Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (525)

Search Parameters:
Keywords = phytotherapy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
53 pages, 2561 KiB  
Review
Lipid-Based Nanotechnologies for Delivery of Green Tea Catechins: Advances, Challenges, and Therapeutic Potential
by Stanila Stoeva-Grigorova, Nadezhda Ivanova, Yoana Sotirova, Maya Radeva-Ilieva, Nadezhda Hvarchanova and Kaloyan Georgiev
Pharmaceutics 2025, 17(8), 985; https://doi.org/10.3390/pharmaceutics17080985 - 30 Jul 2025
Viewed by 95
Abstract
Knowing the superior biochemical defense mechanisms of sessile organisms, it is not hard to believe the cure for any human sickness might be hidden in nature—we “just” have to identify it and make it safely available in the right dose to our organs [...] Read more.
Knowing the superior biochemical defense mechanisms of sessile organisms, it is not hard to believe the cure for any human sickness might be hidden in nature—we “just” have to identify it and make it safely available in the right dose to our organs and cells that are in need. For decades, green tea catechins (GTCs) have been a case in point. Because of their low redox potential and favorable positioning of hydroxyl groups, these flavonoid representatives (namely, catechin—C, epicatechin—EC, epicatechin gallate—ECG, epigallocatechin—EGC, epigallocatechin gallate—EGCG) are among the most potent plant-derived (and not only) antioxidants. The proven anti-inflammatory, neuroprotective, antimicrobial, and anticarcinogenic properties of these phytochemicals further contribute to their favorable pharmacological profile. Doubtlessly, GTCs hold the potential to “cope” with the majority of today‘s socially significant diseases, yet their mass use in clinical practice is still limited. Several factors related to the compounds’ membrane penetrability, chemical stability, and solubility overall determine their low bioavailability. Moreover, the antioxidant-to-pro-oxidant transitioning behavior of GTCs is highly conditional and, to a certain degree, unpredictable. The nanoparticulate delivery systems represent a logical approach to overcoming one or more of these therapeutic challenges. This review particularly focuses on the lipid-based nanotechnologies known to be a leading choice when it comes to drug permeation enhancement and not drug release modification nor drug stabilization solely. It is our goal to present the privileges of encapsulating green tea catechins in either vesicular or particulate lipid carriers with respect to the increasingly popular trends of advanced phytotherapy and functional nutrition. Full article
Show Figures

Graphical abstract

33 pages, 2605 KiB  
Article
Phytochemical Profile, Vasodilatory and Biphasic Effects on Intestinal Motility, and Toxicological Evaluation of the Methanol and Dichloromethane Extracts from the Aerial Parts of Ipomoea purpurea Used in Traditional Mexican Medicine
by Valeria Sánchez-Hernández, Francisco J. Luna-Vázquez, María Antonieta Carbajo-Mata, César Ibarra-Alvarado, Alejandra Rojas-Molina, Beatriz Maruri-Aguilar, Pedro A. Vázquez-Landaverde and Isela Rojas-Molina
Pharmaceuticals 2025, 18(8), 1134; https://doi.org/10.3390/ph18081134 - 30 Jul 2025
Viewed by 243
Abstract
Background: Cardiovascular diseases, particularly hypertension, and gastrointestinal disorders represent major public health concerns in Mexico. Although a range of pharmacological treatments exists, their use is associated with adverse effects, highlighting the need for safer therapeutic alternatives. Species of the Ipomoea genus are widely [...] Read more.
Background: Cardiovascular diseases, particularly hypertension, and gastrointestinal disorders represent major public health concerns in Mexico. Although a range of pharmacological treatments exists, their use is associated with adverse effects, highlighting the need for safer therapeutic alternatives. Species of the Ipomoea genus are widely employed in Mexican traditional medicine (MTM) for their purgative, anti-inflammatory, analgesic, and sedative properties. Particularly, Ipomoea purpurea is traditionally used as a diuretic and purgative; its leaves and stems are applied topically for their anti-inflammatory and soothing effects. This study aimed to determine their phytochemical composition and to evaluate the associated vasodilatory activity, modulatory effects on intestinal smooth-muscle motility, and toxicological effects of the methanolic (ME-Ip) and dichloromethane (DE-Ip) extracts obtained from the aerial parts of I. purpurea. Methods: The phytochemical composition of the ME-Ip and DE-Ip extracts of I. purpurea was assessed using UPLC-QTOF-MS and GC-MS, respectively. For both extracts, the vasodilatory activity and effects on intestinal smooth muscle were investigated using ex vivo models incorporating isolated rat aorta and ileum, respectively, whereas acute toxicity was evaluated in vivo. Results: Phytochemical analysis revealed, for the first time, the presence of two glycosylated flavonoids within the Ipomoea genus; likewise, constituents with potential anti-inflammatory activity were detected. The identified compounds in I. purpurea extracts may contribute to the vasodilatory, biphasic, and purgative effects observed in this species. The EC50 values for the vasodilatory effects of the methanolic (ME-Ip) and dichloromethane (DE-Ip) extracts were 0.80 and 0.72 mg/mL, respectively. In the initial phase of the experiments on isolated ileal tissues, both extracts induced a spasmodic (contractile) effect on basal motility, with ME-Ip exhibiting higher potency (EC50 = 27.11 μg/mL) compared to DE-Ip (EC50 = 1765 μg/mL). In contrast, during the final phase of the experiments, both extracts demonstrated a spasmolytic effect, with EC50 values of 0.43 mg/mL for ME-Ip and 0.34 mg/mL for DE-Ip. In addition, both extracts exhibited low levels of acute toxicity. Conclusions: The phytochemical profile and the vasodilatory and biphasic effects of the I. purpurea extracts explain, in part, the use of I. purpurea in MTM. The absence of acute toxic effects constitutes a preliminary step in the toxicological safety assessment of I. purpurea extracts and demonstrates their potential for the development of phytopharmaceutic agents as adjuvants for the treatment of cardiovascular and gastrointestinal disorders. Full article
Show Figures

Graphical abstract

26 pages, 3038 KiB  
Article
Profiling Hydrophilic Cucurbita pepo Seed Extracts: A Study of European Cultivar Variability
by Adina-Elena Grasu, Roman Senn, Christiane Halbsguth, Alexander Schenk, Veronika Butterweck and Anca Miron
Plants 2025, 14(15), 2308; https://doi.org/10.3390/plants14152308 - 26 Jul 2025
Viewed by 182
Abstract
Cucurbita pepo (CP) seeds are traditionally used to alleviate lower urinary tract symptoms associated with benign prostatic hyperplasia and overactive bladder. While these effects are often attributed to lipophilic constituents, recent studies have highlighted the therapeutic potential of oil-free hydroethanolic extracts. However, their [...] Read more.
Cucurbita pepo (CP) seeds are traditionally used to alleviate lower urinary tract symptoms associated with benign prostatic hyperplasia and overactive bladder. While these effects are often attributed to lipophilic constituents, recent studies have highlighted the therapeutic potential of oil-free hydroethanolic extracts. However, their composition remains insufficiently characterized, considering the species’ significant phenotypic and phytochemical variability. This study aimed to characterize the phytochemical profile of hydrophilic hydroethanolic seed extracts from ten CP cultivars originating from different European regions, with a focus on compositional variability. The elemental composition, along with primary and secondary metabolites, was analyzed using established spectroscopic and chromatographic methods. The extracts showed considerable variation in protein (45.39 to 114.58 mg/g dw) and free amino acid content (46.51 to 111.10 mg/g dw), as well as differences in elemental composition. Principal component analysis revealed distinct clustering patterns, with several samples displaying metabolite profiles comparable to the Cucurbita pepo var. styriaca variety currently recommended by the European Pharmacopoeia (Ph. Eur.) and the Committee on Herbal Medicinal Products (HMPC). These findings open the possibility of using other CP varieties as alternative sources for extract preparation and offer novel insights into the composition of less explored hydrophilic extracts derived from CP seeds. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

80 pages, 962 KiB  
Review
Advancements in Hydrogels: A Comprehensive Review of Natural and Synthetic Innovations for Biomedical Applications
by Adina-Elena Segneanu, Ludovic Everard Bejenaru, Cornelia Bejenaru, Antonia Blendea, George Dan Mogoşanu, Andrei Biţă and Eugen Radu Boia
Polymers 2025, 17(15), 2026; https://doi.org/10.3390/polym17152026 - 24 Jul 2025
Viewed by 776
Abstract
In the rapidly evolving field of biomedical engineering, hydrogels have emerged as highly versatile biomaterials that bridge biology and technology through their high water content, exceptional biocompatibility, and tunable mechanical properties. This review provides an integrated overview of both natural and synthetic hydrogels, [...] Read more.
In the rapidly evolving field of biomedical engineering, hydrogels have emerged as highly versatile biomaterials that bridge biology and technology through their high water content, exceptional biocompatibility, and tunable mechanical properties. This review provides an integrated overview of both natural and synthetic hydrogels, examining their structural properties, fabrication methods, and broad biomedical applications, including drug delivery systems, tissue engineering, wound healing, and regenerative medicine. Natural hydrogels derived from sources such as alginate, gelatin, and chitosan are highlighted for their biodegradability and biocompatibility, though often limited by poor mechanical strength and batch variability. Conversely, synthetic hydrogels offer precise control over physical and chemical characteristics via advanced polymer chemistry, enabling customization for specific biomedical functions, yet may present challenges related to bioactivity and degradability. The review also explores intelligent hydrogel systems with stimuli-responsive and bioactive functionalities, emphasizing their role in next-generation healthcare solutions. In modern medicine, temperature-, pH-, enzyme-, light-, electric field-, magnetic field-, and glucose-responsive hydrogels are among the most promising “smart materials”. Their ability to respond to biological signals makes them uniquely suited for next-generation therapeutics, from responsive drug systems to adaptive tissue scaffolds. Key challenges such as scalability, clinical translation, and regulatory approval are discussed, underscoring the need for interdisciplinary collaboration and continued innovation. Overall, this review fosters a comprehensive understanding of hydrogel technologies and their transformative potential in enhancing patient care through advanced, adaptable, and responsive biomaterial systems. Full article
48 pages, 2454 KiB  
Review
How Can Plant-Derived Natural Products and Plant Biotechnology Help Against Emerging Viruses?
by Gergana Zahmanova, Katerina Takova, Valeria Tonova, Ivan Minkov, Momchil Barbolov, Neda Nedeva, Deyana Vankova, Diana Ivanova, Yoana Kiselova-Kaneva and Georgi L. Lukov
Int. J. Mol. Sci. 2025, 26(15), 7046; https://doi.org/10.3390/ijms26157046 - 22 Jul 2025
Viewed by 1236
Abstract
Infectious diseases have been treated using plants and their compounds for thousands of years. This knowledge has enabled modern techniques to identify specific antiviral remedies and to understand their molecular mechanism of action. Numerous active phytochemicals, such as alkaloids, terpenoids, polyphenols (phenolic acids, [...] Read more.
Infectious diseases have been treated using plants and their compounds for thousands of years. This knowledge has enabled modern techniques to identify specific antiviral remedies and to understand their molecular mechanism of action. Numerous active phytochemicals, such as alkaloids, terpenoids, polyphenols (phenolic acids, flavonoids, stilbenes, and lignans), coumarins, thiophenes, saponins, furyl compounds, small proteins, and peptides, are promising options for treating and preventing viral infections. It has been shown that plant-derived products can prevent or inhibit viral entry into and replication by host cells. Biotechnological advances have made it possible to engineer plants with an increased capacity for the production and accumulation of natural antiviral compounds. Plants can also be engineered to produce various types of antivirals (cytokines, antibodies, vaccines, and lectins). This study summarizes the current understanding of the antiviral activity of specific plant-derived metabolites, emphasizing their mechanisms of action and exploring the enormous potential of plants as biological factories. Full article
(This article belongs to the Special Issue Molecular Insights in Antivirals and Vaccines)
Show Figures

Figure 1

15 pages, 755 KiB  
Review
Propolis as an Adjunct in Non-Surgical Periodontal Therapy: Current Clinical Perspectives from a Narrative Review
by Vitolante Pezzella, Alessandro Cuozzo, Leopoldo Mauriello, Alessandro Polizzi, Vincenzo Iorio Siciliano, Luca Ramaglia and Andrea Blasi
J. Funct. Biomater. 2025, 16(7), 265; https://doi.org/10.3390/jfb16070265 - 16 Jul 2025
Viewed by 630
Abstract
Non-surgical periodontal therapy (NSPT) represents the gold standard in the treatment of periodontitis, but deep periodontal pockets and complex anatomies may reduce its efficacy. Therefore, in order to enhance NSPT outcomes and reduce the need for surgical intervention, several adjunctive therapies have been [...] Read more.
Non-surgical periodontal therapy (NSPT) represents the gold standard in the treatment of periodontitis, but deep periodontal pockets and complex anatomies may reduce its efficacy. Therefore, in order to enhance NSPT outcomes and reduce the need for surgical intervention, several adjunctive therapies have been proposed. Propolis, a natural substance with antimicrobial, anti-inflammatory, and healing properties, has shown promising results in controlling supragingival biofilm. This narrative review aims to assess the clinical efficacy of propolis as an adjunct to NSPT. A comprehensive search on scientific databases was conducted for randomised clinical trials (RCTs) comparing NSPT with and without propolis, or with other adjuncts or placebos. Probing depth (PD) was the primary outcome. Seven RCTs met the inclusion criteria, using different propolis formulations and application protocols. Statistically significant improvements in clinical outcomes were recorded in all analysed studies compared with NSPT alone or placebo, while benefits were less substantial compared with laser therapy and conflicting when compared with chlorhexidine. Thus propolis may be considered a promising adjunctive agent to NSPT, with the potential to improve clinical outcomes of NSPT. Nonetheless, further long-term clinical trials with larger sample size are needed to validate its clinical efficacy and to determine its adverse effects. Full article
(This article belongs to the Section Dental Biomaterials)
Show Figures

Figure 1

27 pages, 891 KiB  
Review
The Antidiabetic Activity of Wild-Growing and Cultivated Medicinal Plants Used in Romania for Diabetes Mellitus Management: A Phytochemical and Pharmacological Review
by Diana Maria Trasca, Dalia Dop, George-Alin Stoica, Niculescu Stefan Adrian, Niculescu Elena Carmen, Renata Maria Văruț and Cristina Elena Singer
Pharmaceuticals 2025, 18(7), 1035; https://doi.org/10.3390/ph18071035 - 11 Jul 2025
Viewed by 598
Abstract
Diabetes mellitus is a chronic metabolic disease that has a significant impact on public health and is becoming more and more common worldwide. Although effective, conventional therapies are often limited by high cost, adverse effects, and issues with patient compliance. As a result, [...] Read more.
Diabetes mellitus is a chronic metabolic disease that has a significant impact on public health and is becoming more and more common worldwide. Although effective, conventional therapies are often limited by high cost, adverse effects, and issues with patient compliance. As a result, there is growing interest in complementary and alternative therapies. Medicinal plants have played an essential role in diabetes treatment, especially in regions such as Romania, where biodiversity is high and traditional knowledge is well preserved. The pathophysiology, risk factors, and worldwide burden of diabetes are examined in this review, with an emphasis on the traditional use of medicinal plants for glycemic control. A total of 47 plant species were identified based on ethnopharmacological records and recent biomedical research, including both native flora and widely cultivated species. The bioactive compounds identified, such as flavonoids, triterpenic saponins, polyphenols, and alkaloids, have hypoglycemic effects through diverse mechanisms, including β-cell regeneration, insulin-mimetic action, inhibition of α-glucosidase and α-amylase, and oxidative stress reduction. A systematic literature search was conducted, including in vitro, in vivo, and clinical studies relevant to antidiabetic activity. Among the species reviewed, Urtica dioica, Silybum marianum, and Momordica charantia exhibited the most promising antidiabetic activity based on both preclinical and clinical evidence. Despite promising preclinical results, clinical evidence remains limited, and variability in phytochemical content poses challenges to reproducibility. This review highlights the potential of Romanian medicinal flora as a source of adjunctive therapies in diabetes care and underscores the need for standardization and clinical validation. Full article
(This article belongs to the Section Natural Products)
Show Figures

Figure 1

32 pages, 2172 KiB  
Review
Multifaceted Biological Properties of Verbascoside/Acteoside: Antimicrobial, Cytotoxic, Anti-Inflammatory, and Immunomodulatory Effects
by Mirjana Marčetić, Biljana Bufan, Milica Drobac, Jelena Antić Stanković, Nevena Arsenović Ranin, Marina T. Milenković and Dragana D. Božić
Antibiotics 2025, 14(7), 697; https://doi.org/10.3390/antibiotics14070697 - 11 Jul 2025
Viewed by 525
Abstract
Verbascoside is a polyphenolic compound that belongs to the phenylethanoid glucosides. It occurs in more than 220 plant species. The species with high content of this compound are used in folk medicine, and in modern phytotherapy, mostly based on its recognized anti-inflammatory and [...] Read more.
Verbascoside is a polyphenolic compound that belongs to the phenylethanoid glucosides. It occurs in more than 220 plant species. The species with high content of this compound are used in folk medicine, and in modern phytotherapy, mostly based on its recognized anti-inflammatory and antimicrobial effects. Studies conducted so far confirmed these effects, and also pointed to others (i.e., anti-cancer, neuro-, cardio-, hepato-, and nephro-protective). This review presents data on the chemistry, occurrence, and biosynthesis of verbascoside. Additionally, it focuses on the cytotoxic, antimicrobial, anti-inflammatory, and immunomodulatory effects, as well as the main cellular and molecular mechanisms of its action. Full article
(This article belongs to the Special Issue Antimicrobial Activity of Secondary Metabolites Produced in Nature)
Show Figures

Graphical abstract

29 pages, 3238 KiB  
Review
Phytochemistry, Ethnopharmacology, and Pharmacology of Lessertia frutescens (Cancer Bush): A Comprehensive Review
by Kadidiatou O. Ndjoubi, Rajan Sharma and Ahmed A. Hussein
Plants 2025, 14(14), 2086; https://doi.org/10.3390/plants14142086 - 8 Jul 2025
Viewed by 470
Abstract
Lessertia frutescens (L.) Goldblatt & J.C.Manning (synonym Sutherlandia frutescens), commonly known as cancer bush, is one of the most prominently used South African medicinal plants, with a rich history of traditional uses among indigenous communities. Its phytochemical profile showed different metabolites such [...] Read more.
Lessertia frutescens (L.) Goldblatt & J.C.Manning (synonym Sutherlandia frutescens), commonly known as cancer bush, is one of the most prominently used South African medicinal plants, with a rich history of traditional uses among indigenous communities. Its phytochemical profile showed different metabolites such as amino acids, fatty acids, sugars, flavonoid glycosides, cycloartenol glycosides, and oleanane-type saponins. Moreover, several research studies have highlighted the promising therapeutic effects of L. frutescens in combating various cancer cell lines. Additionally, the plant demonstrated potent immunomodulatory, antioxidant, anti-inflammatory, antidiabetic, neuroprotective, antistress, and antimicrobial activities. These research findings highlight L. frutescens as a promising candidate for the development of new or complementary therapies for a range of diseases and conditions. This review analyses the chemical and biological properties of L. frutescens based on 154 articles identified through SciFinder. Of these, 78 articles, including two patents, met the inclusion criteria and were reviewed. Studies focused on agriculture and horticulture were excluded as they fell outside the scope of this research. Full article
Show Figures

Figure 1

23 pages, 4204 KiB  
Article
Investigation of Bioactive Compounds Extracted from Verbena officinalis and Their Biological Effects in the Extraction by Four Butanol/Ethanol Solvent Combinations
by Dejan Stojković, Nikoleta Đorđevski, Mladen Rajaković, Biljana Filipović, Jelena Božunović, Stefani Bolevich, Gokhan Zengin, Sergey Bolevich, Uroš Gašić and Marina Soković
Pharmaceuticals 2025, 18(7), 1012; https://doi.org/10.3390/ph18071012 - 7 Jul 2025
Viewed by 415
Abstract
Background/Objectives: Verbena officinalis L. (common vervain) is a medicinal plant traditionally used and investigated in phytotherapy for its neuroprotective, antioxidant, and anti-inflammatory properties. This study aims to investigate the phytochemical diversity and biological activity of V. officinalis extracts prepared with different ratios [...] Read more.
Background/Objectives: Verbena officinalis L. (common vervain) is a medicinal plant traditionally used and investigated in phytotherapy for its neuroprotective, antioxidant, and anti-inflammatory properties. This study aims to investigate the phytochemical diversity and biological activity of V. officinalis extracts prepared with different ratios of butanol and ethanol. Methods: Aerial parts of V. officinalis were extracted using four solvent systems: 100% butanol (B1), 75:25 (BE7.5), 50:50 (BE5), and 25:75 (BE2.5) butanol:ethanol mixtures. Metabolite profiling was conducted using liquid chromatography–high-resolution tandem mass spectrometry (LC-HRMS/MS). Antioxidant activities were evaluated through six assays: 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), cupric ion-reducing antioxidant capacity (CUPRAC), ferric-reducing antioxidant power (FRAP), metal-chelating ability (MCA), and the phosphomolybdenum assay (PMA). Enzyme inhibition assays targeted acetylcholinesterase (AChE), butyrylcholinesterase (BChE), tyrosinase, and α-amylase. Antibacterial activity against Pseudomonas aeruginosa was tested via microdilution, while dominant phytochemicals were evaluated for binding affinity through molecular docking. Results: Seventy-five compounds, including phenolic acids, flavonoids, iridoids, phenylethanoids, and xanthones, were identified. BE5 extract exhibited the highest total phenolic content and strongest antioxidant capacity, while BE2.5 demonstrated the greatest antibacterial and metal-chelating effects. All extracts showed comparable AChE inhibition, with BE5 achieving the strongest tyrosinase and α-amylase inhibition. Docking studies confirmed high binding affinities of luteolin glucuronides to human and bacterial target enzymes. Conclusions: Solvent composition markedly influenced the chemical and biological profiles of V. officinalis extracts. BE5 and BE2.5 emerged as promising systems for obtaining bioactive fractions with therapeutic potential. Full article
(This article belongs to the Section Natural Products)
Show Figures

Figure 1

14 pages, 607 KiB  
Article
Quantification of the Role of Teupol® 25P and Graminex® G96 Compared to Hexanic Extract of Serenoa repens in Patients Affected by Lower Urinary Tract Symptoms During Treatment with Silodosin
by Yazan Al Salhi, Damiano Graziani, Andrea Fuschi, Fabio Maria Valenzi, Manfredi Bruno Sequi, Paolo Pietro Suraci, Alice Antonioni, Onofrio Antonio Rera, Cosimo De Nunzio, Riccardo Lombardo, Paolo Benanti, Giuseppe Candita, Eleonora Rosato, Filippo Gianfrancesco, Giorgio Martino, Giovanni Di Gregorio, Luca Erra, Giorgio Bozzini, Antonio Carbone and Antonio Luigi Pastore
Medicina 2025, 61(7), 1225; https://doi.org/10.3390/medicina61071225 - 6 Jul 2025
Viewed by 315
Abstract
Background and Objectives: While α1-blockers like silodosin are the mainstay for treating lower urinary tract symptoms (LUTS) due to benign prostatic hyperplasia (BPH), combination therapy with phytotherapeutics may provide enhanced symptom control. Xipag® is a novel formulation containing Graminex® G96 [...] Read more.
Background and Objectives: While α1-blockers like silodosin are the mainstay for treating lower urinary tract symptoms (LUTS) due to benign prostatic hyperplasia (BPH), combination therapy with phytotherapeutics may provide enhanced symptom control. Xipag® is a novel formulation containing Graminex® G96 (pollen extract) and Teupol® 25P (teupolioside), offering anti-inflammatory and antiandrogenic effects. This study aimed to evaluate the efficacy of Xipag® versus hexanic extract of Serenoa repens (HESr), both in combination with silodosin, in patients with LUTS/BPH. Materials and Methods: We conducted a single-center, prospective, observational, comparative study involving male patients with moderate-to-severe LUTSs undergoing treatment with silodosin. Patients were allocated to receive either Xipag® or HESr in addition to silodosin, with follow-up every 3 months for 12 months. Primary outcomes included changes in symptom scores such as IPSS, QoL, and functional improvements such as peak urinary flow rate (Qmax). Multivariable regression analyses were used to assess predictors of the response. Results: Patients receiving Xipag® showed significantly greater improvements in Qmax at all follow-up points (p < 0.05), with earlier and more sustained benefits compared to the HESr group. QoL index scores and PSA levels were also significantly better in the Xipag® group starting from month six onward. IPSS scores improved in both groups but were significantly lower in the Xipag® group only at 12 months (p = 0.04). No differences in erectile function (IIEF-5) or adverse events were observed. Conclusions: Xipag® in combination with silodosin provides superior improvement in urinary flow, symptom-related QoL, and PSA reduction compared to HESr plus silodosin, with a favorable safety profile. These findings support the use of multi-target nutraceuticals like Xipag® as a valuable adjunct in the management of LUTS/BPH. Larger randomized trials are warranted to confirm these results and explore underlying mechanisms. Full article
(This article belongs to the Section Urology & Nephrology)
Show Figures

Figure 1

21 pages, 750 KiB  
Review
Targeting Ocular Biofilms with Plant-Derived Antimicrobials in the Era of Antibiotic Resistance
by Monika Dzięgielewska, Michał Tomczyk, Adrian Wiater, Aleksandra Woytoń and Adam Junka
Molecules 2025, 30(13), 2863; https://doi.org/10.3390/molecules30132863 - 5 Jul 2025
Cited by 1 | Viewed by 652
Abstract
Microbial biofilms present a formidable challenge in ophthalmology. Their intrinsic resistance to antibiotics and evasion of host immune defenses significantly complicate treatments for ocular infections such as conjunctivitis, keratitis, blepharitis, and endophthalmitis. These infections are often caused by pathogens, including Staphylococcus aureus, [...] Read more.
Microbial biofilms present a formidable challenge in ophthalmology. Their intrinsic resistance to antibiotics and evasion of host immune defenses significantly complicate treatments for ocular infections such as conjunctivitis, keratitis, blepharitis, and endophthalmitis. These infections are often caused by pathogens, including Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans, particularly in patients using contact lenses or intraocular implants—devices that serve as surfaces for biofilm formation. The global rise in antimicrobial resistance has intensified the search for alternative treatment modalities. In this regard, plant-derived antimicrobials have emerged as promising candidates demonstrating broad-spectrum antimicrobial and antibiofilm activity through different mechanisms from those of conventional antibiotics. These mechanisms include inhibiting quorum sensing, disrupting established biofilm matrices, and interfering with microbial adhesion and communication. However, the clinical translation of phytochemicals faces significant barriers, including variability in chemical composition due to environmental and genetic factors, difficulties in standardization and reproducibility, poor water solubility and ocular bioavailability, and a lack of robust clinical trials evaluating their efficacy and safety in ophthalmic settings. Furthermore, regulatory uncertainties and the absence of unified guidelines for approving plant-derived formulations further hinder their integration into evidence-based ophthalmic practice. This review synthesizes the current knowledge on the pathogenesis and treatment of biofilm-associated ocular infections, critically evaluating plant-based antimicrobials as emerging therapeutic agents. Notably, resveratrol, curcumin, abietic acid, and selected essential oils demonstrated notable antibiofilm activity against S. aureus, P. aeruginosa, and C. albicans. These findings support the potential of phytochemicals as adjunctive or alternative agents in managing biofilm-associated ocular infections. By highlighting both their therapeutic promise and translational limitations, this review contributes to the ongoing discourse on sustainable, innovative approaches to managing antibiotic-resistant ocular infections. Full article
(This article belongs to the Special Issue Research Progress of New Antimicrobial Drugs)
Show Figures

Figure 1

29 pages, 512 KiB  
Review
Antimicrobial and Antioxidant Activity of Essential Oils from Selected Pinus Species from Bosnia and Herzegovina
by Snježana Mirković, Milica Martinović, Vanja M. Tadić, Ivana Nešić, Aleksandra Stolić Jovanović and Ana Žugić
Antibiotics 2025, 14(7), 677; https://doi.org/10.3390/antibiotics14070677 - 3 Jul 2025
Viewed by 762
Abstract
Essential oils are lipophilic secondary metabolites produced in various parts of aromatic plants and stored in specialized secretory structures. They play a vital role in plant defense, offering protection against microorganisms and herbivores. These oils are known for a wide range of biological [...] Read more.
Essential oils are lipophilic secondary metabolites produced in various parts of aromatic plants and stored in specialized secretory structures. They play a vital role in plant defense, offering protection against microorganisms and herbivores. These oils are known for a wide range of biological activities, including antibacterial, anti-inflammatory, antitumor, analgesic, antioxidant, and immunomodulatory effects. Given the increasing interest in natural alternatives to synthetic drugs, this review explored the therapeutic relevance of Pinus-derived essential oils as promising candidates in modern phytotherapy. Species of the genus Pinus have been widely investigated for their phytochemical composition and biological potential, with a focus on their medicinal and pharmaceutical applications. This review aimed to assess the biological properties of Pinus species commonly used in traditional medicine. In this paper, thorough insight into the chemical composition, as well as into the antimicrobial and antioxidant activities of essential oils obtained from the different parts of Pinus species, was given. Although recognized for their antimicrobial activity against a wide range of bacterial strains, including both Gram-positive and Gram-negative bacteria, the practical application of Pinus essential oils is often limited by their physicochemical instability and volatility. Therefore, this review highlighted the advances in formulation strategies, particularly encapsulation techniques, as the possible direction of future research concerning essential oils. Full article
(This article belongs to the Special Issue Antimicrobial and Antioxidant Efficacy of Essential Oils)
Show Figures

Figure 1

26 pages, 857 KiB  
Review
Officinal Plants as New Frontiers of Cosmetic Ingredients
by Annabella Vitalone, Lucia D’Andrea, Antonella Di Sotto, Alessandra Caruso and Rita Parente
Cosmetics 2025, 12(4), 140; https://doi.org/10.3390/cosmetics12040140 - 3 Jul 2025
Viewed by 831
Abstract
In recent years, cosmetic science has adopted a more integrative approach to skincare, in which sensory experience and psychophysical well-being are increasingly valued. In this context, plant-derived ingredients, particularly those from officinal species, are gaining attention for their multifunctional bioactivities. This review explores [...] Read more.
In recent years, cosmetic science has adopted a more integrative approach to skincare, in which sensory experience and psychophysical well-being are increasingly valued. In this context, plant-derived ingredients, particularly those from officinal species, are gaining attention for their multifunctional bioactivities. This review explores a curated selection of medicinal plants widely used or emerging in dermocosmetics, highlighting their phytochemical composition, mechanisms of action, and experimental support. A narrative literature review was conducted using databases such as PubMed and Scopus, targeting studies on topical cosmetic applications. Results show that many officinal plants, including Camellia sinensis, Panax ginseng, and Mentha piperita, offer antioxidant, anti-inflammatory, antimicrobial, photoprotective, and anti-aging benefits. Less conventional species, such as Drosera ramentacea and Kigelia africana, demonstrated depigmenting and wound-healing potential. In particular, bioactive constituents like flavonoids, iridoids, saponins, and polyphenols act on key skin targets such as COX-2, MMPs, tyrosinase, and the Nrf2 pathway. These findings underscore the potential of botanical extracts to serve as effective, natural, and multifunctional agents in modern skincare. While only Mentha piperita is currently recognized as a traditional herbal medicinal product for dermatological use, this research supports the broader dermocosmetic integration of these species. Full article
(This article belongs to the Section Cosmetic Formulations)
Show Figures

Figure 1

16 pages, 1343 KiB  
Article
The Effect of Light on the Germination of Raphanus sativus Seeds and the Use of Sprout Extracts in the Development of a Dermatocosmetic Gel
by Mihaela Carmen Eremia, Ramona Daniela Pavaloiu, Oana Livadariu, Anca Daniela Raiciu, Fawzia Sha’at, Corina Bubueanu and Dana Maria Miu
Gels 2025, 11(7), 515; https://doi.org/10.3390/gels11070515 - 2 Jul 2025
Viewed by 251
Abstract
This study investigates the influence of different light sources (sunlight, green, red, and white LED) on the germination of Raphanus sativus L. sprouts and the potential use of their sprout extracts in the development of natural dermatocosmetic gels. The bioactive fractions were extracted [...] Read more.
This study investigates the influence of different light sources (sunlight, green, red, and white LED) on the germination of Raphanus sativus L. sprouts and the potential use of their sprout extracts in the development of natural dermatocosmetic gels. The bioactive fractions were extracted using simple methods and analyzed for total polyphenol content and antioxidant activity. Statistical analysis of weight, total phenolic content, and antioxidant activity of Raphanus sativus L. sprouts was performed using ANOVA. Sprouts exposed to green LED light showed the highest biomass (16.13 ± 0.38 g), while red LED light resulted in the highest total polyphenol content (3.28 ± 0.03 mg GAE/g fresh weight). The highest antioxidant activity (6.60 ± 0.08 mM Trolox/g fresh weight) was obtained under white LED. Although variations were observed, ANOVA analysis revealed that only sprout weight differed significantly among treatments (p < 0.001), while differences in polyphenol content and antioxidant activity were not statistically significant (p > 0.05). The extract with the highest antioxidant activity was incorporated as an active ingredient into Carbopol-based hydrogel formulations containing natural gelling agents and gentle preservatives. The resulting gels demonstrated favorable pH (4.85–5.05), texture, and stability. The results indicate that the light spectrum influences the germination process and the initial development of seedlings. Moreover, radish sprout extracts, rich in bioactive compounds, show promise for dermatocosmetic applications due to their antioxidant, soothing, and antimicrobial properties. This study supports the use of natural resources in the development of care products, in line with current trends in green cosmetics. Full article
(This article belongs to the Section Gel Applications)
Show Figures

Figure 1

Back to TopTop