Development of a Clean-Label Meat-Free Alternative to Deli Ham
Abstract
1. Introduction
2. Materials and Methods
2.1. MAD Formulations
2.2. Texture Analysis
2.3. Rheology Measurements
2.4. Color Analysis
2.5. pH Analysis
2.6. Water Activity Analysis
2.7. Nutritional Composition
2.8. Sensory Analysis
2.9. Statistical Analysis
3. Results and Discussion
3.1. Market Research and Preliminary Physicochemical Analysis
3.2. Development of MAD Prototype in a Laboratory and Pilot Scale
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Runte, M.; Guth, J.N.; Ammann, J. Consumers’ Perception of Plant-Based Alternatives and Changes over Time. A Linguistic Analysis Across Three Countries and Ten Years. Food Qual. Prefer. 2024, 113, 105057. [Google Scholar] [CrossRef]
- Hargreaves, S.M.; Raposo, A.; Saraiva, A.; Zandonadi, R.P. Vegetarian Diet: An Overview through the Perspective of Quality of Life Domains. Int. J. Environ. Res. Public Health 2021, 18, 4067. [Google Scholar] [CrossRef] [PubMed]
- Ihsan, A.; Ahmad, Z.; Zheng, J.; Bilal, M.; Muhammad Rizwan Abid, H.; Hu, A. New Trends in Functionalities and Extraction of Plant Proteins in Designing Plant-Based Meat Analogues: A Critical Review. Food Biosci. 2024, 57, 103476. [Google Scholar] [CrossRef]
- Sun, C.; Ge, J.; He, J.; Gan, R.; Fang, Y. Processing, Quality, Safety, and Acceptance of Meat Analogue Products. Engineering 2021, 7, 674–678. [Google Scholar] [CrossRef]
- EIT Food. 2024. Available online: https://www.eitfood.eu/blog/top-5-food-trends-in-2024 (accessed on 26 July 2024).
- Boukid, F. Plant-Based Meat Analogues: From Niche to Mainstream. Eur. Food Res. Technol. 2021, 247, 297–308. [Google Scholar] [CrossRef]
- Su, T.; Le, B.; Zhang, W.; Bak, K.H.; Soladoye, P.O.; Zhao, Z.; Zhao, Y.; Fu, Y.; Wu, W. Technological Challenges and Future Perspectives of Plant-Based Meat Analogues: From the Viewpoint of Proteins. Food Res. Int. 2024, 186, 114351. [Google Scholar] [CrossRef]
- CLabel+. 2024. Available online: https://cleanlabelplus.pt/en/about/ (accessed on 10 July 2024).
- Škrlep, M.; Ozmec, M.; Čandek-Potokar, M. Reduced Use of Nitrites and Phosphates in Dry-Fermented Sausages. Processes 2022, 10, 821. [Google Scholar] [CrossRef]
- Kilic, B.; Cassens, R.G.; Borchert, L.L. Effect of Turkey Meat, Phosphate, Sodium Lactate, Carrageenan, and Konjac on Residual Nitrite in Cured Meats. J. Food Sci. 2002, 67, 29–31. [Google Scholar] [CrossRef]
- Chauhan, K.; Rao, A. Clean-Label Alternatives for Food Preservation: An Emerging Trend. Heliyon 2024, 10, e35815. [Google Scholar] [CrossRef]
- Roobab, U.; Khan, A.W.; Lorenzo, J.M.; Arshad, R.N.; Chen, B.-R.; Zeng, X.-A.; Bekhit, A.E.-D.; Suleman, R.; Aadil, R.M. A Systematic Review of Clean-Label Alternatives to Synthetic Additives in Raw and Processed Meat with a Special Emphasis on High-Pressure Processing (2018–2021). Food Res. Int. 2021, 150, 110792. [Google Scholar] [CrossRef]
- Maruyama, S.; Streletskaya, N.A.; Lim, J. Clean Label: Why This Ingredient but Not That One? Food Qual. Prefer. 2021, 87, 104062. [Google Scholar] [CrossRef]
- Noguerol, A.T.; Pagán, M.J.; García-Segovia, P.; Varela, P. Green or Clean? Perception of Clean Label Plant-Based Products by Omnivorous, Vegan, Vegetarian and Flexitarian Consumers. Food Res. Int. 2021, 149, 110652. [Google Scholar] [CrossRef] [PubMed]
- Montemurro, M.; Pontonio, E.; Rizzello, C.G. Design of a “Clean-Label” Gluten-Free Bread to Meet Consumers Demand. Foods 2021, 10, 462. [Google Scholar] [CrossRef] [PubMed]
- Ingredion. 2014. Available online: https://www.ingredion.com/content/dam/ingredion/pdf-downloads/emea/87%20-%20The%20Clean%20Label%20Guide%20to%20Europe%20from%20Ingredion.pdf (accessed on 26 August 2024).
- Nabeshima, E.H.; Tavares, P.E.d.R.; Lemos, A.L.d.S.C.; Moura, S.C.S.R.d. Emerging Ingredients for Clean Label Products and Food Safety. Braz. J. Food Technol. 2024, 27, e2023160. [Google Scholar] [CrossRef]
- Nascimento, K.O.; Paes, S.N.D.; Augusta, I.M. A Review “Clean Labeling”: Applications of Natural Ingredients in Bakery Products. J. Food Nutr. Res. 2018, 6, 285–294. [Google Scholar] [CrossRef]
- Belorio, M.; Marcondes, G.; Gómez, M. Influence of Psyllium versus Xanthan Gum in Starch Properties. Food Hydrocoll. 2020, 105, 105843. [Google Scholar] [CrossRef]
- Noguerol, A.T.; Marta Igual, M.; Pagán, M.J. Developing Psyllium Fibre Gel-Based Foods: Physicochemical, Nutritional, Optical and Mechanical Properties. Food Hydrocoll. 2022, 122, 107108. [Google Scholar] [CrossRef]
- Fradinho, P.; Soares, R.; Niccolai, A.; Sousa, I.; Raymundo, A. Psyllium Husk Gel to Reinforce Structure of Gluten-Free Pasta? LWT 2020, 131, 109787. [Google Scholar] [CrossRef]
- Otegbayo, B.; Lana, O.; Ibitoye, W. Isolation and Physicochemical Characterization of Starches Isolated from Plantain (Musa paradisiaca) and Cooking Banana (Musa sapientium). J. Food Biochem. 2010, 34, 1303–1318. [Google Scholar] [CrossRef]
- Loypimai, P.; Moongngarm, A. Utilization of Pregelatinized Banana Flour as a Functional Ingredient in Instant Porridge. J. Food Sci. Technol. 2015, 52, 311–318. [Google Scholar] [CrossRef]
- Kim, Y.; Faqih, M.N.; Wang, S.S. Factors Affecting Gel Formation of Inulin. Carbohydr. Polym. 2001, 46, 135–145. [Google Scholar] [CrossRef]
- Phillips, G.O.; Williams, P.A. Handbook of Hydrocolloids; Woodhead Publishing Limited: Cambridge, UK, 2009; ISBN 978-1-84569-414-2. [Google Scholar]
- Silva, K.C.G.; Sato, A.C.K. Biopolymer Gels Containing Fructooligosaccharides. Food Res. Int. 2017, 101, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Resconi, V.C.; Keenan, D.F.; Gough, S.; Doran, L.; Allen, P.; Kerry, J.P.; Hamill, R.M. Response Surface Methodology Analysis of Rice Starch and Fructo-Oligosaccharides as Substitutes for Phosphate and Dextrose in Whole Muscle Cooked Hams. LWT 2015, 64, 946–958. [Google Scholar] [CrossRef]
- Felix, M.; Camacho-Ocaña, Z.; López-Castejón, M.L.; Ruiz-Domínguez, M. Rheological Properties of Quinoa-Based Gels. An Alternative for Vegan Diets. Food Hydrocoll. 2021, 120, 106827. [Google Scholar] [CrossRef]
- Funami, T.; Kataoka, Y.; Noda, S.; Hiroe, M.; Ishihara, S.; Asai, I.; Takahashi, R.; Inouchi, N.; Nishinari, K. Functions of Fenugreek Gum with Various Molecular Weights on the Gelatinization and Retrogradation Behaviors of Corn Starch—2: Characterizations of Starch and Investigations of Corn Starch/Fenugreek Gum Composite System at a Relatively Low Starch Concentration; 5w/V%. Food Hydrocoll. 2008, 22, 777–787. [Google Scholar] [CrossRef]
- Mazumder, M.A.R.; Panpipat, W.; Chaijan, M.; Shetty, K.; Rawdkuen, S. Role of Plant Protein on the Quality and Structure of Meat Analogs: A New Perspective for Vegetarian Foods. Future Foods 2023, 8, 100280. [Google Scholar] [CrossRef]
- Simões, S.; Carrera Sanchez, C.; Santos, A.J.; Figueira, D.; Prista, C.; Raymundo, A. Impact of Grass Pea Sweet Miso Incorporation in Vegan Emulsions: Rheological, Nutritional and Bioactive Properties. Foods 2023, 12, 1362. [Google Scholar] [CrossRef]
- Raymundo, A. Emulsões Alimentares. In A Química e a Reologia no Processamento de Alimentos; Ediçoes Piaget: Lisbon, Portugal, 2004; pp. 96–116. [Google Scholar]
- Vieira, M.R.; Simões, S.; Carrera-Sánchez, C.; Raymundo, A. Development of a Clean Label Mayonnaise Using Fruit Flour. Foods 2023, 12, 2111. [Google Scholar] [CrossRef]
- Castellar, M.; Obón, J.; Fernández-López, J. The Isolation and Properties of a Concentrated Red-Purple Betacyanin Food Colourant from Opuntia stricta Fruits. J. Sci. Food Agric. 2006, 86, 122–128. [Google Scholar] [CrossRef]
- AACCI. Moisture—Air-Oven Methods. In AACC International Approved Methods; Cereals & Grains Association: St. Paul, MN, USA, 2009. [Google Scholar]
- NP 1615:2002; Portuguese Norm—Meat and Meat Products. Determination of Total Ash. Reference Method. Portuguese Institute of Quality: Costa da Caparica, Portugal, 2002.
- NP 1224:1982; Portuguese Norm—Meat and Meat Products. Determination of Fat Content. Portuguese Institute of Quality, Portugal: Costa da Caparica, Portugal, 1982.
- Martins, R.B.; Gouvinhas, I.; Nunes, M.C.; Peres, J.A.; Raymundo, A.; Barros, A.I.R.N.A. Acorn Flour as a Source of Bioactive Compounds in Gluten-Free Bread. Molecules 2020, 25, 3568. [Google Scholar] [CrossRef]
- Regulamentation (UE), n.o 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the provision of food information to consumer. Off. J. Eur. Union 2011, L 304, 18–63.
- Ribeiro, J.C.; Santos, C.; Lima, R.C.; Pintado, M.E.; Cunha, L.M. Impact of Defatting and Drying Methods on the Overall Liking and Sensory Profile of a Cereal Bar Incorporating Edible Insect Species. Future Foods 2022, 6, 100190. [Google Scholar] [CrossRef]
- Peryam, D.R.; Pilgrim, F.J. Hedonic Scale Method of Measuring Food Preferences. Food Technol. 1957, 11, 9–14. [Google Scholar]
- Macfie, H.J.; Bratchell, N.; Greenhoff, K.; Vallis, L.V. Designs to Balance the Effect of Order of Presentation and First-Order Carry-Over Effects in Hall Tests. J. Sens. Stud. 1989, 4, 129–148. [Google Scholar] [CrossRef]
- Risvik, E.; McEwan, J.A.; Colwill, J.S.; Rogers, R.; Lyon, D.H. Projective Mapping: A Tool for Sensory Analysis and Consumer Research. Food Qual. Prefer. 1994, 5, 263–269. [Google Scholar] [CrossRef]
- Santos, B.A.; Pollonio, M.A.R.; Cruz, A.G.; Messias, V.C.; Monteiro, R.A.; Oliveira, T.L.C.; Faria, J.A.F.; Freitas, M.Q.; Bolini, H.M.A. Ultra-Flash Profile and Projective Mapping for Describing Sensory Attributes of Prebiotic Mortadellas. Food Res. Int. 2013, 54, 1705–1711. [Google Scholar] [CrossRef]
- Hollander, M.; Wolfe, D.A.; Chicken, E. Nonparametric Statistical Methods; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Baião, L.F.; Moura, A.P.; Rocha, C.; Valente, L.M.P.; Cunha, L.M. Dimensions for the Valorisation of Sea Urchin (Paracentrotus lividus) Gonads Production through the Eyes of Experienced Chefs. Int. J. Gastron. Food Sci. 2021, 26, 100438. [Google Scholar] [CrossRef]
- Ryu, K.K.; Kang, Y.K.; Jeong, E.W.; Baek, Y.; Lee, K.Y.; Lee, H.G. Applications of Various Natural Pigments to a Plant-Based Meat Analog. LWT 2023, 174, 114431. [Google Scholar] [CrossRef]
- Farooq, Z.; Boye, J. Novel Food and Industrial Applications of Pulse Flours and Fractions. In Pulse Foods; Tiwari, B.K., Gowen, A., McKenna, B., Eds.; Elsevier: Amsterdam, The Netherlands, 2011; pp. 283–323. [Google Scholar]
- Ladjal Ettoumi, Y.; Chibane, M. Some Physicochemical and Functional Properties of Pea, Chickpea and Lentil Whole Flours. Int. Food Res. J. 2015, 22, 987–996. [Google Scholar]
- Batista, A.P.; Portugal, C.A.M.; Sousa, I.; Crespo, J.G.; Raymundo, A. Accessing Gelling Ability of Vegetable Proteins Using Rheological and Fluorescence Techniques. Int. J. Biol. Macromol. 2005, 36, 135–143. [Google Scholar] [CrossRef]
- Al-Ali, H.A.; Shah, U.; Hackett, M.J.; Gulzar, M.; Karakyriakos, E.; Johnson, S.K. Technological Strategies to Improve Gelation Properties of Legume Proteins with the Focus on Lupin. Innov. Food Sci. Emerg. Technol. 2021, 68, 102634. [Google Scholar] [CrossRef]
- Carvalho, L.; Seriacaroupin, S.; Raymundo, A.; Matos, T.; Sousa, I. Evaluation of Texture and Viscoelastic Behavior of Hybrid Clean Label Deli Ham with Pulse Flours. In Proceedings of the Iberian Meeting on Rheology (IBEREO 2024); Springer: Cham, Switzerland, 2024; pp. 7–10. [Google Scholar]
- Fan, Y.; Zheng, S.; Annamalai, P.K.; Bhandari, B.; Prakash, S. Enhancement of the Texture and Microstructure of Faba Bean-Based Meat Analogues with Brewers’ Spent Grain through Enzymatic Treatments. Sustain. Food Technol. 2024, 2, 826–836. [Google Scholar] [CrossRef]
- Chen, Y.P.; Feng, X.; Blank, I.; Liu, Y. Strategies to Improve Meat-like Properties of Meat Analogs Meeting Consumers’ Expectations. Biomaterials 2022, 287, 121648. [Google Scholar] [CrossRef] [PubMed]
- Ng, J.W.; Teh, T.M.; Tan, C.F.; Bi, X.; Low, Z.E.; Talukder, M.M.R. Alkaline Solubilization of Microalgal Protein and Its Impact on the Functional Properties of Protein Extract. Future Foods 2024, 9, 100368. [Google Scholar] [CrossRef]
- Sajib, M.; Forghani, B.; Kumar Vate, N.; Abdollahi, M. Combined Effects of Isolation Temperature and PH on Functionality and Beany Flavor of Pea Protein Isolates for Meat Analogue Applications. Food Chem. 2023, 412, 135585. [Google Scholar] [CrossRef]
- Mariotti, F.; Gardner, C.D. Dietary Protein and Amino Acids in Vegetarian Diets—A Review. Nutrients 2019, 11, 2661. [Google Scholar] [CrossRef]
- Regulation (EC), n.o 1924/2006 of the European Parliament and of the Council of 20 December 2006 on nutrition and health claims made on foods. Off. J. Eur. Union 2006, L 404, 9–25.
- Locatelli, N.T.; Chen, G.F.N.; Batista, M.F.; Furlan, J.M.; Wagner, R.; Bandoni, D.H.; de Rosso, V.V. Nutrition Classification Schemes for Plant-Based Meat Analogues: Drivers to Assess Nutritional Quality and Identity Profile. Curr. Res. Food Sci. 2024, 9, 100796. [Google Scholar] [CrossRef]
- Xie, Y.; Cai, L.; Zhou, G.; Li, C. Comparison of Nutritional Profile between Plant-Based Meat Analogues and Real Meat: A Review Focusing on Ingredients, Nutrient Contents, Bioavailability, and Health Impacts. Food Res. Int. 2024, 187, 114460. [Google Scholar] [CrossRef]
- Yeo, M.T.Y.; Bi, X.; Henry, C.J. Are Plant-Based Meat Analogues Richer in Minerals than Their Meat Counterparts? Food Humanit. 2023, 1, 670–674. [Google Scholar] [CrossRef]
- Luz, G.M.; Orlando, E.A.; Rebellato, A.P.; Greiner, R.; Pallone, J.A.L. Essential Minerals and Anti-Nutritional Compounds in Plant-Based Burgers Using the Infogest in Vitro Digestion Protocol. J. Food Compos. Anal. 2024, 135, 106574. [Google Scholar] [CrossRef]
- Bi, Y.; Liang, L.; Qiao, K.; Luo, J.; Liu, X.; Sun, B.; Zhang, Y. A Comprehensive Review of Plant-Derived Salt Substitutes: Classification, Mechanism, and Application. Food Res. Int. 2024, 194, 114880. [Google Scholar] [CrossRef] [PubMed]
- Doleman, J.F.; Grisar, K.; Van Liedekerke, L.; Saha, S.; Roe, M.; Tapp, H.S.; Mithen, R.F. The Contribution of Alliaceous and Cruciferous Vegetables to Dietary Sulphur Intake. Food Chem. 2017, 234, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Dordevic, D.; Capikova, J.; Dordevic, S.; Tremlová, B.; Gajdács, M.; Kushkevych, I. Sulfur Content in Foods and Beverages and Its Role in Human and Animal Metabolism: A Scoping Review of Recent Studies. Heliyon 2023, 9, e15452. [Google Scholar] [CrossRef]
- McLean, R.M.; Wang, N.X. Potassium. In Advances in Food and Nutrition Research; Elsevier: Amsterdam, The Netherlands, 2021; pp. 89–121. [Google Scholar]
- Youssef, M.; Naeem, M.M.; Zaki, N. Quality Characterization of Burger Formulated with Tempeh. Egypt. J. Food Sci. 2021, 2, 213–228. [Google Scholar] [CrossRef]
- Higuera, J.M.; Santos, H.M.; Oliveira, A.F.; Nogueira, A.R.A. Animal and Vegetable Protein Burgers: Bromatological Analysis, Mineral Composition, and Bioaccessibility Evaluation. ACS Food Sci. Technol. 2021, 1, 1821–1829. [Google Scholar] [CrossRef]
Analysis | Parameters | MAD Prototype | Target MAD |
---|---|---|---|
Color | L* | 76.37 ± 0.454 a | 76.00 ± 0.261 a |
a* | 8.41 ± 0.183 a | 8.93 ± 0.152 a | |
b* | 15.89 ± 0.177 a | 10.86 ± 0.277 b | |
Physicochemical characteristics | pH | 6.55 ± 0.025 a | 6.29 ± 0.060 b |
aw | 0.96 ± 0.001 b | 0.97 ± 0.001 a | |
Moisture (%) | 64.37 ± 0.599 a | 64.87 ± 0.469 a | |
Ash (%) | 3.17 ± 0.296 a | 2.39 ± 0.357 b | |
Rheology | GN0 (kPa) | 31.32 ± 5.371 a | 43.83 ± 2.929 a |
G′ at 1 Hz (kPa) | 40.47 ± 4.627 a | 62.03 ± 3.648 a | |
Texture | Firmness (N) | 5.20 ± 0.290 b | 12.3 ± 0.360 a |
Adhesiveness (-N/s) | 1.08 ± 0.319 a | 1.04 ± 0.128 a | |
Cohesiveness | 0.47 ± 0.053 b | 0.58 ± 0.013 a |
Analysis | Parameters | Optimized CL | CL MAD | Target MAD |
---|---|---|---|---|
Color | ΔE to Target MAD | 14.2 | 7.57 | - |
Physicochemical characteristics | pH | 6.64 ± 0.006 a | 6.19 ± 0.017 c | 6.29 ± 0.060 b |
aw | 0.95 ± 0.002 b | 0.93 ± 0.007 b | 0.97 ± 0.002 a | |
Moisture (%) | 63.79 ± 0.295 b | 65.19 ± 0.409 a | 64.87 ± 0.469 a | |
Ash (%) | 1.76 ± 0.046 b | 1.58 ± 0.087 b | 2.39 ± 0.357 a | |
Rheology | G′ at 1 Hz (kPa) | 58.50 ± 6.213 b | 122.97 ± 1.721 a | 62.03 ± 3.648 b |
GN0 (kPa) | 43.79 ± 5.785 b | 101.13 ± 4.428 a | 43.83 ± 2.929 b | |
Texture | Firmness (N) | 7.20 ± 0.710 b | 12.00 ± 0.660 a | 12.30 ± 0.360 a |
Adhesiveness (-N/s) | 0.07 ± 0.045 c | 0.52 ± 0.302 b | 1.04 ± 0.128 a | |
Cohesiveness | 0.79 ± 0.015 a | 0.68 ± 0.020 b | 0.58 ± 0.013 c |
Nutritional Information | Content (Uni.) Per 100 g | |
---|---|---|
CL MAD | Target MAD * | |
Energy (kcal/kJ) | 207.6/868.7 | 203.0/843.0 |
Lipids (g) | 15.0 | 16.0 |
Carbohydrate (g) | 7.3 | 5.1 |
Protein (g) | 11.0 | 8.6 |
Samples | Overall Liking 1 | % Positive Answers |
---|---|---|
MAD prototype | 7.3 ± 1.3 a | 94 |
CL MAD | 6.1 ± 1.7 b | 80 |
Target MAD | 7.0 ± 1.8 a | 86 |
Commercial 1 | 7.6 ± 1.4 a | 94 |
Commercial 2 | 5.6 ± 2.0 b | 63 |
Commercial 3 | 7.2 ± 1.3 a | 95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carvalho, L.; Caetano, B.; Godinot, C.; Komora, N.; Ferreira, A.; Rocha, C.; Barbosa, B.; Raymundo, A.; Sousa, I. Development of a Clean-Label Meat-Free Alternative to Deli Ham. Foods 2025, 14, 2416. https://doi.org/10.3390/foods14142416
Carvalho L, Caetano B, Godinot C, Komora N, Ferreira A, Rocha C, Barbosa B, Raymundo A, Sousa I. Development of a Clean-Label Meat-Free Alternative to Deli Ham. Foods. 2025; 14(14):2416. https://doi.org/10.3390/foods14142416
Chicago/Turabian StyleCarvalho, Lisiane, Beatriz Caetano, Capucine Godinot, Norton Komora, Adriana Ferreira, Célia Rocha, Bruna Barbosa, Anabela Raymundo, and Isabel Sousa. 2025. "Development of a Clean-Label Meat-Free Alternative to Deli Ham" Foods 14, no. 14: 2416. https://doi.org/10.3390/foods14142416
APA StyleCarvalho, L., Caetano, B., Godinot, C., Komora, N., Ferreira, A., Rocha, C., Barbosa, B., Raymundo, A., & Sousa, I. (2025). Development of a Clean-Label Meat-Free Alternative to Deli Ham. Foods, 14(14), 2416. https://doi.org/10.3390/foods14142416