Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (8,060)

Search Parameters:
Keywords = physiological metabolism

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1135 KiB  
Article
Exploring Adverse Event Associations of Predicted PXR Agonists Using the FAERS Database
by Saki Yamada and Yoshihiro Uesawa
Int. J. Mol. Sci. 2025, 26(15), 7630; https://doi.org/10.3390/ijms26157630 (registering DOI) - 6 Aug 2025
Abstract
Pregnane X receptor (PXR) is an important nuclear receptor that regulates diverse physiological functions, including drug metabolism. Although PXR activation is potentially involved in adverse events, the full scope of its impact has yet to be elucidated. In this study, we developed a [...] Read more.
Pregnane X receptor (PXR) is an important nuclear receptor that regulates diverse physiological functions, including drug metabolism. Although PXR activation is potentially involved in adverse events, the full scope of its impact has yet to be elucidated. In this study, we developed a machine learning model to predict the activity of PXR agonists and applied the model to drugs listed in the US Food and Drug Administration Adverse Event Reporting System database. Analysis of the predicted agonist–active drug interactions and adverse event reports revealed statistically significant risks (lnROR > 1 and −logp > 1.3) for multiple cardiac disorders. These findings suggest that PXR activity is involved in cardiovascular adverse effects and may contribute to drug safety through the early identification of risks. Full article
23 pages, 3314 KiB  
Article
Functional Express Proteomics for Search and Identification of Differentially Regulated Proteins Involved in the Reaction of Wheat (Triticum aestivum L.) to Nanopriming by Gold Nanoparticles
by Natalia Naraikina, Tomiris Kussainova, Andrey Shelepchikov, Alexey Tretyakov, Alexander Deryabin, Kseniya Zhukova, Valery Popov, Irina Tarasova, Lev Dykman and Yuliya Venzhik
Int. J. Mol. Sci. 2025, 26(15), 7608; https://doi.org/10.3390/ijms26157608 - 6 Aug 2025
Abstract
Proteomic profiling using ultrafast chromatography–mass spectrometry provides valuable insights into plant responses to abiotic factors by linking molecular changes with physiological outcomes. Nanopriming, a novel approach involving the treatment of seeds with nanoparticles, has demonstrated potential for enhancing plant metabolism and productivity. However, [...] Read more.
Proteomic profiling using ultrafast chromatography–mass spectrometry provides valuable insights into plant responses to abiotic factors by linking molecular changes with physiological outcomes. Nanopriming, a novel approach involving the treatment of seeds with nanoparticles, has demonstrated potential for enhancing plant metabolism and productivity. However, the molecular mechanisms underlying nanoparticle-induced effects remain poorly understood. In this study, we investigated the impact of gold nanoparticle (Au-NP) seed priming on the proteome of wheat (Triticum aestivum L.) seedlings. Differentially regulated proteins (DRPs) were identified, revealing a pronounced reorganization of the photosynthetic apparatus (PSA). Both the light-dependent reactions and the Calvin cycle were affected, with significant upregulation of chloroplast-associated protein complexes, including PsbC (CP43), chlorophyll a/b-binding proteins, Photosystem I subunits (PsaA and PsaB), and the γ-subunit of ATP synthase. The large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCo) exhibited over a threefold increase in expression in Au-NP-treated seedlings. The proteomic changes in the large subunit RuBisCo L were corroborated by transcriptomic data. Importantly, the proteomic changes were supported by physiological and biochemical analyses, ultrastructural modifications in chloroplasts, and increased photosynthetic activity. Our findings suggest that Au-NP nanopriming triggers coordinated molecular responses, enhancing the functional activity of the PSA. Identified DRPs may serve as potential biomarkers for further elucidation of nanopriming mechanisms and for the development of precision strategies to improve crop productivity. Full article
(This article belongs to the Special Issue Molecular Research and Applications of Nanomaterials)
Show Figures

Figure 1

20 pages, 8071 KiB  
Article
Analysis of the Differences Among Camellia oleifera Grafting Combinations in Its Healing Process
by Zhilong He, Ying Zhang, Chengfeng Xun, Zhen Zhang, Yushen Ma, Xin Wei, Zhentao Wan and Rui Wang
Plants 2025, 14(15), 2432; https://doi.org/10.3390/plants14152432 - 6 Aug 2025
Abstract
Grafting serves as a crucial propagation technique for superior Camellia oleifera varieties, where rootstock–scion compatibility significantly determines survival and growth performance. To systematically evaluate grafting compatibility in this economically important woody oil crop, we examined 15 rootstock–scion combinations using ‘Xianglin 210’ as the [...] Read more.
Grafting serves as a crucial propagation technique for superior Camellia oleifera varieties, where rootstock–scion compatibility significantly determines survival and growth performance. To systematically evaluate grafting compatibility in this economically important woody oil crop, we examined 15 rootstock–scion combinations using ‘Xianglin 210’ as the scion, assessing growth traits and conducting physiological assays (enzymatic activities of SOD and POD and levels of ROS and IAA) at multiple timepoints (0–32 days post-grafting). The results demonstrated that Comb. 4 (Xianglin 27 rootstock) exhibited superior compatibility, characterized by systemic antioxidant activation (peaking at 4–8 DPG), rapid auxin accumulation (4 DPG), and efficient sugar allocation. Transcriptome sequencing and WGCNA analysis identified 3781 differentially expressed genes, with notable enrichment in stress response pathways (Hsp70, DnaJ) and auxin biosynthesis (YUCCA), while also revealing key hub genes (FKBP19) associated with graft-healing efficiency. These findings establish that successful grafting in C. oleifera depends on coordinated rapid redox regulation, auxin-mediated cell proliferation, and metabolic reprogramming, with Comb. 4 emerging as the optimal rootstock choice. The identified molecular markers not only advance our understanding of grafting mechanisms in woody plants but also provide valuable targets for future breeding programs aimed at improving grafting success rates in this important oil crop. Full article
(This article belongs to the Special Issue Advances in Planting Techniques and Production of Horticultural Crops)
Show Figures

Figure 1

15 pages, 1353 KiB  
Review
Fyn Kinase: A Potential Target in Glucolipid Metabolism and Diabetes Mellitus
by Ruifeng Xiao, Cong Shen, Wen Shen, Xunan Wu, Xia Deng, Jue Jia and Guoyue Yuan
Curr. Issues Mol. Biol. 2025, 47(8), 623; https://doi.org/10.3390/cimb47080623 - 5 Aug 2025
Abstract
Fyn is widely involved in diverse cellular physiological processes, including cell growth and survival, and has been implicated in the regulation of energy metabolism and the pathogenesis of diabetes mellitus through multiple pathways. Fyn plays a role in increasing fat accumulation and promoting [...] Read more.
Fyn is widely involved in diverse cellular physiological processes, including cell growth and survival, and has been implicated in the regulation of energy metabolism and the pathogenesis of diabetes mellitus through multiple pathways. Fyn plays a role in increasing fat accumulation and promoting insulin resistance, and it also contributes to the development of diabetic complications such as diabetic kidney disease and diabetic retinopathy. The primary mechanism by which Fyn modulates lipid metabolism is that it inhibits AMP-activated protein kinase (AMPK). Additionally, it affects energy homeostasis through regulating specific signal pathways affecting lipid metabolism including pathways related to CD36, through enhancement of adipocyte differentiation, and through modulating insulin signal transduction. Inflammatory stress is one of the fundamental mechanisms in diabetes mellitus and its complications. Fyn also plays a role in inflammatory stress-related signaling cascades such as the Akt/GSK-3β/Fyn/Nrf2 pathway, exacerbating inflammation in diabetes mellitus. Therefore, Fyn emerges as a promising therapeutic target for regulating glucolipid metabolism and alleviating type 2 diabetes mellitus. This review synthesizes research on the role of Fyn in the regulation of energy metabolism and the development of diabetes mellitus, while exploring its specific regulatory mechanisms. Full article
Show Figures

Figure 1

17 pages, 2283 KiB  
Article
A Remote Strawberry Health Monitoring System Performed with Multiple Sensors Approach
by Xiao Du, Jun Steed Huang, Qian Shi, Tongge Li, Yanfei Wang, Haodong Liu, Zhaoyuan Zhang, Ni Yu and Ning Yang
Agriculture 2025, 15(15), 1690; https://doi.org/10.3390/agriculture15151690 - 5 Aug 2025
Abstract
Temperature is a key physiological indicator of plant health, influenced by factors including water status, disease and developmental stage. Monitoring changes in multiple factors is helpful for early diagnosis of plant growth. However, there are a variety of complex light interference phenomena in [...] Read more.
Temperature is a key physiological indicator of plant health, influenced by factors including water status, disease and developmental stage. Monitoring changes in multiple factors is helpful for early diagnosis of plant growth. However, there are a variety of complex light interference phenomena in the greenhouse, so traditional detection methods cannot meet effective online monitoring of strawberry health status without manual intervention. Therefore, this paper proposes a leaf soft-sensing method based on a thermal infrared imaging sensor and adaptive image screening Internet of Things system, with additional sensors to realize indirect and rapid monitoring of the health status of a large range of strawberries. Firstly, a fuzzy comprehensive evaluation model is established by analyzing the environmental interference terms from the other sensors. Secondly, through the relationship between plant physiological metabolism and canopy temperature, a growth model is established to predict the growth period of strawberries based on canopy temperature. Finally, by deploying environmental sensors and solar height sensors, the image acquisition node is activated when the environmental interference is less than the specified value and the acquisition is completed. The results showed that the accuracy of this multiple sensors system was 86.9%, which is 30% higher than the traditional model and 4.28% higher than the latest advanced model. It makes it possible to quickly and accurately assess the health status of plants by a single factor without in-person manual intervention, and provides an important indication of the early, undetectable state of strawberry disease, based on remote operation. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

18 pages, 3342 KiB  
Article
Sphingolipid Metabolism Remodels Immunity and Metabolic Network in the Muscle of Female Chinese Mitten Crab (Eriocheir sinensis)
by Miaomiao Xue, Changyou Song, Hongxia Li, Jiyan He, Jianxiang Chen, Changxin Kong, Xiaowei Li, Hang Wang, Jie He and Pao Xu
Int. J. Mol. Sci. 2025, 26(15), 7562; https://doi.org/10.3390/ijms26157562 - 5 Aug 2025
Abstract
Numerous studies have demonstrated the positive effects of formulated feeds on gonadal and hepatopancreatic development of Eriocheir sinensis. However, there are limited studies on the effects of formulated feeds on the immune homeostasis and metabolism of muscle tissue in E. sinensis during [...] Read more.
Numerous studies have demonstrated the positive effects of formulated feeds on gonadal and hepatopancreatic development of Eriocheir sinensis. However, there are limited studies on the effects of formulated feeds on the immune homeostasis and metabolism of muscle tissue in E. sinensis during the fattening period. Therefore, this study used metabolomic and lipidomic to systematically analyze the effects of formulated diets on muscle metabolism in female E. sinensis. The results indicate that the formulated feeds improved immune performance by inhibiting inflammatory responses, apoptosis and autophagy. In addition, the feed promoted amino acid metabolism and protein synthesis while decreasing muscle fatty acid metabolism. Metabolomic analysis reveal that pyrimidine metabolism is involved in the regulation of muscle physiological health in fattening female crabs. Lipidomic analysis revealed that the formulated feeds play a role in muscle immune homeostasis, amino acid and fatty acid metabolism by regulating the level of ceramide (Cer (d18:1/22:0)) in sphingolipid metabolism. Through subnetwork analysis, the functional interactions of sphingolipid metabolism with the pathways of sphingolipid signaling, apoptosis regulation, inflammatory response and lipid dynamic homeostasis were identified, which further defined the important role of sphingolipid metabolism in the regulation of muscle physiological health and metabolic homeostasis was further identified. In summary, the formulated feeds effectively promote immune homeostasis and metabolism in the muscle of female E. sinensis during the fattening period. These findings provide a solid theoretical foundation for feed formulation optimization and application in fattening practices. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

17 pages, 6632 KiB  
Article
Metabolomic and Physiological Analysis of Blueberry (Vaccinium spp.) in Response to Ericoid Mycorrhizal Fungi (Oidiodendron maius H14)
by Haifeng Zhu, Yixiao Wang, Jing Jiang, Zhiyu Yang, Lili Li and Hongyi Yang
Horticulturae 2025, 11(8), 918; https://doi.org/10.3390/horticulturae11080918 (registering DOI) - 5 Aug 2025
Abstract
Ericoid mycorrhizal fungi (EMF) enhance plant fitness and metabolic regulations in nutrient-poor soils, though the mechanisms diving these interactions require further elucidation. This study investigated the physiological and metabolic responses of blueberry seedlings following 2- and 3-weeks inoculation with Oidiodendron maius H14. The [...] Read more.
Ericoid mycorrhizal fungi (EMF) enhance plant fitness and metabolic regulations in nutrient-poor soils, though the mechanisms diving these interactions require further elucidation. This study investigated the physiological and metabolic responses of blueberry seedlings following 2- and 3-weeks inoculation with Oidiodendron maius H14. The results indicated that EMF could significantly increases plant biomass, improve the accumulation of osmoregulatory substances in leaves. Additionally, the colonization rate of EMF are 26.18% and 30.22% after 2- and 3-weeks, respectively. The Metabolomics analysis identified 758 (593 up- and 165 down-regulated) and 805 (577 up- and 228 down-regulated) differential metabolites in roots at 2- and 3-weeks inoculation with O. maius H14, respectively. KEGG pathway annotation revealed that O. maius H14 triggered various amino acid metabolism pathways, including tryptophan metabolism and arginine and proline metabolism. These findings suggested that O. maius H14 stimulated root-specific biosynthesis of growth-promoting compounds and antimicrobial compounds. Concomitant downregulation of stress-associated genes and upregulation of glutamine synthetase suggest EMF modulates host defense responses to facilitate symbiosis. Thus, our results demonstrated that O. maius H14 orchestrates a metabolic reprogramming in blueberry roots, enhancing growth and stress tolerance through coordinated changes in primary and specialized metabolism, which could inform strategies for improving symbiosis and metabolic engineering in horticultural practices. Full article
(This article belongs to the Section Fruit Production Systems)
Show Figures

Graphical abstract

19 pages, 3457 KiB  
Article
Transcriptome Analysis Revealed the Immune and Metabolic Responses of Grass Carp (Ctenopharyngodon idellus) Under Acute Salinity Stress
by Leshan Ruan, Baocan Wei, Yanlin Liu, Rongfei Mu, Huang Li and Shina Wei
Fishes 2025, 10(8), 380; https://doi.org/10.3390/fishes10080380 - 5 Aug 2025
Abstract
Freshwater salinization, an escalating global environmental stressor, poses a significant threat to freshwater biodiversity, including fish communities. This study investigates the grass carp (Ctenopharyngodon idellus), a species with the highest aquaculture output in China, to elucidate the molecular underpinnings of its [...] Read more.
Freshwater salinization, an escalating global environmental stressor, poses a significant threat to freshwater biodiversity, including fish communities. This study investigates the grass carp (Ctenopharyngodon idellus), a species with the highest aquaculture output in China, to elucidate the molecular underpinnings of its physiological adaptations to fluctuating salinity gradients. We used high-throughput mRNA sequencing and differential gene expression profiling to analyze transcriptional dynamics in intestinal and kidney tissues of grass carp exposed to heterogeneous salinity stressors. Concurrent serum biochemical analyses showed salinity stress significantly increased Na+, Cl, and osmolarity, while decreasing lactate and glucose. Salinity stress exerted a profound impact on the global transcriptomic landscape of grass carp. A substantial number of co-regulated differentially expressed genes (DEGs) in kidney and intestinal tissues were enriched in immune and metabolic pathways. Specifically, genes associated with antigen processing and presentation (e.g., cd4-1, calr3b) and apoptosis (e.g., caspase17, pik3ca) exhibited upregulated expression, whereas genes involved in gluconeogenesis/glycolysis (e.g., hk2, pck2) were downregulated. KEGG pathway enrichment analyses revealed that metabolic and cellular structural pathways were predominantly enriched in intestinal tissues, while kidney tissues showed preferential enrichment of immune and apoptotic pathways. Rigorous validation of RNA-seq data via qPCR confirmed the robustness and cross-platform consistency of the findings. This study investigated the core transcriptional and physiological mechanisms regulating grass carp’s response to salinity stress, providing a theoretical foundation for research into grass carp’s resistance to salinity stress and the development of salt-tolerant varieties. Full article
(This article belongs to the Special Issue Adaptation and Response of Fish to Environmental Changes)
Show Figures

Graphical abstract

19 pages, 3149 KiB  
Article
Promoter H3K4me3 and Gene Expression Involved in Systemic Metabolism Are Altered in Fetal Calf Liver of Nutrient-Restricted Dams
by Susumu Muroya, Koichi Ojima, Saki Shimamoto, Takehito Sugasawa and Takafumi Gotoh
Int. J. Mol. Sci. 2025, 26(15), 7540; https://doi.org/10.3390/ijms26157540 - 4 Aug 2025
Abstract
Maternal undernutrition (MUN) causes severe metabolic disruption in the offspring of mammals. Here we determined the role of histone modification in hepatic gene expression in late-gestation fetuses of nutritionally restricted cows, an established model using low-nutrition (LN) and high-nutrition (HN) conditions. The chromatin [...] Read more.
Maternal undernutrition (MUN) causes severe metabolic disruption in the offspring of mammals. Here we determined the role of histone modification in hepatic gene expression in late-gestation fetuses of nutritionally restricted cows, an established model using low-nutrition (LN) and high-nutrition (HN) conditions. The chromatin immunoprecipitation sequencing results show that genes with an altered trimethylation of histone 3 lysine 4 (H3K4me3) are associated with cortisol synthesis and secretion, the PPAR signaling pathway, and aldosterone synthesis and secretion. Genes with the H3K27me3 alteration were associated with glutamatergic synapse and gastric acid secretion. Compared to HN fetuses, promoter H3K4me3 levels in LN fetuses were higher in GDF15, IRF2BP2, PPP1R3B, and QRFPR but lower in ANGPTL4 and APOA5. Intriguingly, genes with the greatest expression changes (>1.5-fold) exhibited the anticipated up-/downregulation from elevated or reduced H3K4me3 levels; however, a significant relationship was not observed between promoter CpG methylation or H3K27me3 and the gene set with the greatest expression changes. Furthermore, the stress response genes EIF2A, ATF4, DDIT3, and TRIB3 were upregulated in the MUN fetal liver, suggesting activation by upregulated GDF15. Thus, H3K4me3 likely plays a crucial role in MUN-induced physiological adaptation, altering the hepatic gene expression responsible for the integrated stress response and systemic energy metabolism, especially circulating lipoprotein lipase regulation. Full article
(This article belongs to the Special Issue Ruminant Physiology: Digestion, Metabolism, and Endocrine System)
Show Figures

Figure 1

33 pages, 640 KiB  
Review
Future Pharmacotherapy for Bipolar Disorders: Emerging Trends and Personalized Approaches
by Giuseppe Marano, Francesco Maria Lisci, Gianluca Boggio, Ester Maria Marzo, Francesca Abate, Greta Sfratta, Gianandrea Traversi, Osvaldo Mazza, Roberto Pola, Gabriele Sani, Eleonora Gaetani and Marianna Mazza
Future Pharmacol. 2025, 5(3), 42; https://doi.org/10.3390/futurepharmacol5030042 - 4 Aug 2025
Abstract
Background: Bipolar disorder (BD) is a chronic and disabling psychiatric condition characterized by recurring episodes of mania, hypomania, and depression. Despite the availability of mood stabilizers, antipsychotics, and antidepressants, long-term management remains challenging due to incomplete symptom control, adverse effects, and high relapse [...] Read more.
Background: Bipolar disorder (BD) is a chronic and disabling psychiatric condition characterized by recurring episodes of mania, hypomania, and depression. Despite the availability of mood stabilizers, antipsychotics, and antidepressants, long-term management remains challenging due to incomplete symptom control, adverse effects, and high relapse rates. Methods: This paper is a narrative review aimed at synthesizing emerging trends and future directions in the pharmacological treatment of BD. Results: Future pharmacotherapy for BD is likely to shift toward precision medicine, leveraging advances in genetics, biomarkers, and neuroimaging to guide personalized treatment strategies. Novel drug development will also target previously underexplored mechanisms, such as inflammation, mitochondrial dysfunction, circadian rhythm disturbances, and glutamatergic dysregulation. Physiological endophenotypes, such as immune-metabolic profiles, circadian rhythms, and stress reactivity, are emerging as promising translational tools for tailoring treatment and reducing associated somatic comorbidity and mortality. Recognition of the heterogeneous longitudinal trajectories of BD, including chronic mixed states, long depressive episodes, or intermittent manic phases, has underscored the value of clinical staging models to inform both pharmacological strategies and biomarker research. Disrupted circadian rhythms and associated chronotypes further support the development of individualized chronotherapeutic interventions. Emerging chronotherapeutic approaches based on individual biological rhythms, along with innovative monitoring strategies such as saliva-based lithium sensors, are reshaping the future landscape. Anti-inflammatory agents, neurosteroids, and compounds modulating oxidative stress are emerging as promising candidates. Additionally, medications targeting specific biological pathways implicated in bipolar pathophysiology, such as N-methyl-D-aspartate (NMDA) receptor modulators, phosphodiesterase inhibitors, and neuropeptides, are under investigation. Conclusions: Advances in pharmacogenomics will enable clinicians to predict individual responses and tolerability, minimizing trial-and-error prescribing. The future landscape may also incorporate digital therapeutics, combining pharmacotherapy with remote monitoring and data-driven adjustments. Ultimately, integrating innovative drug therapies with personalized approaches has the potential to enhance efficacy, reduce adverse effects, and improve long-term outcomes for individuals with bipolar disorder, ushering in a new era of precision psychiatry. Full article
Show Figures

Figure 1

20 pages, 4055 KiB  
Article
Biphasic Salt Effects on Lycium ruthenicum Germination and Growth Linked to Carbon Fixation and Photosynthesis Gene Expression
by Xinmeng Qiao, Ruyuan Wang, Lanying Liu, Boya Cui, Xinrui Zhao, Min Yin, Pirui Li, Xu Feng and Yu Shan
Int. J. Mol. Sci. 2025, 26(15), 7537; https://doi.org/10.3390/ijms26157537 - 4 Aug 2025
Abstract
Since the onset of industrialization, the safety of arable land has become a pressing global concern, with soil salinization emerging as a critical threat to agricultural productivity and food security. To address this challenge, the cultivation of economically valuable salt-tolerant plants has been [...] Read more.
Since the onset of industrialization, the safety of arable land has become a pressing global concern, with soil salinization emerging as a critical threat to agricultural productivity and food security. To address this challenge, the cultivation of economically valuable salt-tolerant plants has been proposed as a viable strategy. In the study, we investigated the physiological and molecular responses of Lycium ruthenicum Murr. to varying NaCl concentrations. Results revealed a concentration-dependent dual effect: low NaCl levels significantly promoted seed germination, while high concentrations exerted strong inhibitory effects. To elucidate the mechanisms underlying these divergent responses, a combined analysis of metabolomics and transcriptomics was applied to identify key metabolic pathways and genes. Notably, salt stress enhanced photosynthetic efficiency through coordinated modulation of ribulose 5-phosphate and erythrose-4-phosphate levels, coupled with the upregulation of critical genes encoding RPIA (Ribose 5-phosphate isomerase A) and RuBisCO (Ribulose-1,5-bisphosphate carboxylase/oxygenase). Under low salt stress, L. ruthenicum maintained intact cellular membrane structures and minimized oxidative damage, thereby supporting germination and early growth. In contrast, high salinity severely disrupted PS I (Photosynthesis system I) functionality, blocking energy flow into this pathway while simultaneously inducing membrane lipid peroxidation and triggering pronounced cellular degradation. This ultimately suppressed seed germination rates and impaired root elongation. These findings suggested a mechanistic framework for understanding L. ruthenicum adaptation under salt stress and pointed out a new way for breeding salt-tolerant crops and understanding the mechanism. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

15 pages, 1820 KiB  
Article
Ozone Treatment Modulates Reactive Oxygen Species Metabolism Regulation and Enhances Storage Quality of Kiwifruit During Cold Storage
by Ziyu Jin, Jin Tan, Xinyu Zhang, Xin Li, Wenqiang Guan, Pu Liu and Aiqiang Chen
Horticulturae 2025, 11(8), 911; https://doi.org/10.3390/horticulturae11080911 (registering DOI) - 4 Aug 2025
Abstract
Fresh fruit are highly perishable commodities, facing significant postharvest losses primarily due to physiological deterioration and microbial spoilage. Conventional preservation methods often face limitations regarding safety, residue, and environmental impact. Because of its rapid decomposition and low-residue-impact characteristics, ozone has proven superior as [...] Read more.
Fresh fruit are highly perishable commodities, facing significant postharvest losses primarily due to physiological deterioration and microbial spoilage. Conventional preservation methods often face limitations regarding safety, residue, and environmental impact. Because of its rapid decomposition and low-residue-impact characteristics, ozone has proven superior as an efficient and eco-friendly solution for preserving fruit quality after harvest. The maturation and aging processes of kiwifruit are closely linked to the involvement of reactive oxygen species (ROS) metabolism. This study aimed to investigate the effects of intermittent ozone treatment (21.4 mg/m3, applied for 0, 1, 3, or 5 h weekly) on ROS metabolism, the antioxidant defense system, and storage quality of kiwifruit during cold storage (0.0 ± 0.5 °C). The results showed ozone treatment slowed the decline in titratable acid (TA) content and fruit firmness, inhibited increases in total soluble solids (TSSs) and weight loss, and maintained the storage quality. Additionally, ozone treatment enhanced the activities of antioxidant-related enzymes. This includes superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX). Furthermore, it delayed the reduction in ascorbate (ASA), glutathione (GSH), total phenolic compounds, and flavonoid content, while also preventing the accumulation of ROS and the rise in malondialdehyde (MDA) levels. In summary, the results indicate that ozone treatment enhances the antioxidant capacity of kiwifruit by increasing the structural integrity of cell membranes, preserving the structural integrity of cell membranes, and effectively maintaining the storage quality of the fruit. Full article
Show Figures

Figure 1

42 pages, 1407 KiB  
Review
Antioxidants and Reactive Oxygen Species: Shaping Human Health and Disease Outcomes
by Charles F. Manful, Eric Fordjour, Dasinaa Subramaniam, Albert A. Sey, Lord Abbey and Raymond Thomas
Int. J. Mol. Sci. 2025, 26(15), 7520; https://doi.org/10.3390/ijms26157520 - 4 Aug 2025
Abstract
Reactive molecules, including oxygen and nitrogen species, serve dual roles in human physiology. While they function as essential signaling molecules under normal physiological conditions, they contribute to cellular dysfunction and damage when produced in excess by normal metabolism or in response to stressors. [...] Read more.
Reactive molecules, including oxygen and nitrogen species, serve dual roles in human physiology. While they function as essential signaling molecules under normal physiological conditions, they contribute to cellular dysfunction and damage when produced in excess by normal metabolism or in response to stressors. Oxidative/nitrosative stress is a pathological state, resulting from the overproduction of reactive species exceeding the antioxidant capacity of the body, which is implicated in several chronic human diseases. Antioxidant therapies aimed at restoring redox balance and preventing oxidative/nitrosative stress have demonstrated efficacy in preclinical models. However, their clinical applications have met with inconsistent success owing to efficacy, safety, and bioavailability concerns. This summative review analyzes the role of reactive species in human pathophysiology, the mechanisms of action of antioxidant protection, and the challenges that hinder their translation into effective clinical therapies in order to evaluate potential emerging strategies such as targeted delivery systems, precision medicine, and synergistic therapeutic approaches, among others, to overcome current limitations. By integrating recent advances, this review highlights the value of targeting reactive species in the prevention and management of chronic diseases. Full article
Show Figures

Figure 1

17 pages, 2094 KiB  
Article
Breast Cancer Cell Line-Specific Responses to Insulin: Effects on Proliferation and Migration
by Mattia Melloni, Domenico Sergi, Angelina Passaro and Luca Maria Neri
Int. J. Mol. Sci. 2025, 26(15), 7523; https://doi.org/10.3390/ijms26157523 - 4 Aug 2025
Abstract
Breast cancer (BC) progression appears to be significantly influenced by the diabetic microenvironment, characterised by hyperglycaemia and hyperinsulinemia, though the exact cellular mechanisms remain partly unclear. This study investigated the effects of exposure to supra-physiological levels of glucose and insulin on two distinct [...] Read more.
Breast cancer (BC) progression appears to be significantly influenced by the diabetic microenvironment, characterised by hyperglycaemia and hyperinsulinemia, though the exact cellular mechanisms remain partly unclear. This study investigated the effects of exposure to supra-physiological levels of glucose and insulin on two distinct BC cell models: hormone-responsive MCF-7 cells and triple-negative MDA-MB-231 cells. To evaluate the effects triggered by high insulin level in different BC cell subtypes, we analysed the activation status of PI3K/AKT and MAPK pathways, cell proliferation, cell distribution in cell cycle phases and cell migration. High insulin level significantly activates the insulin metabolic pathway via AKT phosphorylation in both cell lines while inducing pro-proliferative stimulus and modulation of cell distribution in cell cycle phases only in the hormone-responsive MCF-7 cell line. On the contrary, high-glucose containing medium alone did not modulate proliferation nor further increased it when combined with high insulin level in both the investigated cell lines. However, following insulin treatment, the MAPK pathway remained unaffected, suggesting that the proliferation effects in the MCF-7 cell line are mediated by AKT activation. This linkage was also demonstrated by AKT phosphorylation blockade, driven by the AKT inhibitor MK-2206, which negated the proliferative stimulus. Interestingly, while MDA-MB-231 cells, following chronic hyperinsulinemia exposure, did not exhibit enhanced proliferation, they displayed a marked increase in migratory behaviour. These findings suggest that chronic hyperinsulinemia, but not hyperglycaemia, exerts subtype-specific effects in BC, highlighting the potential of targeting insulin pathways for therapeutic intervention. Full article
(This article belongs to the Special Issue Advances in the Relationship Between Diet and Insulin Resistance)
Show Figures

Figure 1

19 pages, 9234 KiB  
Article
Physiological Changes and Transcriptomics of Elodea nuttallii in Response to High-Temperature Stress
by Yanling Xu, Yuanyuan Jin, Manrong Zha, Yuhan Mao, Wenqiang Ren, Zirao Guo, Yufei Zhang, Beier Zhou, Tao Zhang, Qi He, Shibiao Liu and Bo Jiang
Biology 2025, 14(8), 993; https://doi.org/10.3390/biology14080993 (registering DOI) - 4 Aug 2025
Viewed by 12
Abstract
Elodea nuttallii is a significant submerged macrophyte utilized in shrimp and crab aquaculture, yet it exhibits low thermotolerance. This study investigated the physiological responses and transcriptomic characteristics of E. nuttallii under high-temperature stress (HTS). The results indicated that HTS significantly reduced the absolute [...] Read more.
Elodea nuttallii is a significant submerged macrophyte utilized in shrimp and crab aquaculture, yet it exhibits low thermotolerance. This study investigated the physiological responses and transcriptomic characteristics of E. nuttallii under high-temperature stress (HTS). The results indicated that HTS significantly reduced the absolute growth rate (AGR) and photosynthetic efficiency of E. nuttallii while concurrently elevating antioxidant enzyme activities, malondialdehyde (MDA) content, and concentrations of osmotic adjustment compounds. Furthermore, the apical segments of E. nuttallii demonstrated greater sensitivity to HTS compared to the middle segments. Under exposure to 35 °C and 40 °C, antioxidant enzyme activities, MDA content, and osmotic adjustment compound levels were significantly higher in the apical segments than in the middle segments. Transcriptomic analysis revealed 7526 differentially expressed genes (DEGs) in the apical segments at 35 °C, a number substantially exceeding that observed in the middle segments. Enrichment analysis of DEGs revealed significant upregulation of key metabolic regulators under HTS, including carbohydrate metabolism genes (HXK, FRK) and phenylpropanoid biosynthesis enzymes (4CL, COMT). This transcriptional reprogramming demonstrates E. nuttallii’s adaptive strategy of modulating carbon allocation and phenolic compound synthesis to mitigate thermal damage. Our findings not only elucidate novel thermotolerance mechanisms in aquatic plants but also provide candidate genetic targets (HXK, 4CL) for molecular breeding of heat-resilient cultivars through transcriptomic screening. Full article
Show Figures

Figure 1

Back to TopTop