Phytochemistry, Ethnopharmacology, and Pharmacology of Lessertia frutescens (Cancer Bush): A Comprehensive Review
Abstract
1. Introduction
2. Methodology
2.1. Search Strategy and Data Selection
2.2. Data Extraction
3. Taxonomy, Nomenclature, and Distribution
4. Botanical Description
5. Ethnomedicinal Uses
6. Phytochemistry
7. Ethnopharmacological and Pharmacological Properties of L. frutescens Extracts and Compounds
7.1. Cancer
7.2. COVID-19
7.3. Antioxidant
7.4. Immune Modulation and Inflammation
7.5. Nephrotoxicity
7.6. Antimicrobial
7.7. HIV/AIDS
7.8. Neuroprotection
7.9. Diabetes
7.10. Stress
7.11. Toxicology
7.12. Clinical Trials
8. Discussion
9. Economic Importance of L. frutescens
10. Conclusions
Funding
Conflicts of Interest
References
- Van Wyk, B.E.; Van Oudtshoorn, B.; Gericke, N. Medicinal Plants of South Africa; Briza Publications: Pretoria, South Africa, 1997; pp. 205–515. [Google Scholar]
- Mncwangi, N.; Viljoen, A.; Mulaudzi, N.; Fouche, G. Lessertia frutescens. In The South African Herbal Pharmacopoeia; Academic Press: Cambridge, MA, USA, 2023; pp. 321–344. [Google Scholar]
- Ojewole, J. Analgesic, antiinflammatory and hypoglycemic effects of Sutherlandia frutescens R. BR. (variety Incana E. MEY.) [fabaceae] shoot aqueous extract. Methods Find. Exp. Clin. Pharmacol. 2004, 26, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Van Wyk, B.E.; Albrecht, C. A review of the taxonomy, ethnobotany, chemistry and pharmacology of Sutherlandia frutescens (Fabaceae). J. Ethnopharmacol. 2008, 119, 620–629. [Google Scholar] [CrossRef] [PubMed]
- Johnson, Q.; Syce, J.; Nell, H.; Rudeen, K.; Folk, W. A randomized double-blind placebo-controlled trial of Lessertia frutescens in Healthy Adults. PLoS Clin. Trial 2007, 2, e16. [Google Scholar] [CrossRef] [PubMed]
- Gericke, N.; Albrecht, C.F.; Van Wyk, B.; Mayeng, B.; Mutwa, C.; Hutchings, A. Sutherlandia frutescens. Aust. J. Med. Herb. 2001, 13, 9–15. [Google Scholar]
- Morris, K. Treating HIV in South Africa—A tale of two systems. Lancet 2001, 357, 1190. [Google Scholar] [CrossRef]
- Mills, E.; Cooper, C.; Seely, D.; Kanfer, I. African herbal medicines in the treatment of HIV: Hyoxis and Sutherlandia frutescens: An overview of evidence and pharmacology. Nutr. J. 2005, 4, 19–24. [Google Scholar] [CrossRef]
- Tai, J.; Cheung, S.; Chan, E.; Hasman, D. In vitro culture studies of Sutherlandia frutescens on human tumor cell lines. J. Ethnopharmacol. 2004, 93, 9–19. [Google Scholar] [CrossRef]
- Lin, L.G.; Ung, C.O.L.; Feng, Z.L.; Huang, L.; Hu, H. Naturally occurring diterpenoid dimers: Source, biosynthesis, chemistry, and bioactivities. Planta Med. 2016, 82, 1309–1328. [Google Scholar] [CrossRef]
- Masoko, P.; Mabusa, I.H.; Howard, R.L. Isolation of α-linolenic acid from Sutherlandia frutescens and its inhibition of Mycobacterium tuberculosis shikimate kinase enzyme. BMC Complement. Altern. Med. 2016, 16, 366. [Google Scholar] [CrossRef]
- Sergeant, C.A.; Africander, D.; Swart, P.; Swart, A.C. Sutherlandia frutescens modulates adrenal hormone biosynthesis, acts as a selective glucocorticoid receptor agonist (SEGRA), and displays anti-mineralocorticoid properties. J. Ethnopharmacol. 2017, 202, 290–301. [Google Scholar] [CrossRef]
- Ndjoubi, K.O.; Omoruyi, S.I.; Luckay, R.C.; Hussein, A.A. Isolation of lessertiosides A and B and other metabolites from Lessertia frutescens and their neuroprotective activity. Plants 2024, 13, 3076. [Google Scholar] [CrossRef] [PubMed]
- Plants of the World Online (POWO). Lessertia frutescens (L.) Goldblatt & J.C. Manning. Available online: https://powo.science.kew.org/results?q=sutherlandia%20frutescens (accessed on 22 June 2023).
- Van Wyk, B.E.; Gorelik, B. The history and ethnobotany of Cape herbal teas. S. Afr. J. Bot. 2017, 110, 18–38. [Google Scholar] [CrossRef]
- Balkwill, M.J.; Balkwill, K. The genus Lessertia DC. (Fabaceae-Galegeae) in KwaZulu-Natal (South Africa). S. Afr. J. Bot. 1999, 65, 339–356. [Google Scholar] [CrossRef]
- Jackson, W.P.U. Origins and Meanings of Names of South African Plant Genera; U.C.T. Printing Department: Cape Town, South Africa, 1990. [Google Scholar]
- Aboyade, O.M.; Styger, G.; Gibson, D.; Hughes, G. Sutherlandia frutescens: The meeting of science and traditional knowledge. J. Altern. Complement. Med. 2013, 20, 71–76. [Google Scholar] [CrossRef]
- Schrire, B.D.; Andrews, S. Sutherlandia: Gansies or balloon peas. Plantsman 1992, 14, 65–69. [Google Scholar]
- PlantzAfrica. Sutherlandia frutescens Herba. Available online: http://www.plantzafrica.com/medmonographs/sutherlfrut.pdf (accessed on 3 February 2023).
- Adefuye, O.J. Anti-Diabetic and Phytochemical Analysis of Sutherlandia fruescens Extracts. Ph.D. Thesis, Nelson Mandela University, Port Elizabeth, South Africa, 2016. [Google Scholar]
- Daghman, M.I. Comparison of the Physicochemical Characteristics and Flavonoid Release Profiles of Sutherlandia frutescens Phytosomes Versus Liposomes. Master’s Thesis, University of Western Cape, Cape Town, South Africa, 2015. [Google Scholar]
- Zdeněk, H. BioLib.cz. Available online: https://www.biolib.cz/en/image/id325772/ (accessed on 15 May 2021).
- Drewes, S.E. Natural products research in South Africa: 1890–2010. S. Afr. J. Sci. 2012, 108, 1–8. [Google Scholar] [CrossRef]
- Street, R.A.; Prinsloo, G. Commercially important medicinal plants of South Africa: A review. J. Chem. 2012, 2013, 205048. [Google Scholar] [CrossRef]
- Prevoo, D.; Smith, C.; Swart, P.; Swart, A.C. The effect of Sutherlandia frutescens on steroidogenesis: Confirming indigenous wisdom. Endocr. Res. 2004, 30, 745–751. [Google Scholar] [CrossRef]
- Ojewole, J.A.O. Antinociceptive, anti-inflammatory, and antidiabetic properties of Hypoxis hemerocallidea Fisch. & C.A. Mey (Hypoxidaceae) corm [‘African Potato’] aqueous extracts in mice and rats. J. Ethnopharmacol. 2008, 103, 126–134. [Google Scholar]
- Thring, T.S.; Weitz, F.M. Medicinal plant use in the Bredasdorp/Elim region of the Southern Overberg in the Western Cape Province of South Africa. J. Ethnopharmacol. 2006, 103, 261–275. [Google Scholar] [CrossRef]
- Moshe, D.; Van der Bank, H.; Van der Bank, M.; Van Wyk, B.E. Lack of genetic differentiation between 19 populations from seven taxa of Sutherlandia. Tribe: Galegeae, Fabaceae. Biochem. Syst. Ecol. 1998, 26, 595–609. [Google Scholar] [CrossRef]
- Fu, X.; Li, X.C.; Wang, Y.H.; Avula, B.; Smillie, T.J.; Mabusela, W.; Syce, J.; Johnson, Q.; Folk, W.; Khan, I.A. Flavonol glycosides from the South African medicinal plant Sutherlandia frutescens. Planta Med. 2010, 76, 178–181. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Li, X.C.; Smillie, T.J.; Carvalho, P.; Mabusela, W.; Syce, J.; Johnson, Q.; Folk, W.; Avery, M.A.; Khan, I.A. Cycloartane glycosides from Sutherlandia frutescens. J. Nat. Prod. 2008, 71, 1749–1753. [Google Scholar] [CrossRef]
- Fu, X.; Li, X.C.; Smillie, T.J.; Khan, I.A. Rearranged Cycloartanol Glycosides from Sutherlandia frutescens. Planta Med. 2010, 76, 47. [Google Scholar] [CrossRef]
- Fu, X. Phytochemical Studies on the Medicinal Plant Sutherlandia frutescens. Ph.D. Thesis, University of Mississippi, Oxford, MS, USA, 2012. [Google Scholar]
- Tchegnitegni, B.T.; Lerata, M.S.; Beukes, D.R.; Antunes, E.M. Sutherlandiosides E–K: Further cycloartane glycosides from Sutherlandia frutescens. Phytochem. Lett. 2024, 61, 66–74. [Google Scholar] [CrossRef]
- Gonyela, O.; Peter, X.; Dewar, J.B.; Van Der Westhuyzen, C.; Steenkamp, P.; Fouché, G. Cycloartanol and Sutherlandioside C peracetate from Sutherlandia frutescens and their immune potentiating effects. Nat. Prod. Res. 2019, 33, 1968–1976. [Google Scholar]
- Van Der Walt, N.B.; Zakeri, Z.; Cronjé, M.J. The induction of apoptosis in A375 malignant melanoma cells by Sutherlandia frutescens. Evid. Based Complement. Alternat. Med. 2016, 2016, 4921067. [Google Scholar] [CrossRef]
- Van Wyk, B.E.; Gericke, N. Peoples Plants: A Guide to Useful Plants of Southern Africa; Briza Publications: Pretoria, South Africa, 2000. [Google Scholar]
- Skerman, N.B.; Joubert, A.M.; Cronjé, M.J. The apoptosis inducing effects of Sutherlandia spp. extracts on an oesophageal cancer cell line. J. Ethnopharmacol. 2011, 137, 1250–1260. [Google Scholar] [CrossRef]
- Leisching, G.; Loos, B.; Nell, T.; Engelbrecht, A.-M. Sutherlandia frutescens treatment induces apoptosis and modulates the PI3-kinase pathway in colon cancer cells. S. Afr. J. Bot. 2015, 100, 20–26. [Google Scholar] [CrossRef]
- Stander, B.A.; Marais, S.; Steynberg, T.J.; Theron, D.; Joubert, F.; Albrecht, C.; Joubert, A.M. Influence of Sutherlandia frutescens extracts on cell numbers, morphology, and gene expression in MCF-7 cells. J. Ethnopharmacol. 2007, 112, 312–318. [Google Scholar] [CrossRef]
- Gouws, C.; Smit, T.; Willers, C.; Svitina, H.; Calitz, C.; Wrzesinski, K. Anticancer potential of Sutherlandia frutescens and Xysmalobium undulatum in LS180 colorectal cancer mini-tumors. Molecules 2021, 26, 605. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, A.C.; Cromarty, D.; Albrecht, C.; Van Rensburg, C.E.J. The antioxidant potential of Sutherlandia frutescens. J. Ethnopharmacol. 2004, 95, 1–5. [Google Scholar] [CrossRef]
- Jiang, J.; Chuang, D.Y.; Zong, Y.; Patel, J.; Brownstein, K.; Lei, W.; Lu, H.; Simonyi, A.; Gu, Z.; Cui, J.; et al. Sutherlandia frutescens ethanol extracts inhibit oxidative stress and inflammatory responses in neurons and microglial cells. PLoS ONE 2014, 9, e89748. [Google Scholar] [CrossRef] [PubMed]
- Tobwala, S.; Fan, W.; Hines, C.J.; Folk, W.R.; Ercal, N. Antioxidant potential of Sutherlandia frutescens and its protective effects against oxidative stress in various cell cultures. BMC Complement. Altern. Med. 2014, 14, 271. [Google Scholar] [CrossRef] [PubMed]
- Lei, W.; Browning, J.D.; Eichen, P.A.; Brownstein, K.J.; Folk, W.R.; Sun, G.Y.; Lubahn, D.B.; Rottinghaus, G.E.; Fritsche, K.L. Unveiling the anti-inflammatory activity of Sutherlandia frutescens using murine macrophages. Int. Immunopharmacol. 2015, 29, 254–262. [Google Scholar] [CrossRef]
- Grunz-Borgmann, E.; Mossine, V.; Fritsche, K.; Parrish, A.R. Ashwagandha attenuates TNF-α- and LPS-induced NF-κB activation and CCL2 and CCL5 gene expression in NRK-52E cells. BMC Complement. Altern. Med. 2015, 15, 434. [Google Scholar] [CrossRef]
- Harnett, S.M.; Oosthuizen, V.; Venter, M.V. Anti-HIV activities of organic and aqueous extracts of Sutherlandia frutescens and Lobostemon trigonus. Phytomedicine 2004, 96, 113–119. [Google Scholar] [CrossRef]
- Williams, S.; Roux, S.; Koekemoer, T.; Venter, M.; Van Dealtry, G. Sutherlandia frutescens prevents changes in diabetes-related gene expression in a fructose-induced insulin-resistant cell model. J. Ethnopharmacol. 2013, 146, 482–489. [Google Scholar] [CrossRef]
- Enogieru, A.B.; Omoruyi, S.I.; Ekpo, O.E. Aqueous leaf extract of Sutherlandia frutescens attenuates ROS-induced apoptosis and loss of mitochondrial membrane potential in MPP+-treated SH-SY5Y cells. Trop. J. Pharm. Res. 2020, 19, 549–555. [Google Scholar] [CrossRef]
- Camille, N.; Dealtry, G. Regulation of M1/M2 macrophage polarization by Sutherlandia frutescens via NFkB and MAPK signaling pathways. S. Afr. J. Bot. 2018, 116, 42–51. [Google Scholar] [CrossRef]
- Lei, W.; Browning, J.D.; Eichen, P.A.; Lu, C.H.; Mossine, V.V.; Rottinghaus, G.E.; Folk, W.R.; Sun, G.Y.; Lubahn, D.B.; Fritsche, K.L. Immuno-stimulatory activity of a polysaccharide-enriched fraction of Sutherlandia frutescens occurs by the toll-like receptor-4 signaling pathway. J. Ethnopharmacol. 2015, 172, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Müller, A.C.; Patnala, S.; Kis, O.; Bendayan, R.; Kanfer, I. Interactions between phytochemical components of Sutherlandia frutescens and the antiretroviral atazanavir in vitro: Implications for absorption and metabolism. J. Pharm. Pharm. Sci. 2012, 15, 221–233. [Google Scholar] [CrossRef] [PubMed]
- Fasinu, P.S.; Gutmann, H.; Schiller, H.; James, A.; Bouic, P.J. The potential of Sutherlandia frutescens for herb-drug interaction. Drug Metab. Dispos. 2012, 41, 488–497. [Google Scholar] [CrossRef] [PubMed]
- Stander, A.; Marais, S.; Stivaktas, V.; Vorster, C.; Albrecht, C.; Lottering, M.L.; Joubert, A.M. In vitro effects of Sutherlandia frutescens water extracts on cell numbers, morphology, cell cycle progression, and cell death in tumorigenic and non-tumorigenic epithelial breast cell lines. J. Ethnopharmacol. 2009, 124, 45–60. [Google Scholar] [CrossRef]
- Phulukdaree, A.; Moodley, D.; Chuturgoon, A.A. The effects of Sutherlandia frutescens extracts in cultured renal proximal and distal tubule epithelial cells. S. Afr. J. Sci. 2010, 106, 54–58. [Google Scholar] [CrossRef]
- Chinkwo, K.A. Sutherlandia frutescens extracts can induce apoptosis in cultured carcinoma cells. J. Ethnopharmacol. 2005, 98, 163–170. [Google Scholar] [CrossRef]
- Ngcobo, M.; Gqaleni, N.; Chelule, P.K.; Serumula, M.; Assounga, A. Effects of Sutherlandia frutescens extracts on normal t-lymphocytes in vitro. Afr. J. Tradit. Complement. Altern. Med. 2012, 9, 73–80. [Google Scholar] [CrossRef]
- Ntuli, S.S.B.N.; Gelderblom, W.C.A.; Katerere, D.R. The mutagenic and antimutagenic activity of Sutherlandia frutescens extracts and marker compounds. BMC Complement. Altern. Med. 2018, 18, 93. [Google Scholar] [CrossRef]
- Prevoo, D.; Swart, P.; Swart, A.C. The influence of Sutherlandia frutescens on adrenal steroidogenic cytochrome P450 enzymes. J. Ethnopharmacol. 2008, 118, 118–126. [Google Scholar] [CrossRef]
- Katerere, D.R.; Eloff, J.N. Antibacterial and antioxidant activity of Sutherlandia frutescens (Fabaceae), a reputed anti-HIV/AIDS phytomedicine. Phytother. Res. 2005, 19, 779–781. [Google Scholar] [CrossRef]
- Chadwick, W.A.; Roux, S.; van de Venter, M.; Louw, J.; Oelofsen, W. Anti-diabetic effects of Sutherlandia frutescens in Wistar rats fed a diabetogenic diet. J. Ethnopharmacol. 2007, 109, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Minocha, M.; Mandava, N.K.; Kwatra, D.; Pal, D.; Folk, W.R.; Earla, R.; Mitra, A.K. Effect of short-term and chronic administration of Sutherlandia frutescens on the pharmacokinetics of nevirapine in rats. Int. J. Pharm. 2011, 413, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Omolaoye, T.S.; Skosana, B.T.; Du Plessis, S.S. The effect of Aspalathus linearis, Cyclopia intermedia, and Sutherlandia frutescens on sperm functional parameters of healthy male Wistar rats. Front. Physiol. 2023, 14, 1211227. [Google Scholar] [CrossRef] [PubMed]
- Vasaikar, N.; Mahajan, U.; Patil, K.R.; Suchal, K.; Patil, C.R.; Ojha, S.; Goyal, S.N. D-pinitol attenuates cisplatin-induced nephrotoxicity in rats: Impact on pro-inflammatory cytokines. Chem.-Biol. Interact. 2018, 290, 6–11. [Google Scholar] [CrossRef]
- Fowler, M.W.; John, E. L-canavanine: A naturally occurring toxic amino acid and its effects on human health. Toxicol. Lett. 2019, 311, 85–92. [Google Scholar]
- Steenkamp, V.; Gouws, M.C. Cytotoxicity of six South African medicinal plant extracts used in the treatment of cancer. S. Afr. J. Bot. 2006, 72, 630–633. [Google Scholar] [CrossRef]
- BioRender.com. Available online: https://www.biorender.com (accessed on 10 May 2025).
- Dwarka, D.; Agoni, C.; Mellem, J.J.; Soliman, M.E.; Baijnath, H. Identification of potential SARS-CoV-2 inhibitors from South African medicinal plant extracts using molecular modeling approaches. S. Afr. J. Bot. 2020, 133, 273–284. [Google Scholar] [CrossRef]
- Akindele, A.J.; Sowemimo, A.; Agunbiade, F.O.; Sofidiya, M.O.; Awodele, O.; Ade-Ademilua, O.; Orabueze, I.; Ishola, I.O.; Ayolabi, C.I.; Salu, O.B.; et al. Bioprospecting for Anti-COVID-19 Interventions from African Medicinal Plants: A Review. Nat. Prod. Commun. 2022, 17, 1–24. [Google Scholar] [CrossRef]
- Zonyane, S.; Fawole, O.A.; la Grange, C.; Stander, M.A.; Opara, U.L.; Makunga, N.P. The implication of chemotypic variation on the antioxidant and anticancer activities of Sutherlandia frutescens (L.) R.Br. (Fabaceae) from different geographic locations. Antioxidants 2020, 9, 152. [Google Scholar] [CrossRef]
- Na, H.-K.; Mossanda, K.S.; Lee, J.-Y.; Surh, Y.-J. Inhibition of phorbol ester-induced COX-2 expression by some edible African plants. Biofactors 2004, 21, 149–153. [Google Scholar] [CrossRef]
- Kisten, N. The immune-modulating activity of Sutherlandia frutescens. Master’s Thesis, University of the Western Cape, Cape Town, South Africa, 2020. [Google Scholar]
- Faleschini, M.T.; Myer, M.S.; Harding, N.; Fouchè, G. Chemical profiling with cytokine stimulating investigations of Sutherlandia frutescens L. R. (Br.) (Fabaceae). S. Afr. J. Bot. 2013, 85, 48–55. [Google Scholar] [CrossRef]
- Choi, M.S.; Lee, W.H.; Kwon, E.Y.; Kang, M.A.; Lee, M.K.; Park, Y.B.; Jeon, S.M. Effects of soy pinitol on the pro-inflammatory cytokines and scavenger receptors in oxidized low-density lipoprotein-treated THP-1 macrophages. J. Med. Food 2007, 10, 594–601. [Google Scholar] [CrossRef] [PubMed]
- Sivakumar, S.; Palsamy, P.; Subramanian, S.P. Impact of D-pinitol on the attenuation of proinflammatory cytokines, hyperglycemia-mediated oxidative stress, and protection of kidney tissue ultrastructure in streptozotocin-induced diabetic rats. Chem. Biol. Interact. 2010, 188, 237–245. [Google Scholar] [CrossRef] [PubMed]
- Leu, G.; Lin, T.; John, T.A. Anti-HCV activities of selected polysaturated fatty acids. Biochem. Biophys. Res. Commun. 2004, 318, 275–280. [Google Scholar] [CrossRef]
- McGaw, L.J.; Jäger, A.J.; Van Staden, J. Antibacterial effects of fatty acids and related compounds from plants. S. Afr. J. Bot. 2002, 68, 417–423. [Google Scholar] [CrossRef]
- Obonyo, M.; Zhang, L.; Thamphiwatana, S.; Pornpattananangkul, D.; Fu, V.; Zhang, L. Antibacterial activities of liposomal linolenic acids against antibiotic-resistant Helicobacter pylori. Mol. Pharm. 2012, 9, 2677–2685. [Google Scholar] [CrossRef]
- Korb, V.C.; Moodley, D.; Chuturgoon, A.A. Apoptosis-promoting effects of Sutherlandia frutescens extracts on normal human lymphocytes in vitro. S. Afr. J. Sci. 2010, 106, 64–69. [Google Scholar] [CrossRef]
- Engelbrecht, A.; Smith, C.; Neethling, I.; Thomas, M.; Mattheyse, M.; Myburgh, K.H.; Ellis, B. Daily brief restraint stress alters signaling pathways and induces atrophy and apoptosis in rat skeletal muscle. Stress 2010, 13, 132–141. [Google Scholar] [CrossRef]
- Mombereau, C.; Kaupmann, K.; Froestl, W.; Sansig, G.; Van Der Putten, H.; Cryan, J.F. Genetic and pharmacological evidence of a role for GABAB receptors in the modulation of anxiety- and antidepressant-like behavior. Neuropsychopharmacology 2004, 29, 1050–1062. [Google Scholar] [CrossRef]
- Green, M.H. Method of Treating Viral Infections with Amino Acid Analogs. U.S. Patent No. 5,110,600, 25 January 1988. [Google Scholar]
- Africa, L.; Smith, C. Sutherlandia frutescens may exacerbate HIV-associated neuroinflammation. J. Negat. Results Biomed. 2015, 14, 14. [Google Scholar] [CrossRef]
- Zonyane, S.; Chen, L.; Xu, M.J.; Gong, Z.N.; Xu, S.; Makunga, N.P. Geographic-based metabolomic variation and toxicity analysis of Sutherlandia frutescens L. R.Br.—An emerging medicinal crop in South Africa. Ind. Crops Prod. 2019, 133, 414–423. [Google Scholar] [CrossRef]
- Mackenzie, J.; Koekemoer, T.; Venter, M.; Van de Dealtry, G. Sutherlandia frutescens limits the development of insulin resistance by decreasing plasma free fatty acid levels. Phytother. Res. 2009, 23, 1609–1614. [Google Scholar] [CrossRef] [PubMed]
- Bates, S.H.; Jones, R.B.; Bailey, C.J. Insulin-like effect of pinitol. Br. J. Pharmacol. 2000, 130, 1944–1948. [Google Scholar] [CrossRef] [PubMed]
- Grandi, M.; Roselli, L.; Vernay, M. Lessertia (Sutherlandia frutescens) and fatigue during cancer treatment. Phytothérapie 2005, 3, 110–113. [Google Scholar] [CrossRef]
- Chaffy, N.; Stokes, T. Aids herbal therapy. Trends Plant Sci. 2002, 7, 57. [Google Scholar]
- Wilson, D.; Goggin, K.; Williams, K.; Gerkovich, M.M.; Gqaleni, N.; Syce, J.; Bartman, P.; Johnson, Q.; Folk, W.R.; Doherty, T.M. Consumption of Sutherlandia frutescens by HIV-seropositive South African adults: An adaptive double-blind randomized placebo-controlled trial. PLoS ONE 2015, 10, e0128522. [Google Scholar] [CrossRef]
- Fang, X.J.; Jiang, H.; Zhu, Y.Q.; Zhang, L.Y.; Fan, Q.H.; Tian, Y. Doxorubicin induces drug resistance and expression of the novel CD44st via NF-κB in human breast cancer MCF-7 cells. Oncol. Rep. 2014, 31, 2735–2744. [Google Scholar] [CrossRef]
- Liebmann, J.E.; Cook, J.A.; Lipschultz, C.; Teague, D.; Fisher, J.; Mitchell, J.B. Cytotoxic studies of paclitaxel (Taxol®) in human tumor cell lines. Br. J. Cancer 1993, 68, 1104–1109. [Google Scholar] [CrossRef]
- Sieniawska, E. Activities of tannins from in vitro studies to clinical trials. Nat. Prod. Commun. 2015, 10, 1877–1884. [Google Scholar] [CrossRef]
- De Clercq, E. Antiviral drugs in current clinical use. J. Clin. Virol. 2004, 30, 115–133. [Google Scholar] [CrossRef]
- Paintsil, E.; Cheng, Y.C. Antiviral agents. In Encyclopedia of Microbiology, 3rd ed.; Schaechter, M., Ed.; Academic Press: San Diego, CA, USA, 2009; pp. 223–257. [Google Scholar]
- Wassner, C.; Bradley, N.; Lee, Y. A review and clinical understanding of tenofovir: Tenofovir disoproxil fumarate versus tenofovir alafenamide. J. Int. Assoc. Provid. AIDS Care 2020, 19, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Okoye, A.A.; Picker, L.J. CD4+ T-cell depletion in HIV infection: Mechanisms of immunological failure. Immunol. Rev. 2013, 254, 54–64. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Lui, M.; Lu, Q.; Farrell, M.; Lappin, J.; Shi, J.; Lu, L.; Bao, Y. Global prevalence and burden of HIV-associated neurocognitive disorder: A meta-analysis. Neurology 2020, 95, e2610–e2621. [Google Scholar] [CrossRef] [PubMed]
- Persistance Market Research. Sutherlandia Extract Market. Available online: https://www.persistencemarketresearch.com/market-research/sutherlandia-extract-market.asp (accessed on 7 April 2024).
- Marais, J.F.; Van Jaarsveld, J.J.; Laporta, J.C.H. Sutherlandia Extract and the Use Thereof in the Manufacture of a Medicament. Patent WO 2022/130222 A1, 23 June 2022. [Google Scholar]
- Visser, J.S. A Pharmaceutical. Composition. Patent WO2012/063225 A1, 18 May 2012. [Google Scholar]
Compounds | Fu [33] | Tchegnitegni et al. [34] |
---|---|---|
Sutherlandioside E | 24,25-O-β-D-diglucopyranosyl-3S, 24S,25-trihydroxy, 2(1-10)-abeo-9, 10R-seco-cycloartanoic acid (20) | 7S,24S,25-trihydroxy-9, 10R-seco-9,19-cyclolanost-2(3), 9(11)-diene-25-O-β-D-glucopyranoside (22) |
Sutherlandioside F | 24,25-O-β-D-diglucopyranosyl 3R, 24S,25-trihydroxy, 2(1-10)-abeo-9, 10R-seco-cycloartanoic acid (21) | 1S,3R,7S,24S,25-pentahydroxycycloartan-11-one-25-O-β-D-glucopyranoside (23) |
Sutherlandioside G | (3R,7S,24S,25)-[3-O-β-D-glucopyranosyl]-tetrahydroxycycloartan-1-one-25-O-β-D-glucopyranoside (18) | 1S,3R,7S,24S,25-pentahydroxycycloartan-11-one-24-O-β-D-glucopyranosyl-25-O-β-D-glucopyranoside (24) |
Sutherlandiosde H | 3R,24S,25-trihydroxycycloartane-1,11- dione-24, 25-O-β-D-diglucopyranoside (19) | 3R,24S,25-trihydroxycycloartan-1-one-25-O-β-D-glucopyranoside (25) |
Pharmacological Activity | Extract/Compound | Experimental Models | Tested Concentrations | Experimental Outcomes | References |
---|---|---|---|---|---|
Anticancer | 70% ethanol (tablet) | MDA-MB-468, HL-60, MCF-7, and Jurkat cells | IC50: 0.91–0.55 mg/mL | Inhibited growth of MCF7 (0.55 mg/mL), MDA-MB-468 (0.68 mg/mL), Jurkat (0.91 mg/mL), and HL60 (0.68 mg/mL) | [9] |
A-375, Colo-800 cells cells | 0.625 mg/mL | Inhibited proliferation | [36] | ||
HDFα cells | 0.3 mg/mL | Reduced HDFα viability to 19% after 72 h | |||
70% ethanol | PC3, LNCaP, and TRAMP-C2 cells | 100–200 µg/mL (IC50) | Suppressed the growth of PC3 (167), LNCaP (200), and TRAMP-C2 (100) while inhibiting Gli/Hh signalling activity by downregulating Gli1 and PTCH1 gene expression in TRAMP-C2 and PC3 cells | [10] | |
SNO cells | 2.5 and 5 mg/mL | Reduced ATP levels; apoptotic effect; decreased caspase 3/7 levels | [38] | ||
CaCo-2 cells | 2.73 mg/mL | Inhibited the PI3-K/Akt pathway by decreasing the phosphorylation of p85, p110, Akt (Ser473 and Thr308), and PTEN Promoted apoptosis by increasing PARP cleavage and cleaved caspase-9 levels while significantly reducing total Bax and c-IAP levels | [39] | ||
70% ethanolic (leaves and twigs) | MCF-7 cells | 1.5 mg/mL | Inhibited the proliferation of MCF-7 cells after 72 h of exposure | [40] | |
Sutherlandioside B and D | Shh Light II cells | 10 µg/mL | Inhibited Gli-reporter activity by 22% and 89%, respectively | [10] | |
Aqueous | LS180 cells | 2.63 mg/mL (IC50) | Reduced cell growth, viability, ATP, and AK levels relative to protein content | [41] | |
CYP3A4 and CYP2D6 enzymes | 2.63 mg/mL (IC50) | Inhibited the gene expression of CYP3A4 and CYP2D6 enzymes | |||
Antioxidant | Aqueous | FMLP-stimulated neutrophils | 10 µg/mL | Decreased luminol and lucigenin-enhanced chemiluminescence response | [42] |
Oxidant-scavenging in cell-free systems | 10 and 0.62 µg/mL | Inhibited superoxide-induced chemiluminescence at 10 µg/mL and horseradish peroxidase/hydrogen peroxide-induced chemiluminescence at 0.62 µg/mL | |||
L-canavanine, D-Pinitol | RAW 264.7 cells | 0.5 mM (L-c), 10 mM (D-p) | Inhibited LPS-induced NO secretion without reducing cell numbers | [9] | |
70% ethanol | Primary rat cortical neurons | 0.1–7.5 µg/mL | Inhibited NMDA-induced ROS production without altering viability | [43] | |
Aqueous | CHO, HepaRG, and A549 | 500 µg/mL | Protected cells from t-BHP-induced oxidative stress by scavenging ROS, preserving GSH/GSSG levels | [44] | |
1 mg/mL | Potent scavenger of hydroxyl, superoxide, and hydrogen peroxide radicals | ||||
Anti-inflammatory | 70% ethanol | BV-2 and HAPI microglial cells | 0.1–80 µg/mL | Inhibited IFN-γ-induced p-ERK1/2 and p-STAT-1α expression as well as NO and filopodia production (BV-2) Inhibited LPS+ IFN-γ induced ROS and NO production as well as iNOS expression (BV-2 and HAPI) | [43] |
Ethanolic | RAW 264.7 cells | 200 µg/mL | Reduced NO, iNOS, IL-6, and TNF-α production; inhibited ERK1/2, STAT1-α, and NF-κB activation | [45] | |
Sutherlandioside B-enriched | RAW 264.7 cells | 200 µg/mL | Reduced ROS induced by LPS and IFN-γ | [45] | |
Aqueous (leaves) | NRK-52E cells | 0.4 mg/mL | Partially reduced TNF-α induced chemokine CCL5 expression | [46] | |
Antidiabetic | Dichloromethane (leaves) | α- and β-glucosidase enzymes | 0.2 mg/mL | Significantly inhibited α- and β-glucosidase enzymes | [47] |
Aqueous | Hepatocytes | 12.5 µg/mL | Prevented insulin resistance | [48] | |
Neuroprotection | Aqueous | MPP+-induced toxicity (SH-SY5Y cells) | 20 µg/mL | Reduced ROS production | [49] |
Immune Modulatory | Aqueous and ethanolic (leaves) | RAW 264.7 cells | 200 µg/mL | Inhibited LPS-induced ERK1/2 and p38 phosphorylation; reduced NO, ROS, TNF-α, IL-6, GM-CSF, and G-CSF | [50] |
100 µg/mL | Reduced LPS-stimulated NO and ROS production | ||||
50 µg/mL | Reduced LPS-induced production of IL-1α | ||||
100, 150 and 200 µg/mL | Inhibited NF-κB activation by attenuating NF-κB p65 subunit phosphorylation on the Ser 536 residue | ||||
Ethanol | 150 and 100 µg/mL | Reduced CD86 expression and inhibited COX-2 | |||
100 µg/mL | increased the CD206 cell surface marker expression | ||||
Polysaccharide-enriched fraction | 200 µg/mL | Activated macrophages via TLR4 receptors and NF-κB signalling pathway | [51] | ||
Anti-HIV | Aqueous (leaves) | HIV-1 RT enzyme | 0.2 mg/mL | Inhibited HIV-1 reverse transcriptase enzyme by ≥50% | [47] |
Methanolic and aqueous | Human liver microsomes | 10 mg/mL | Inhibited the metabolism of atazanavir | [52] | |
Aqueous | CaCo-2 cells | 10 mg/mL | Decreased atazanavir accumulation, bioavailability, and absorption | ||
The triterpenoid glycoside-enriched fraction | CaCo-2 cells | 500 µg/mL | Increased atazanavir accumulation and enhanced its bioavailability and absorption | ||
Human liver microsomes | Decreased the atazanavir present (p < 0.001) in human liver microsomes | ||||
40% aqueous methanol | P450 enzymes | IC50 ranging from 17–160 μg/mL | Inhibited CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP3A4/5, and CYP3A4/5 with IC50 values of 41, 160, 20, 22.4, 23, 35.9, 17.5, and 28.3 μg/mL, respectively | [53] | |
Hepatocytes | 100 µg/mL | Reduced midazolam clearance by 40% by delaying the production of midazolam metabolites | |||
LLC-PK1 cells stably transfected with human P-gp | 324.8 µg/mL (IC50) | Inhibit P-gp | |||
Human embryonic kidney 293 cells stably transfected with human OATP1B1 or OATP1B3 | IC50 | Inhibit OATP1B1 (10.4 µg/mL) and OATP1B3 (6.6 µg/mL) | |||
Cytotoxic | 70% ethanol | MCF-7 and MCF-12A | 10 mg/mL | Reduced cell growth and induced apoptosis in MCF-7 and MCF-12A | [54] |
Aqueous | MDBK and LLC-PK1 cells | 6 mg/mL | Disrupted mitochondrial integrity, promoted apoptosis | [55] | |
CHO and cervical neoplastic cells | 3.5 mg/mL | Activated apoptosis | [56] | ||
70% ethanol and aqueous (tablet) | Normal T-lymphocytes | 2.5 mg/mL | Induced necrosis, depleted ATP, inhibited caspase 3/7 activity, and caused DNA fragmentation | [57] | |
Antimutagenic | Ethyl acetate | TA97a, TA98, TA100, and TA102 strains | 5, 10, 20% (w/w) | Exhibited antimutagenic effect against multiple strains | [58] |
L-arginine, GABA, D-Pinitol | TA97a, TA98, TA100, and TA102 strains | 0.05–0.49 M | Exhibited antimutagenic activity against all four strains | ||
Pro-mutagenic | Methanol | TA98 and TA100 strains | 10, 25, 50% (w/w) | Showed pro-mutagenic potential in TA98 with 2-acetamidofluorene and TA100 with aflatoxin B1 | |
Anti-tuberculosis | Dichloromethane–methanol (1:1) | Mycobacterium tuberculosis | IC50: 0.1–5.1 μg/mL | Inhibited the shikimate kinase enzyme | [11] |
α-Linolenic acid | Mycobacterium tuberculosis | 3.7 µg/mL | Inhibited the shikimate kinase enzyme | ||
Different DCM: MeOH fractions | Mycobacterium tuberculosis | 0.3–94.3 µg/mL | Inhibited the shikimate kinase enzyme at varying IC50 values | ||
Anti-stress | Methanol, chloroform, and aqueous | Ovine adrenal mitochondria and microsomes (0.78 mM P450 in binding studies and 0.33 mM P450 in conversion) | 2.4 (50 µL of 48 mg/mL) and 4.1 mg (50 µL of 82 mg/mL) | Decreased the binding of DOC, PROG, and PREG, as well as the conversion of PROG and PREG (methanol and chloroform, 4.1 mg) Inhibited substrate binding to CYP21 and CYP11B1 (aqueous, 2.4 mg) | [26] |
Triterpenoid fraction | P450 enzymes CYP17 and CYP21 enzymes | 0.6 and 1.5 mg/mL | Inhibited the binding of PROG (0.6 mg/mL) and PREG (1.5 mg/mL) | [59] | |
Methanol and aqueous | 2.4 and 4.1 mg/mL | Methanol (4.1 mg/mL) and aqueous (2.4 mg/mL) extracts inhibited the binding of PROG | |||
Aqueous | Adrenocortical microsomes | 2.4 mg/mL | Inhibited PROG metabolism and the formation of DOC, 17-OH-PROG and deoxycortisol (46%) | ||
COS-1 cells | Inhibited PREG and PROG metabolism and the formation of the hydroxysteroid intermediates than DHEA and A4 | ||||
Methanol | COS-1 cells | 2.6 mg/mL | Inhibited PROG binding to CYP17A1 and CYP21A2 | [12] | |
Human H295R adrenal cells | 1 mg/mL | Decreased total steroid production under basal steroidogenesis and forskolin-stimulated steroidogenesis conditions Inhibited CYP17A1 and CYP11B1 and significantly reduced PROG, DOC, CORT, 17OH-PREG, 16OH-PROG, 11-DHC, 11OHA4, and A4 levels, while increasing DHEAS | |||
COS-1 cells | 0.5–0.75 mg/mL | Antagonised the effects of ALDO via the MR | |||
Significantly repressed the IL-6 promoter after stimulation with PMA (10 ng/mL) | |||||
Sutherlandioside B | COS-1 cells | 0.5 and 0.75 mg/mL | Suppressed NF-κB-driven gene expression while antagonising the effects of ALDO via the MR | [12] | |
COS-1 cells | 10 and 30 µM | Inhibited CYP17A1 activity toward PREG and PROG, as well as 3β-HSD2 activity toward PROG, and acted as selective glucocorticoid receptor agonists | |||
In H295R cells | 30 µM | Decreased CORT, A4, 11OH-A4, and 16OH-PROG, while increasing 11-DHC | |||
Antibacterial | Hexane | Enterococcus faecali, Escherichia coli, and Staphylococcus aureus | IC50 varying from 0.31 to 2.5 mg/mL | Inhibited bacteria with IC50 of 2.50 (Ef), 1.25 (Ec), and 0.31(Sa) mg/mL | [60] |
Pharmacological Activity | Extract/Compound | Experimental Models | Tested Concentrations | Experimental Outcomes | References |
---|---|---|---|---|---|
Anti-analgesic | Aqueous (shoot) | Hot-plate and acetic acid test models of pain in mice | 50–800 mg/Kg | Produced analgesic effects against thermally and chemically induced nociceptive pain stimuli in mice | [3] |
Anti-inflammatory | Fresh egg albumin-induced pedal oedema | 50–800 mg/Kg | Inhibited fresh egg albumin-induced acute inflammation | [3] | |
Antidiabetic | Aqueous (shoot) | Streptozotocin-induced hyperglycemia in mice | 50–800 mg/Kg | Inhibited streptozotocin-induced hyperglycemia | [3] |
Aqueous | Wistar rats fed a diabetogenic diet | 0.01 mL/g rat weight | Increased glucose uptake into muscle and adipose tissue while significantly decreasing intestinal glucose uptake | [61] | |
Anti-convulsion | Aqueous (shoot) | Streptozotocin (PTZ)-induced seizures in mice | 50–800 mg/kg | Protected the mice against PTZ-induced seizures | [27] |
Picrotoxin (PCT)-induced seizures in mice | 50–800 mg/kg | Protected the mice against PCT-induced seizures | [27] | ||
Anti-HIV | 70% Ethanol | Rat hepatic and intestinal tissues | 12 mg/kg | Increased intestinal and hepatic rat CYP3A2 expression levels after 5 days of exposure | [62] |
Rats | 6 mg/kg | Altered the pharmacokinetics of nevirapine after 5 days of chronic exposure by reducing the AUC0–inf and Cmax | |||
Antioxidant/Spermatotoxic | Methanol | Wistar rats | 2 mg/mL | Rapid progressive motility decreased, while slow-moving spermatozoa, catalase activity, and SOD activity significantly increased. The rise in SOD activity was associated with a reduction in MDA levels | [63] |
Anti-nephrotoxicity | D-pinitol | Cisplatin-induced nephrotoxicity in mice | 10–40 mg/kg/day | Prevented alterations in renal biomarkers, urine creatinine, serum blood urea nitrogen, and NO levels; improved histopathological alterations by preventing severe necrosis | [64] |
Cisplatin-induced nephrotoxicity in mice | 10, 20, and 40 mg/kg/day | Altered cisplatin-induced changes in inflammatory markers by decreasing the levels of TNF-α, IL-1β, IL-6, and NO |
Pharmacological Activity | Extracts | Experimental Model | Tested Concentrations | Experimental Outcomes | References |
---|---|---|---|---|---|
Anticancer | Aqueous | 16 cancer patients (11 men and 5 women) | 600 mg/day | Decreased fatigue in cancer patients (oral consumption). | [87] |
Non-cytotoxic | leaf powder (capsules) | 25 healthy adults | 800 mg/day | Improved appetite in the treatment group. Overall, healthy adults tolerated 800 mg/d of Sutherlandia leaf powder well for three months. | [5] |
Anti-HIV | Leaf powder | 107 participants | 2400 mg/day (1200 mg twice daily) | did not alter the viral load, and the CD4 T-lymphocyte count remained the same in the two arms. | [89] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ndjoubi, K.O.; Sharma, R.; Hussein, A.A. Phytochemistry, Ethnopharmacology, and Pharmacology of Lessertia frutescens (Cancer Bush): A Comprehensive Review. Plants 2025, 14, 2086. https://doi.org/10.3390/plants14142086
Ndjoubi KO, Sharma R, Hussein AA. Phytochemistry, Ethnopharmacology, and Pharmacology of Lessertia frutescens (Cancer Bush): A Comprehensive Review. Plants. 2025; 14(14):2086. https://doi.org/10.3390/plants14142086
Chicago/Turabian StyleNdjoubi, Kadidiatou O., Rajan Sharma, and Ahmed A. Hussein. 2025. "Phytochemistry, Ethnopharmacology, and Pharmacology of Lessertia frutescens (Cancer Bush): A Comprehensive Review" Plants 14, no. 14: 2086. https://doi.org/10.3390/plants14142086
APA StyleNdjoubi, K. O., Sharma, R., & Hussein, A. A. (2025). Phytochemistry, Ethnopharmacology, and Pharmacology of Lessertia frutescens (Cancer Bush): A Comprehensive Review. Plants, 14(14), 2086. https://doi.org/10.3390/plants14142086