Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (775)

Search Parameters:
Keywords = physicochemical and nutritional properties

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3713 KiB  
Article
Synergistic Alleviation of Saline–Alkali Stress and Enhancement of Selenium Nutrition in Rice by ACC (1-Aminocyclopropane-1-Carboxylate) Deaminase-Producing Serratia liquefaciens and Biogenically Synthesized Nano-Selenium
by Nina Zhu, Xinpei Wei, Xingye Pan, Benkang Xie, Shuquan Xin and Kai Song
Plants 2025, 14(15), 2376; https://doi.org/10.3390/plants14152376 (registering DOI) - 1 Aug 2025
Abstract
Soil salinization and selenium (Se) deficiency threaten global food security. This study developed a composite bioinoculant combining ACC deaminase-producing Serratia liquefaciens and biogenically synthesized nano-selenium (SeNPs) to alleviate saline–alkali stress and enhance Se nutrition in rice (Oryza sativa L.). A strain of [...] Read more.
Soil salinization and selenium (Se) deficiency threaten global food security. This study developed a composite bioinoculant combining ACC deaminase-producing Serratia liquefaciens and biogenically synthesized nano-selenium (SeNPs) to alleviate saline–alkali stress and enhance Se nutrition in rice (Oryza sativa L.). A strain of S. liquefaciens with high ACC deaminase activity was isolated and used to biosynthesize SeNPs with stable physicochemical properties. Pot experiments showed that application of the composite inoculant (S3: S. liquefaciens + 40 mmol/L SeNPs) significantly improved seedling biomass (fresh weight +53.8%, dry weight +60.6%), plant height (+31.6%), and root activity under saline–alkali conditions. S3 treatment also enhanced panicle weight, seed-setting rate, and grain Se content (234.13 μg/kg), meeting national Se-enriched rice standards. Moreover, it increased rhizosphere soil N, P, and K availability and improved microbial α-diversity. This is the first comprehensive demonstration that a synergistic bioformulation of ACC deaminase PGPR and biogenic SeNPs effectively mitigates saline–alkali stress, enhances soil fertility, and enables safe Se biofortification in rice. Full article
(This article belongs to the Special Issue Nanomaterials in Plant Growth and Stress Adaptation—2nd Edition)
Show Figures

Figure 1

23 pages, 1746 KiB  
Review
Advanced Modification Strategies of Plant-Sourced Dietary Fibers and Their Applications in Functional Foods
by Yansheng Zhao, Ying Shao, Songtao Fan, Juan Bai, Lin Zhu, Ying Zhu and Xiang Xiao
Foods 2025, 14(15), 2710; https://doi.org/10.3390/foods14152710 (registering DOI) - 1 Aug 2025
Abstract
Plant-sourced Dietary Fibers (PDFs) have garnered significant attention due to their multifaceted health benefits, particularly in glycemic control, lipid metabolism regulation, and gut microbiota modulation. This review systematically investigates advanced modification strategies, including physical, chemical, bioengineering, and hybrid approaches, to improve the physicochemical [...] Read more.
Plant-sourced Dietary Fibers (PDFs) have garnered significant attention due to their multifaceted health benefits, particularly in glycemic control, lipid metabolism regulation, and gut microbiota modulation. This review systematically investigates advanced modification strategies, including physical, chemical, bioengineering, and hybrid approaches, to improve the physicochemical properties and bioactivity of PDFs from legumes, cereals, and other sources. Key modifications such as steam explosion, enzymatic hydrolysis, and carboxymethylation significantly improve solubility, porosity, and functional group exposure, thereby optimizing the health-promoting effects of legume-sourced dietary fiber. The review further elucidates critical structure–function relationships, highlighting PDF’s prebiotic potential, synergistic interactions with polyphenols and proteins, and responsive designs for targeted nutrient delivery. In functional food applications, cereal-sourced dietary fibers serve as a versatile functional ingredient in engineered foods including 3D-printed gels and low-glycemic energy bars, addressing specific metabolic disorders and personalized dietary requirements. By integrating state-of-the-art modification techniques with innovative applications, this review provides comprehensive insights into PDF’s transformative role in advancing functional foods and personalized nutrition solutions. Full article
Show Figures

Figure 1

22 pages, 3781 KiB  
Article
Enhancing Parenteral Nutrition via Supplementation with Antioxidant Lutein in Human Serum Albumin-Based Nanosuspension
by Izabela Żółnowska, Aleksandra Gostyńska-Stawna, Katarzyna Dominiak, Barbara Jadach and Maciej Stawny
Pharmaceutics 2025, 17(8), 971; https://doi.org/10.3390/pharmaceutics17080971 - 26 Jul 2025
Viewed by 435
Abstract
Background/Objectives: Parenteral nutrition (PN) supports patients unable to receive nutrients via the gastrointestinal tract, but it lacks the health-promoting natural bioactive compounds found in a typical oral diet. This study aimed to develop a human serum albumin-based intravenous delivery system for lutein [...] Read more.
Background/Objectives: Parenteral nutrition (PN) supports patients unable to receive nutrients via the gastrointestinal tract, but it lacks the health-promoting natural bioactive compounds found in a typical oral diet. This study aimed to develop a human serum albumin-based intravenous delivery system for lutein (an antioxidant carotenoid with vision-supportive and hepatoprotective properties) as a PN additive. Methods: An albumin–lutein nanosuspension (AlbLuteN) was synthesized using a modified nanoparticle albumin-bound (nabTM) technology and characterized physicochemically. The nanoformulation was added to four commercial PN admixtures to assess the supplementation safety throughout the maximum infusion period. Visual inspection and measurements of fat globules larger than 5 µm (PFAT5) and the mean hydrodynamic diameter (Z-average), zeta potential, pH, osmolality, and lutein content were performed to detect potential interactions and evaluate the physicochemical stability. Results: AlbLuteN consisted of uniform particles (Z-average of 133.5 ± 2.8 nm) with a zeta potential of −28.1 ± 1.8 mV, lutein content of 4.76 ± 0.39%, and entrapment efficiency of 84.4 ± 6.3%. Differential scanning calorimetry confirmed the amorphous state of lutein in the nanosuspension. AlbLuteN was successfully incorporated into PN admixtures, without visible phase separation or significant changes in physicochemical parameters. The PFAT5 and Z-average values remained within pharmacopeial limits over 24 h. No substantial shifts in zeta potential, pH, or osmolality were observed. The lutein content remained stable, with losses below 3%. Conclusions: AlbLuteN can be safely added to representative PN admixtures without compromising their stability. This approach offers a novel strategy for intravenous lutein delivery and may contribute to improving the nutritional profile of PN. Full article
Show Figures

Figure 1

18 pages, 1075 KiB  
Article
Optimization of the Production Process of a Fermented Mango-Based Beverage with Lactiplantibacillus plantarum (Lp6 and Lp32)
by Yudit Aimee Aviles-Rivera, Adrián Hernández-Mendoza, Verónica Mata-Haro, José Basilio Heredia, José Benigno Valdez-Torres and María Dolores Muy-Rangel
Processes 2025, 13(8), 2347; https://doi.org/10.3390/pr13082347 - 23 Jul 2025
Viewed by 465
Abstract
This study aimed to develop a fermented mango-based beverage using Lactiplantibacillus plantarum strains Lp6 and Lp32, focusing on enhancing its functional properties, ensuring microbiological safety, improving nutritional value, and achieving sensory acceptability. A central composite design (CCD) was employed to assess the effects [...] Read more.
This study aimed to develop a fermented mango-based beverage using Lactiplantibacillus plantarum strains Lp6 and Lp32, focusing on enhancing its functional properties, ensuring microbiological safety, improving nutritional value, and achieving sensory acceptability. A central composite design (CCD) was employed to assess the effects of two factors (fermentation time and inoculum concentration) on several response variables: viable cell concentration (CC), total phenolic compounds (TPCs), total flavonoid compounds (TFCs), and concentrations of L-lactic acid and D-lactic acid. The optimized formulation was achieved using L. plantarum Lp6, with an inoculum concentration of 9.89 Log (7.76 × 109) CFU/mL and a fermentation time of 20.47 h. Under these conditions, the beverage reached the highest values for CC, TPC, TF, and L-lactic acid while minimizing the production of D-lactic acid. Following optimization, the fermented beverage underwent further characterization, including physicochemical analysis, microbiological evaluation, proximate composition analysis, and sensory evaluation. The final product exhibited a viable cell count of 13.01 Log (10.23 × 1012) CFU/mL, demonstrated functional potential, complied with microbiological safety standards, and showed adequate nutritional content. Sensory analysis revealed high consumer acceptability, attributed to its distinctive mango aroma and flavor. These findings highlight the potential of this fermented mango-based beverage as a novel functional food with promising market appeal. Full article
Show Figures

Figure 1

19 pages, 787 KiB  
Article
Gluten Functionality Modification: The Effect of Enzymes and Ultrasound on the Structure of the Gliadin–Glutenin Complex and Gelling Properties
by Daiva Zadeike, Renata Zvirdauskiene and Loreta Basinskiene
Molecules 2025, 30(14), 3036; https://doi.org/10.3390/molecules30143036 - 19 Jul 2025
Viewed by 371
Abstract
The broader application of gluten in both the food and non-food industries is limited by its lack of functional properties, such as solubility, foaming ability, and rheological characteristics. This study aimed to evaluate the physicochemical properties of proteins in various gluten products and [...] Read more.
The broader application of gluten in both the food and non-food industries is limited by its lack of functional properties, such as solubility, foaming ability, and rheological characteristics. This study aimed to evaluate the physicochemical properties of proteins in various gluten products and to investigate the effects of enzymatic hydrolysis and ultrasound (US) treatment on wheat flour gluten yield, gliadin–glutenin complex structure, and gelation properties. The gelation properties of wheat gluten (GL)/pea protein (PP) treated with US and transglutaminase (TG) were studied. The results demonstrated that the ratio of low- to high-molecular-weight components in gliadins and glutenins significantly influenced the quality of commercial gluten products. A 90 min treatment of wheat flour with 24 TGU/100 g increased the yield of high-quality gluten by 32% while reducing the gliadin content by up to 6-fold. Additionally, a 30 min US treatment of 18–20% pure gluten suspensions yielded a sufficiently strong gel. The addition of PP isolate (80% protein) improved the texture of gluten gels, with the best results observed at a GL:PP ratio of 1:2. The application of TG increased the hardness, consistency, and viscosity of GL-PP gels by an average of 5.7 times while reducing stickiness. The combined TG and US treatments, along with the addition of PP, notably increased the levels of lysine, isoleucine, and tryptophan, thereby enhancing both the nutritional quality and amino acid balance of the final product. Full article
Show Figures

Figure 1

12 pages, 2783 KiB  
Article
Physicochemical, Nutritional, and Structural Characterization of a Novel Meat-Based Hummus
by Meena Goswami, Rishav Kumar, Xin M. Teng, Ravi Jadeja, Darren Scott, Morgan Pfeiffer, Gretchen G. Mafi, Vikas Pathak and Ranjith Ramanathan
Foods 2025, 14(14), 2507; https://doi.org/10.3390/foods14142507 - 17 Jul 2025
Viewed by 391
Abstract
The objective was to characterize physicochemical, nutritional, and structural properties of a novel meat-based hummus. This product was created by substituting 50% of chickpea paste with mutton. The meat-based hummus contained 0.4% sodium acid sulfate as an antimicrobial agent. The pH values of [...] Read more.
The objective was to characterize physicochemical, nutritional, and structural properties of a novel meat-based hummus. This product was created by substituting 50% of chickpea paste with mutton. The meat-based hummus contained 0.4% sodium acid sulfate as an antimicrobial agent. The pH values of traditional hummus were greater than those of the meat-based hummus. There was no significant difference in day 0 total plate count between plant- and meat-based hummus; however, the total plate count on day 7 was significantly (p < 0.05) lower in the meat-based hummus than plant-based hummus due to antimicrobial addition. Instrumental color analysis showed greater lightness (L* values) and yellowness values for traditional hummus compared to the meat-based hummus. The meat-based hummus had 66% greater protein than traditional hummus. Scanning electron microscopy revealed a porous, gel-like structure in plant-based hummus, while meat-based hummus showed a dense, fibrous network. The flavor, creaminess, grain properties, and mouth coating scores of meat-based hummus were greater than those of traditional chickpea hummus. The study indicated that meat-based hummus can be developed by incorporating 50% cooked minced mutton. Creating innovative meat-based products like meat hummus offers the benefits of both plant-based and animal-based diets, making it a good option for flexitarians. Full article
Show Figures

Figure 1

23 pages, 1633 KiB  
Article
Multifactorial Evaluation of Honey from Pakistan: Essential Minerals, Antioxidant Potential, and Toxic Metal Contamination with Relevance to Human Health Risk
by Sana, Waqar Ahmad, Farooq Anwar, Hammad Ismail, Mujahid Farid, Muhammad Adnan Ayub, Sajjad Hussain Sumrra, Chijioke Emenike, Małgorzata Starowicz and Muhammad Zubair
Foods 2025, 14(14), 2493; https://doi.org/10.3390/foods14142493 - 16 Jul 2025
Viewed by 361
Abstract
Honey is prized for its nutritional and healing properties, but its quality can be affected by contamination with toxic elements. This study evaluates the nutritional value and health risks of fifteen honey samples from different agro-climatic regions of Pakistan. Physicochemical properties such as [...] Read more.
Honey is prized for its nutritional and healing properties, but its quality can be affected by contamination with toxic elements. This study evaluates the nutritional value and health risks of fifteen honey samples from different agro-climatic regions of Pakistan. Physicochemical properties such as color, pH, electrical conductivity, moisture, ash, and solids content were within acceptable ranges. ICP-OES analysis was used to assess six essential minerals and ten toxic metals. Except for slightly elevated boron levels (up to 0.18 mg/kg), all elements were within safe limits, with potassium reaching up to 1018 mg/kg. Human health risk assessments—including Average Daily Dose of Ingestion, Total Hazard Quotient, and Carcinogenic Risk—indicated no carcinogenic threats for adults or children, despite some elevated metal levels. Antioxidant activity, measured through total phenolic content (TPC) and DPPH radical scavenging assays, showed that darker honeys had stronger antioxidant properties. While the overall quality of honey samples was satisfactory, significant variations (p ≤ 0.05) were observed across different regions. These differences are attributed to diverse agro-climatic conditions and production sources. The findings highlight the need for continued monitoring to ensure honey safety and nutritional quality. Full article
Show Figures

Figure 1

16 pages, 1618 KiB  
Article
Sustainable Bamboo-Based Packaging and Passive Modified Atmosphere: A Strategy to Preserve Strawberry Quality During Cold Storage
by Giuseppina Adiletta, Marisa Di Matteo, Giuseppe De Filippis, Antonio Di Grazia, Paolo Ciambelli and Milena Petriccione
Processes 2025, 13(7), 2262; https://doi.org/10.3390/pr13072262 - 15 Jul 2025
Viewed by 323
Abstract
This study investigates the potential of bamboo-based sustainable packaging in combination with passive modified atmosphere (MA) and cold storage to enhance the shelf life of strawberries while preserving their physico-chemical properties, bioactive compounds, and antioxidant enzyme activity. The study monitored key parameters such [...] Read more.
This study investigates the potential of bamboo-based sustainable packaging in combination with passive modified atmosphere (MA) and cold storage to enhance the shelf life of strawberries while preserving their physico-chemical properties, bioactive compounds, and antioxidant enzyme activity. The study monitored key parameters such as fruit weight loss, firmness, color, and the content of bioactive compounds as well as phenolics and flavonoids. Additionally, antioxidant enzyme activity, including catalase, ascorbate peroxidase, and superoxide dismutase, was assessed to evaluate oxidative stress during 9 days at 4 °C. The results show that strawberries packaged with bamboo materials in a passive MA retained their physico-chemical traits, exhibiting slower changes in firmness, color, and bioactive compound content compared to those in unpackaged samples. Furthermore, the antioxidant enzyme activity remained significantly higher, suggesting a lower oxidative stress in packaged fruit. This combination of bamboo-based packaging with passive MA is a valid, effective, and sustainable approach to prolonging the qualitative traits of strawberries during cold storage, offering both environmental and nutritional benefits. Full article
Show Figures

Figure 1

17 pages, 7155 KiB  
Article
Microbial Community Structure and Metabolic Potential Shape Soil-Mediated Resistance Against Fruit Flesh Spongy Tissue Disorder of Peach
by Weifeng Chen, Dan Tang, Jia Huang, Yu Yang and Liangbo Zhang
Agronomy 2025, 15(7), 1697; https://doi.org/10.3390/agronomy15071697 - 14 Jul 2025
Viewed by 331
Abstract
Peach fruit flesh spongy tissue disorder causes dry, porous, and brown areas in the flesh, severely compromising fruit quality and market value. While soil properties and calcium nutrition have been linked to the disorder, the role of rhizosphere microbial communities in disorder resistance [...] Read more.
Peach fruit flesh spongy tissue disorder causes dry, porous, and brown areas in the flesh, severely compromising fruit quality and market value. While soil properties and calcium nutrition have been linked to the disorder, the role of rhizosphere microbial communities in disorder resistance remains unclear. This study investigated both the physicochemical properties and the root-associated microbiomes of disordered (CK) and healthy (TT) peach orchards to explore microbial mechanisms underlying disorder suppression. TT soils exhibited higher pH, greater organic matter, increased exchangeable calcium, and more balanced trace elements compared to CK. Microbial analysis revealed significantly higher diversity and enrichment of beneficial taxa in TT associated with plant growth and disorder resistance. Functional gene prediction showed TT was enriched in siderophore production, auxin biosynthesis, phosphate solubilization, and acetoin–butanediol synthesis pathways. Co-occurrence network analysis demonstrated that TT harbored a more complex and cooperative microbial community structure, with 274 nodes and 6013 links. Metagenomic binning recovered high-quality MAGs encoding diverse resistance and growth-promoting traits, emphasizing the ecological roles of Gemmatimonadaceae, Reyranella, Nitrospira, Bacillus megaterium, and Bryobacteraceae. These findings highlight the combined importance of soil chemistry and microbiome structure in disorder suppression and provide a foundation for microbiome-informed soil management to enhance fruit quality and promote sustainable orchard practices. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

24 pages, 3485 KiB  
Article
Effect of Natural Edible Oil Coatings and Storage Conditions on the Postharvest Quality of Bananas
by Laila Al-Yahyai, Rashid Al-Yahyai, Rhonda Janke, Mai Al-Dairi and Pankaj B. Pathare
AgriEngineering 2025, 7(7), 234; https://doi.org/10.3390/agriengineering7070234 - 12 Jul 2025
Viewed by 673
Abstract
Increasing the shelf-life of fruits and vegetables using edible natural substances after harvest is economically important and can be useful for human health. Postharvest techniques help maintain the quality of edible tissues resulting in extended marketing periods and reduced food waste. The edible [...] Read more.
Increasing the shelf-life of fruits and vegetables using edible natural substances after harvest is economically important and can be useful for human health. Postharvest techniques help maintain the quality of edible tissues resulting in extended marketing periods and reduced food waste. The edible coating on perishable commodities is a common technique used by the food industry during the postharvest supply chain. The objective of this research was to study the effect of edible oil to minimize the loss of postharvest physio-chemical and nutritional attributes of bananas. The study selected two banana cultivars (Musa, ‘Cavendish’ and ‘Milk’) to conduct this experiment, and two edible oils (olive oil (Olea europaea) and moringa oil (Moringa peregrina)) were applied as an edible coating under two different storage conditions (15 and 25 °C). The fruit’s physio-chemical properties including weight loss, firmness, color, total soluble solids (TSS), pH, titratable acidity (TA), TSS: TA ratio, and mineral content were assessed. The experiment lasted for 12 days. The physicochemical properties of the banana coated with olive and moringa oils were more controlled than the non-coated (control) banana under both storage temperatures (15 °C and 25 °C). Coated bananas with olive and moringa oils stored at 15 °C resulted in further inhibition in the ripening process. There was a decrease in weight loss, retained color, and firmness, and the changes in chemical parameters were slower in banana fruits during storage in the olive and moringa oil-coated bananas. Minerals were highly retained in coated Cavendish bananas. Overall, the coated samples visually maintained acceptable quality until the final day of storage. Our results indicated that olive and moringa oils in this study have the potential to extend the shelf-life and improve the physico-chemical quality of banana fruits. Full article
(This article belongs to the Special Issue Latest Research on Post-Harvest Technology to Reduce Food Loss)
Show Figures

Figure 1

18 pages, 1324 KiB  
Article
Development of a Clean-Label Meat-Free Alternative to Deli Ham
by Lisiane Carvalho, Beatriz Caetano, Capucine Godinot, Norton Komora, Adriana Ferreira, Célia Rocha, Bruna Barbosa, Anabela Raymundo and Isabel Sousa
Foods 2025, 14(14), 2416; https://doi.org/10.3390/foods14142416 - 8 Jul 2025
Viewed by 335
Abstract
Reducing meat consumption is a key strategy to mitigate environmental impact, lower the incidence of diet-related diseases, and promote sustainable food production. In response, the plant-based food market has grown significantly, motivated by demand for meat-like products. This study aimed to develop a [...] Read more.
Reducing meat consumption is a key strategy to mitigate environmental impact, lower the incidence of diet-related diseases, and promote sustainable food production. In response, the plant-based food market has grown significantly, motivated by demand for meat-like products. This study aimed to develop a meatless alternative to deli ham (MAD) free of chemical additives, adhering to clean label principles. A commercially available MAD product (Target MAD) was used as a benchmark. Based on its analysis, clean-label laboratory (Optimized CL formulation) and pilot-scale (CL MAD) prototypes were developed. These were evaluated for texture, rheology, color, sensory attributes, and physicochemical properties. The CL MAD demonstrated similar firmness to the Target MAD, while being 17% more cohesive and 50% less adhesive. Its mechanical spectra showed typical weak gel behavior, with G′ higher than G″. Color analysis indicated that the CL MAD was darker and less pink than the Target MAD. Nutritionally, it provided higher protein and lower fat content. Overall, this study successfully developed a clean-label meat-free alternative to deli ham that matches commercial textural standards while offering improved nutritional quality and eliminating chemical additives, meeting growing consumer demand for healthier and more sustainable foods. Full article
Show Figures

Figure 1

26 pages, 4558 KiB  
Article
Enrichment of Rice Flour with Almond Bagasse Powder: The Impact on the Physicochemical and Functional Properties of Gluten-Free Bread
by Stevens Duarte, Janaina Sánchez-García, Joanna Harasym and Noelia Betoret
Foods 2025, 14(13), 2382; https://doi.org/10.3390/foods14132382 - 5 Jul 2025
Viewed by 412
Abstract
Almond bagasse, a by-product of almond milk production, is rich in fibre, protein, polyunsaturated fatty acids, and bioactive compounds. Its incorporation into food products provides a sustainable approach to reducing food waste while improving nutritional quality. This study explored the impact of enriching [...] Read more.
Almond bagasse, a by-product of almond milk production, is rich in fibre, protein, polyunsaturated fatty acids, and bioactive compounds. Its incorporation into food products provides a sustainable approach to reducing food waste while improving nutritional quality. This study explored the impact of enriching rice flour with almond bagasse powders—either hot air-dried (HAD60) or lyophilised (LYO)—at substitution levels of 5%, 10%, 15%, 20%, 25%, and 30% (w/w), to assess effects on gluten-free bread quality. The resulting flour blends were analysed for their physicochemical, techno-functional, rheological, and antioxidant properties. Gluten-free breads were then prepared using these blends and evaluated fresh and after seven days of refrigerated storage. The addition of almond bagasse powders reduced moisture and water absorption capacities, while also darkening the bread colour, particularly in HAD60, due to browning from thermal drying. The LYO powder led to softer bread by disrupting the starch structure more than HAD60. All breads hardened after storage due to starch retrogradation. The incorporation of almond bagasse powder reduced the pasting behaviour—particularly at substitution levels of ≥ 25%—as well as the viscoelastic moduli of the flour blends, due to fibre competing for water and thereby limiting starch gelatinisation. Antioxidant capacity was significantly enhanced in HAD60 breads, particularly in the crust and at higher substitution levels, due to Maillard reactions. Furthermore, antioxidant degradation over time was less pronounced in formulations with higher substitution levels, with HAD60 proving more stable than LYO. Overall, almond bagasse powder improves the antioxidant profile and shelf-life of gluten-free bread, highlighting its value as a functional and sustainable ingredient. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

13 pages, 711 KiB  
Article
Feruloylated Arabinoxylans from Nixtamalized Maize Bran By-Product as a Baking Ingredient: Physicochemical, Nutritional, and Functional Properties
by Daniela D. Herrera-Balandrano, Juan G. Báez-González, Elizabeth Carvajal-Millán, Vania Urías-Orona, Gerardo Méndez-Zamora and Guillermo Niño-Medina
Polysaccharides 2025, 6(3), 59; https://doi.org/10.3390/polysaccharides6030059 - 2 Jul 2025
Viewed by 243
Abstract
In this study, feruloylated arabinoxylans (FAXs) extracted from nixtamalized maize bran were assessed as a functional ingredient in white bread. FAXs were added at percentages of 0.15% and 0.30% to bread, and a control sample without FAXs was prepared. Regarding texture profile analysis, [...] Read more.
In this study, feruloylated arabinoxylans (FAXs) extracted from nixtamalized maize bran were assessed as a functional ingredient in white bread. FAXs were added at percentages of 0.15% and 0.30% to bread, and a control sample without FAXs was prepared. Regarding texture profile analysis, hardness values in bread treated with FAXs ranged from 34.32 N (T5) to 51.03 N (T3), with all values for FAXs-added bread being lower than 64.43 N obtained for the control sample (TC). With respect to color, most of the FAX-treated samples had higher overall values than the control sample, with L* values ranging from 50.49 (T4) to 59.40 (T6). The total color difference (ΔE) values ranged from 2.07 (T2) to 6.32 (T6), indicating differences between the control sample and the FAX-treated samples. In the analysis of proximate composition, all FAX-treated bread had higher levels of crude fiber content than the control sample, and water activity (aw) values were lower in the control sample than in bread treated with FAXs. Regarding total phenols, FAX-treated bread ranged from 1.57 (T6) to 1.98 (T1) mgFAE/g, being higher than the 1.24 mgFAE/g found in the control sample (TC). The antioxidant capacity levels, namely, DPPH, ABTS, and FRAP, were 9.36–17.01, 8.86–17.64, and 3.05–5.07 µmolTE/g, respectively. Thus, it is possible to conclude that adding FAXs to bread formulations improves the hardness, crude fiber content, and functional properties of bread. Full article
(This article belongs to the Special Issue Recent Progress on Lignocellulosic-Based Materials)
Show Figures

Figure 1

20 pages, 3556 KiB  
Article
Exogenous Sugar Alcohols Enhance Peach Seedling Growth via Modulation of Rhizosphere Bacterial Communities
by Huili Yu, Jiaqi Li, Wei Shao, Huimin Liu, Ruiquan Dong, Guoyi Xu and Peng Si
Agronomy 2025, 15(7), 1548; https://doi.org/10.3390/agronomy15071548 - 25 Jun 2025
Viewed by 314
Abstract
Excessive fertilizer input and low output are currently problems for peach production in China. Sugar alcohols such as sorbitol and mannitol represent promising eco-friendly fertilization strategies to improve fruit quality and optimize nutrient management. Our research explored the effect of sorbitol and mannitol [...] Read more.
Excessive fertilizer input and low output are currently problems for peach production in China. Sugar alcohols such as sorbitol and mannitol represent promising eco-friendly fertilization strategies to improve fruit quality and optimize nutrient management. Our research explored the effect of sorbitol and mannitol on the rhizosphere environment and peach growth from the rhizosphere micro-ecology perspective. Potted peach seedlings were used as materials. Without adding or adding different sorbitol and mannitol concentration gradients (100, 200, 400) combined with potassium dihydrogen phosphate (KH2PO4), the physicochemical properties of rhizosphere soil, leaf nutrition, photosynthetic and growth index were determined, and the rhizosphere bacterial community was analyzed via Illumina Miseq high-throughput sequencing. Both sorbitol and mannitol altered the rhizosphere environment, effectively improved leaf photosynthesis, and promoted peach seedling growth; particularly, M100 had optimal affection. Sorbitol and mannitol altered the bacterial structure and reduced bacterial diversity, which observably correlated with soil organic matter and available potassium. For the rhizosphere bacterial composition, sorbitol and mannitol increased specific bacterial OTUs and induced changes in bacterial composition, among which chemoheterotrophic and nitrogen-transforming bacteria increased with the addition of sorbitol and mannitol. Association network analysis and a structural equation model showed that S100 and M100 mainly enriched Vicinamibacteraceae to regulate peach seedling growth. Overall, low-concentration sorbitol and mannitol showed the best effect in peach seedling growth through regulating the rhizosphere environment. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

19 pages, 1543 KiB  
Article
Physicochemical and Sensory Evaluation of Spreads Derived from Fruit Processing By-Products
by Chrysanthi Nouska, Liliana Ciurla, Antoanela Patras, Costas G. Biliaderis and Athina Lazaridou
Foods 2025, 14(13), 2224; https://doi.org/10.3390/foods14132224 - 24 Jun 2025
Viewed by 335
Abstract
Apple, tomato, and grape pomaces, as well as an apple–grape (1:1) mixed pomace, were employed in the formulation of fruit-based spreads to valorize these underutilized by-products. The influence of pectin addition on the physicochemical and sensory properties of the spreads was also examined. [...] Read more.
Apple, tomato, and grape pomaces, as well as an apple–grape (1:1) mixed pomace, were employed in the formulation of fruit-based spreads to valorize these underutilized by-products. The influence of pectin addition on the physicochemical and sensory properties of the spreads was also examined. All spread preparations carried the ‘high fiber’ nutrition claim. The apple pomace spread demonstrated the highest total and soluble dietary fiber contents (14.13 and 4.28%, respectively). Colorimetry showed higher L* and a* values for the tomato pomace spreads. Rheometry of the spreads revealed pseudoplastic flow and weak gel-like behavior (G′ > G″); the tomato and grape pomace spreads with pectin exhibited the highest η*, G′, and G″ values. A texture analysis (spreadability test) indicated that pectin addition affected only the mixed pomace spread, resulting in the least spreadable product. Regarding bioactive compounds, the apple pomace had the highest total phenolic content, and the grape pomace exhibited the highest antioxidant activity, both of which were also reflected in their corresponding spreads. A principal component analysis indicated a strong correlation among flavor, mouthfeel, and moisture content, which were negatively correlated with color intensity and spreadability. The apple pomace spread with added pectin was the most widely preferred by consumers due to its appealing mouthfeel, spreadability and flavor. Full article
Show Figures

Graphical abstract

Back to TopTop