y.S. Hirota Bilinear Approach to Multi-Component Nonlocal Nonlinear Schrödinger Equations. Mathematics 2024, 12, 2594. [Google Scholar] [CrossRef]
- Wang, K.J. The generalized (3+1)-dimensional B-type Kadomtsev-Petviashvili equation: Resonant multiple soliton, N-soliton, soliton molecules and the interaction solutions. Nonlinear Dyn. 2024, 112, 7309–7324. [Google Scholar] [CrossRef]
- Ayati, Z.; Hosseini, K.; Mirzazadeh, M. Application of Kudryashov and functional variable methods to the strain wave equation in microstructured solids. Nonlinear Eng. 2017, 6, 25–29. [Google Scholar] [CrossRef]
- Wang, K.J.; Zhu, H.W.; Shi, F.; Liu, X.L.; Wang, G.D.; Li, G. Lump wave, breather wave and the other abundant wave solutions to the (2+1)-dimensional Sawada-Kotera-Kadomtsev Petviashvili equation for fluid mechanic. Pramana 2025, 99, 40. [Google Scholar] [CrossRef]
- Ma, W.X. A novel kind of reduced integrable matrix mKdV equations and their binary Darboux transformations. Mod. Phys. Lett. B 2022, 36, 2250094. [Google Scholar] [CrossRef]
- Yang, D.Y.; Tian, B.; Wang, M.; Zhao, X.; Shan, W.R.; Jiang, Y. Lax pair, Darboux transformation, breathers and rogue waves of an N-coupled nonautonomous nonlinear Schrödinger system for an optical fiber or a plasma. Nonlinear Dyn. 2022, 107, 2657–2666. [Google Scholar] [CrossRef]
- Ullah, N.; Asjad, M.I.; Hussanan, A.; Akgül, A.; Alharbi, W.R.; Algarni, H.; Yahia, I.S. Novel waves structures for two nonlinear partial differential equations arising in the nonlinear optics via Sardar-subequation method. Alex. Eng. J. 2023, 71, 105–113. [Google Scholar] [CrossRef]
- Onder, I.; Secer, A.; Ozisik, M.; Bayram, M. On the optical soliton solutions of Kundu-Mukherjee-Naskar equation via two different analytical methods. Optik 2022, 257, 168761. [Google Scholar] [CrossRef]
- Zhou, X.W. Exp-function method for solving Huxley equation. Math. Probl. Eng. 2008, 2008, 538489. [Google Scholar] [CrossRef]
- Shakeel, M.; Shah, N.A.; Chung, J.D. Application of modified exp-function method for strain wave equation for finding analytical solutions. Ain Shams Eng. J. 2023, 14, 101883. [Google Scholar] [CrossRef]
- Ma, Y.X.; Tian, B.; Qu, Q.X.; Yang, D.Y.; Chen, Y.Q. Painlevé analysis, Bäcklund transformations and traveling-wave solutions for a (3+1)-dimensional generalized Kadomtsev-Petviashvili equation in a fluid. Int. J. Mod. Phys. B 2021, 35, 2150108. [Google Scholar] [CrossRef]
- Yin, Y.H.; Lü, X.; Ma, W.X. Bäcklund transformation, exact solutions and diverse interaction phenomena to a (3+1)-dimensional nonlinear evolution equation. Nonlinear Dyn. 2021, 108, 4181–4194. [Google Scholar] [CrossRef]
- Zaman, U.H.M.; Arefin, M.A.; Akbar, M.A.; Uddin, M.H. Utilizing the extended tanh-function technique to scrutinize fractional order nonlinear partial differential equations. Partial. Differ. Equ. Appl. Math. 2023, 8, 100563. [Google Scholar] [CrossRef]
- Darwish, A.; Ahmed, H.M.; Arnous, A.H.; Shehab, M.F. Optical solitons of Biswas–Arshed equation in birefringent fibers using improved modified extended tanh-function method. Optik 2021, 227, 165385. [Google Scholar] [CrossRef]
- Zayed, E.M.E.; Alngar, M.E.M.; El-Horbaty, M.M.; Biswas, A.; Kara, A.H.; Yıldırım, Y.; Khan, S.; Alzahrani, A.K.; Belic, M.R. Cubic-quartic polarized optical solitons and conservation laws for perturbed Fokas-Lenells model. J. Nonlinear Opt. Phys. Mater. 2021, 30, 2150005. [Google Scholar] [CrossRef]
- Akram, G.; Sadaf, M.; Khan, M.A.U. Soliton dynamics of the generalized shallow water like equation in nonlinear phenomenon. Front. Phys. 2022, 10, 822042. [Google Scholar] [CrossRef]
- Yildirim, Y. Optical solitons of Biswas-Arshed equation by trial equation technique. Optik 2019, 182, 876–883. [Google Scholar] [CrossRef]
- Aderyani, S.R.; Saadati, R.; Vahidi, J.; Allahviranloo, T. The exact solutions of the conformable time-fractional modified nonlinear Schrödinger equation by the Trial equation method and modified Trial equation method. Adv. Math. Phys. 2022, 2022, 4318192. [Google Scholar] [CrossRef]
- Gkogkou, A.; Prinari, B.; Feng, B.F.; Trubatch, A.D. Inverse scattering transform for the complex coupled short-pulse equation. Stud. Appl. Math. 2022, 148, 918–963. [Google Scholar] [CrossRef]
- Ali, M.R.; Khattab, M.A.; Mabrouk, S.M. Travelling wave solution for the Landau-Ginburg-Higgs model via the inverse scattering transformation method. Nonlinear Dyn. 2023, 111, 7687–7697. [Google Scholar] [CrossRef]
- Eslami, M. Trial solution technique to chiral nonlinear Schrodinger’s equation in (1+ 2)-dimensions. Nonlinear Dyn. 2016, 85, 813–816. [Google Scholar] [CrossRef]
- Hosseini, K.; Mirzazadeh, M. Soliton and other solutions to the (1+ 2)-dimensional chiral nonlinear Schrödinger equation. Commun. Theor. Phys. 2020, 72, 125008. [Google Scholar] [CrossRef]
- Bulut, H.; Sulaiman, T.A.; Demirdag, B. Dynamics of soliton solutions in the chiral nonlinear Schrödinger equations. Nonlinear Dyn. 2018, 91, 1985–1991. [Google Scholar] [CrossRef]
- Osman, M.S.; Baleanu, D.; Tariq, K.U.H.; Kaplan, M.; Younis, M.; Rizvi, S.T.R. Different types of progressive wave solutions via the 2D-chiral nonlinear Schrödinger equation. Front. Phys. 2020, 8, 215. [Google Scholar] [CrossRef]
- Rezazadeh, H.; Younis, M.; Eslami, M.; Bilal, M.; Younas, U. New exact traveling wave solutions to the (2+1)-dimensional Chiral nonlinear Schrödinger equation. Math. Model. Nat. Phenom. 2021, 16, 38. [Google Scholar] [CrossRef]
- Akinyemi, L.; Inc, M.; Khater, M.M.A.; Rezazadeh, H. Dynamical behaviour of Chiral nonlinear Schrödinger equation. Opt. Quantum Electron. 2022, 54, 191. [Google Scholar] [CrossRef]
- Raza, N.; Javid, A. Optical dark and dark-singular soliton solutions of (1+ 2)-dimensional chiral nonlinear Schrodinger’s equation. Waves Random Complex. Media 2019, 29, 496–508. [Google Scholar] [CrossRef]
- Al-Refai, M.; Syam, M.I.; Baleanu, D. Analytical treatments to systems of fractional differential equations with modified Atangana-Baleanu derivative. Fractals 2023, 31, 2340156. [Google Scholar] [CrossRef]
- Alshehry, A.S.; Yasmin, H.; Ghani, F.; Shah, R.; Nonlaopon, K. Comparative analysis of advection–dispersion equations with Atangana-Baleanu fractional derivative. Symmetry 2023, 15, 819. [Google Scholar] [CrossRef]
- Hashemi, M.S.; Mirzazadeh, M.; Ahmad, H. A reduction technique to solve the (2+ 1)-dimensional KdV equations with time local fractional derivatives. Opt. Quantum Electron. 2023, 55, 721. [Google Scholar] [CrossRef]
- Zafar, A.; Raheel, M.; Mirzazadeh, M.; Eslami, M. Different soliton solutions to the modified equal-width wave equation with Beta-time fractional derivative via two different methods. Rev. Mex. De. Física 2022, 68. [Google Scholar] [CrossRef]
- El-hady, E.; Ben Makhlouf, A.; Boulaaras, S.; Mchiri, L. Ulam-Hyers-Rassias stability of nonlinear differential equations with Riemann-Liouville fractional derivative. J. Funct. Spaces 2022, 2022, 7827579. [Google Scholar] [CrossRef]
- Vishnukumar, K.S.; Vellappandi, M.; Govindaraj, V. Reachability of time-varying fractional dynamical systems with Riemann-Liouville fractional derivative. Fract. Calc. Appl. Anal. 2024, 27, 1328–1347. [Google Scholar] [CrossRef]
- Baleanu, D.; Qureshi, S.; Yusuf, A.; Soomro, A.; Osman, M.S. Bi-modal COVID-19 transmission with Caputo fractional derivative using statistical epidemic cases. Partial. Differ. Equ. Appl. Math. 2024, 10, 100732. [Google Scholar] [CrossRef]
- Evirgen, F. Transmission of Nipah virus dynamics under Caputo fractional derivative. J. Comput. Appl. Math. 2023, 418, 114654. [Google Scholar] [CrossRef]
- Liang, Y.H.; Wang, K.J.; Hou, X.Z. Multiple kink soliton, breather wave, interaction wave and the travelling wave solutions to the fractional (2+1)-dimensional Boiti-Leon-Manna-Pempinelli equation. Fractal 2025, 33, 2550082. [Google Scholar] [CrossRef]
- Chakrabarty, A.K.; Roshid, M.M.; Rahaman, M.M.; Abdeljawad, T.; Osman, M.S. Dynamical analysis of optical soliton solutions for CGL equation with Kerr law nonlinearity in classical, truncated M-fractional derivative, beta fractional derivative, and conformable fractional derivative types. Results Phys. 2024, 60, 107636. [Google Scholar] [CrossRef]
- Wang, K.J. An effective computational approach to the local fractional low-pass electrical transmission lines model. Alex. Eng. J. 2025, 110, 629–635. [Google Scholar] [CrossRef]
- Boulaaras, S.; Jan, R.; Khan, A.; Ahsan, M. Dynamical analysis of the transmission of dengue fever via Caputo-Fabrizio fractional derivative. Chaos Solitons Fractals X 2022, 8, 100072. [Google Scholar] [CrossRef]
- Sousa, J.V.C.; De Oliveira, E.C. On the ψ-Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 2018, 60, 72–91. [Google Scholar] [CrossRef]
- Aitbrahim, A.; El Ghordaf, J.; El Hajaji, A.; Hilal, K.; Valdes, J.N. A comparative analysis of Conformable, non-conformable, Riemann-Liouville, and Caputo fractional derivatives. Eur. J. Pure Appl. Math. 2024, 17, 1842–1854. [Google Scholar] [CrossRef]
- Thabet, H.; Kendre, S. Analytical solutions for conformable space-time fractional partial differential equations via fractional differential transform. Chaos Solitons Fractals 2018, 109, 238–245. [Google Scholar] [CrossRef]
- Li, W.-L.; Chen, S.H.; Wang, K.J. A variational principle of the nonlinear Schrödinger equation with fractal derivatives. Fractals 2025, 33, 2550069. [Google Scholar] [CrossRef]
- Liu, J.H.; Yang, Y.N.; Wang, K.J.; Zhu, H.W. On the variational principles of the Burgers-Korteweg-de Vries equation in fluid mechanics. Europhys. Lett. 2025, 149, 52001. [Google Scholar] [CrossRef]
- He, J.H. Semi-Inverse method of establishing generalized variational principles for fluid mechanics with emphasis on turbomachinery aerodynamics. Int. J. Turbo Jet. Engines 1997, 14, 23–28. [Google Scholar] [CrossRef]
- Wang, K.-J.; Li, M. Variational principle of the unstable nonlinear Schrödinger equation with fractal derivatives. Axioms 2025, 14, 376. [Google Scholar] [CrossRef]
- Liang, Y.H.; Wang, K.J. Diverse wave solutions to the new extended (2+1)-dimensional nonlinear evolution equation: Phase portrait, bifurcation and sensitivity analysis, chaotic pattern, variational principle and Hamiltonian. Int. J. Geom. Methods Mod. Phys. 2025, 22, 2550158. [Google Scholar] [CrossRef]
- Hosseini, K.; Hinçal, E.; Ilie, M. Bifurcation analysis, chaotic behaviors, sensitivity analysis, and soliton solutions of a generalized Schrödinger equation. Nonlinear Dyn. 2023, 111, 17455–17462. [Google Scholar] [CrossRef]
- Alizadeh, F.; Hosseini, K.; Sirisubtawee, S.; Hincal, E. Classical and nonclassical Lie symmetries, bifurcation analysis, and Jacobi elliptic function solutions to a 3D-modified nonlinear wave equation in liquid involving gas bubbles. Bound. Value Probl. 2024, 2024, 111. [Google Scholar] [CrossRef]
- Wang, K.-J.; Zhu, H.W.; Li, S.; Shi, F.; Li, G.; Liu, X.L. Bifurcation analysis, chaotic behaviors, variational principle, Hamiltonian and diverse optical solitons of the fractional complex Ginzburg-Landau model. Int. J. Theor. Phys. 2025, 64, 134. [Google Scholar] [CrossRef]
- Wang, K.J. Variational principle and diverse wave structures of the modified Benjamin-Bona-Mahony equation arising in the optical illusions field. Axioms 2022, 11, 445. [Google Scholar] [CrossRef]
- He, J.H. Preliminary report on the energy balance for nonlinear oscillations. Mech. Res. Commun. 2002, 29, 107–111. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, Y.; Yan, K.-H.; Wang, S.-H.; Wang, K.-J.; Liu, C. Dynamics of Abundant Wave Solutions to the Fractional Chiral Nonlinear Schrodinger’s Equation: Phase Portraits, Variational Principle and Hamiltonian, Chaotic Behavior, Bifurcation and Sensitivity Analysis. Axioms 2025, 14, 438. https://doi.org/10.3390/axioms14060438
Tian Y, Yan K-H, Wang S-H, Wang K-J, Liu C. Dynamics of Abundant Wave Solutions to the Fractional Chiral Nonlinear Schrodinger’s Equation: Phase Portraits, Variational Principle and Hamiltonian, Chaotic Behavior, Bifurcation and Sensitivity Analysis. Axioms. 2025; 14(6):438. https://doi.org/10.3390/axioms14060438
Chicago/Turabian StyleTian, Yu, Kang-Hua Yan, Shao-Hui Wang, Kang-Jia Wang, and Chang Liu. 2025. "Dynamics of Abundant Wave Solutions to the Fractional Chiral Nonlinear Schrodinger’s Equation: Phase Portraits, Variational Principle and Hamiltonian, Chaotic Behavior, Bifurcation and Sensitivity Analysis" Axioms 14, no. 6: 438. https://doi.org/10.3390/axioms14060438
APA StyleTian, Y., Yan, K.-H., Wang, S.-H., Wang, K.-J., & Liu, C. (2025). Dynamics of Abundant Wave Solutions to the Fractional Chiral Nonlinear Schrodinger’s Equation: Phase Portraits, Variational Principle and Hamiltonian, Chaotic Behavior, Bifurcation and Sensitivity Analysis. Axioms, 14(6), 438. https://doi.org/10.3390/axioms14060438