Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (9,643)

Search Parameters:
Keywords = phylogenetic study

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2480 KB  
Article
Evolutionary Dynamics of Oncosuppression Under Selection Pressure
by Mikhail Potievskiy, Peter A. Shatalov, Ilya Klabukov, Dmitrii Atiakshin, Anna Yakimova, Denis Baranovskii, Peter V. Shegai and Andrey D. Kaprin
Life 2025, 15(10), 1556; https://doi.org/10.3390/life15101556 - 3 Oct 2025
Abstract
Background and Objectives: Changes in the environment and physiology may be associated with an increased or decreased risk of cancer. Our study aims to evaluate the strength and the direction of the selection acting on oncosuppressor genes in association with phenotypic changes. Methods: [...] Read more.
Background and Objectives: Changes in the environment and physiology may be associated with an increased or decreased risk of cancer. Our study aims to evaluate the strength and the direction of the selection acting on oncosuppressor genes in association with phenotypic changes. Methods: We calculated the relative evolutionary rate (RER) using the converge method and linear regression on branches of phylogenetic trees. The association between changes in the evolutionary rate of oncosuppressors (DNA repair and cell cycle control genes) and trait selection was studied. The evolutionary rates of single oncosuppressor genes and pathways were evaluated. We studied two types of traits: those that are characteristic of vertebrates, such as homeothermy (the ability to maintain a constant body temperature), flight, and amnions; and those that are characteristic of mammals, such as high body mass and lifespan, an underground lifestyle, and hibernation. The analysis included 19,445 genes; 100 vertebrates and 46 mammalian species. We studied ancestral branches individually and all the clades having a trait. Results: Oncosuppressor genes accelerated in association with the ability to fly; p-value = 0.03 (positive or relaxed negative selection) and decelerated in homeothermic species; p-value = 0.04 (stabilizing selection). DNA repair genes were significantly accelerated in ancestral branches and in all clades of amniotic, homeothermic, and high-body-mass mammals (p-value < 0.05, FDR correction). Cell cycle control genes were under stabilizing selection in homeothermic animals, high-body-mass, long-lived, and underground mammals (p-value < 0.05, FDR correction). Data on the evolution of oncosuppressors are crucial for understanding the origin of cancer and will be important for future studies of tumor pathogenesis, pathomorphosis, and microevolution. Conclusions: The selection of traits associated with changes in cancer risk leads to positive/relaxed negative and stabilizing selection of oncosuppressor genes. Full article
(This article belongs to the Special Issue Advances in Integrative Omics Data Analysis for Cancer Research)
Show Figures

Figure 1

21 pages, 5814 KB  
Article
Evolutionary and Functional Insights into Rice Universal Stress Proteins in Response to Abiotic Stresses
by Hong Lang, Yuxi Jiang, Yan Xie, Jiayin Wu, Yubo Wang and Mingliang Jiang
Biology 2025, 14(10), 1359; https://doi.org/10.3390/biology14101359 - 3 Oct 2025
Abstract
Universal Stress Protein (USP) plays crucial roles in plant stress adaptation, yet their evolutionary dynamics, regulatory mechanisms, and functional diversification in rice (Oryza sativa) remain poorly understood. This study aimed to conduct a genome-wide identification and characterization of the OsUSP gene [...] Read more.
Universal Stress Protein (USP) plays crucial roles in plant stress adaptation, yet their evolutionary dynamics, regulatory mechanisms, and functional diversification in rice (Oryza sativa) remain poorly understood. This study aimed to conduct a genome-wide identification and characterization of the OsUSP gene family to elucidate its role in abiotic stress responses using integrated bioinformatics approaches. Here, we identified 46 OsUSP genes that are unevenly distributed across 11 rice chromosomes and exhibit significant divergence in protein length, molecular weight, and subcellular localization. Phylogenetic analysis classified OsUSPs into three subfamilies, with conserved motif and domain architectures within groups but distinct structural variations across subfamilies. Evolutionary analysis revealed strong collinearity between rice and other monocots, which suggests functional conservation in grasses, whereas limited synteny with dicots indicates lineage-specific divergence. Cis-regulatory element analysis showed enrichment in ABA, MeJA, drought, and hypoxia response motifs, implicating OsUSPs in hormonal and stress signaling. Expression profiling indicated tissue-specific patterns, with subfamily III genes broadly expressed, while subfamily II members were anther-enriched. Stress response profiling revealed that 24 OsUSPs were significantly induced, while LOC_Os02g54590 and LOC_Os05g37970 emerged as particularly notable due to their broad-spectrum responsiveness, being upregulated under all tested stress conditions. Protein–protein interaction (PPI) analysis indicated that OsUSP proteins potentially interact with Leo1/TPR-domain proteins and are involved in stress response and phosphorylation signaling pathways. This study yields key insights into OsUSP-mediated stress adaptation in rice and pinpoints promising candidate genes to facilitate the breeding of climate-resilient rice. Full article
(This article belongs to the Section Plant Science)
Show Figures

Figure 1

13 pages, 3914 KB  
Article
Vv14-3-3ω Is a Susceptible Factor for Grapevine Downy Mildew
by Zainib Babar, Asaf Khan, Jiaqi Liu, Peining Fu and Jiang Lu
Horticulturae 2025, 11(10), 1199; https://doi.org/10.3390/horticulturae11101199 - 3 Oct 2025
Abstract
14-3-3 proteins are highly conserved regulatory molecules in plants. In grapevine (Vitis vinifera L.), 14-3-3 proteins are studied under abiotic stress. However, the role of 14-3-3 proteins in the interaction between grapevine and downy mildew is yet to be studied. In this [...] Read more.
14-3-3 proteins are highly conserved regulatory molecules in plants. In grapevine (Vitis vinifera L.), 14-3-3 proteins are studied under abiotic stress. However, the role of 14-3-3 proteins in the interaction between grapevine and downy mildew is yet to be studied. In this study, we identified a highly conserved 14-3-3 protein in grapevine and performed a phylogenetic analysis, revealing a close relationship between one of its homologs, 14-3-3ω proteins from Arabidopsis thaliana and Nicotiana benthamiana. We designated this homolog as Vv14-3-3ω. Subcellular localization studies showed that Vv14-3-3ω resides in the plasma membrane and cytoplasm. Expression analysis revealed a strong induction of Vv14-3-3ω at early time points following Plasmopara viticola infection, correlating with enhanced pathogen sporulation in grapevine. Furthermore, transient overexpression of Vv14-3-3ω in N. benthamiana increased susceptibility to the Phytophthora capsici pathogen and suppressed Flg22-induced pattern-triggered immunity (PTI) responses. Overexpression of Vv14-3-3ω in Nb14-3-3-silenced N. benthamiana plants resulted in increased susceptibility to P. capsici, suggesting functional conservation of this isoform. These findings indicate that Vv14-3-3ω functions as a susceptibility factor, facilitating pathogen infection and disease progression in grapevine, and highlight its potential role for improving resistance against downy mildew. Full article
(This article belongs to the Special Issue Research Progress on Grape Genetic Diversity)
Show Figures

Figure 1

16 pages, 1191 KB  
Article
First Report of Candida auris Candidemia in Portugal: Genomic Characterisation and Antifungal Resistance-Associated Genes Analysis
by Isabel M. Miranda, Micael F. M. Gonçalves, Dolores Pinheiro, Sandra Hilário, José Artur Paiva, João Tiago Guimarães and Sofia Costa de Oliveira
J. Fungi 2025, 11(10), 716; https://doi.org/10.3390/jof11100716 - 3 Oct 2025
Abstract
Candida auris has emerged as a global public health threat due to its high mortality rates, multidrug resistance, and rapid transmission in healthcare settings. This study reports the first documented cases of C. auris candidemia in Portugal, comprising eight isolates from candidemia and [...] Read more.
Candida auris has emerged as a global public health threat due to its high mortality rates, multidrug resistance, and rapid transmission in healthcare settings. This study reports the first documented cases of C. auris candidemia in Portugal, comprising eight isolates from candidemia and colonised patients admitted to a major hospital in northern Portugal in 2023. Whole-genome sequencing (WGS) was performed to determine the phylogenetic relationships of the isolates, which were classified as belonging to Clade I. Genome sequencing also enabled the detection of missense mutations in antifungal resistance genes, which were correlated with antifungal susceptibility profiles determined according to EUCAST (European Committee on Antimicrobial Susceptibility Test) protocols and guidelines. All isolates exhibited resistance to fluconazole and amphotericin B according to the recently established EUCAST epidemiological cut-offs (ECOFFs). Most of the isolates showed a resistant phenotype to anidulafungin and micafungin. All isolates were resistant to caspofungin. Missense mutations identified included Y132F in ERG11, E709D in CDR1, A583S in TAC1b, K52N and E1464K in SNQ2, K74E in CIS2, M192I in ERG4, a novel mutation S237T in CRZ1, and variants in GCN5, a gene involved in chromatin remodelling and stress-response regulation. Identifying known and novel mutations highlights the evolution of antifungal resistance mechanisms in C. auris. These findings underscore the need for further research to understand C. auris resistance pathways and to guide effective clinical management strategies. Full article
(This article belongs to the Collection Invasive Candidiasis)
Show Figures

Figure 1

21 pages, 7313 KB  
Article
Integrated Transcriptome and Metabolome Analyses Reveal the Roles of MADS-Box Genes in Regulating Flower Development and Metabolite Accumulation in Osmanthus fragran
by Qian Zhang, Jie Yang, Xiangling Zeng, Hongguo Chen, Yingting Zhang, Guifu Zhang, Zeqing Li, Xuan Cai and Jingjing Zou
Curr. Issues Mol. Biol. 2025, 47(10), 819; https://doi.org/10.3390/cimb47100819 - 3 Oct 2025
Abstract
The MADS-box transcription factors play essential roles in various processes of plant growth and development. Here, we identified 107 MADS-box genes in Osmanthus fragrans Lour. genome (OfMADS), encoding proteins ranging from 61 to 608 amino acids. Phylogenetic analysis classified these genes [...] Read more.
The MADS-box transcription factors play essential roles in various processes of plant growth and development. Here, we identified 107 MADS-box genes in Osmanthus fragrans Lour. genome (OfMADS), encoding proteins ranging from 61 to 608 amino acids. Phylogenetic analysis classified these genes into five subfamilies: MIKC*, MIKCC, , , and , with conserved motif architectures within subfamilies. Tandem and whole-genome duplications were identified as key drivers of OfMADS expansion. Cis-regulatory element analysis revealed enrichment for hormone response and developmental regulatory motifs, implicating roles in growth and flowering processes. Transcriptome dynamics across six floral developmental stages (bolting to petal shedding) uncovered 78 differentially expressed OfMADS genes, including 16 exhibiting flower-specific expressions. Integrated metabolome profiling demonstrated robust correlations between critical OfMADS regulators and scent metabolites. This nexus suggests a potential role of these OfMADS in regulating specialized metabolite biosynthesis pathways. Our multi-omics study provides insights into the regulatory hierarchy of OfMADS in coordinating floral morphogenesis and the accumulation of economically significant metabolites in O. fragrans. These findings establish a foundation for subsequent functional validation and molecular breeding of horticultural traits. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

19 pages, 6389 KB  
Article
Morphological and Molecular Insights into Genetic Variability and Heritability in Four Strawberry (Fragaria × ananassa) Cultivars
by Dilrabo K. Ernazarova, Asiya K. Safiullina, Madina D. Kholova, Laylo A. Azimova, Shalola A. Hasanova, Ezozakhon F. Nematullaeva, Feruza U. Rafieva, Navbakhor S. Akhmedova, Mokhichekhra Sh. Khursandova, Ozod S. Turaev, Barno B. Oripova, Mukhlisa K. Kudratova, Aysuliw A. Doshmuratova, Perizat A. Kubeisinova, Nargiza M. Rakhimova, Doston Sh. Erjigitov, Doniyor J. Komilov, Farid A. Ruziyev, Nurbek U. Khamraev, Marguba A. Togaeva, Zarifa G. Nosirova and Fakhriddin N. Kushanovadd Show full author list remove Hide full author list
Horticulturae 2025, 11(10), 1195; https://doi.org/10.3390/horticulturae11101195 - 3 Oct 2025
Abstract
Strawberry (Fragaria × ananassa Duch.) is a widely cultivated and economically important fruit crop with increasing consumer demand worldwide. Nowadays, in Uzbekistan, strawberry cultivation surpasses that of many other fruits and vegetables in terms of production volume. However, most genetic studies have [...] Read more.
Strawberry (Fragaria × ananassa Duch.) is a widely cultivated and economically important fruit crop with increasing consumer demand worldwide. Nowadays, in Uzbekistan, strawberry cultivation surpasses that of many other fruits and vegetables in terms of production volume. However, most genetic studies have focused on a limited set of cultivars, leaving a substantial portion of varietal diversity unexplored. This study aimed to evaluate the genetic variability and heritability among selected strawberry cultivars, as well as correlations between certain valuable agronomic traits, using molecular and statistical approaches. Polymorphism analysis was performed, using 67 gene-specific SSR markers, through PCR, and allele variations were observed in 46.3% of the markers analyzed. Among them, 31 markers displayed polymorphic bands, identifying fifty alleles, with one to four alleles per marker. Phylogenetic analysis was performed using MEGA 11 software, while statistical evaluations included AMOVA (GenAIEx), correlation (OriginPro), and descriptive statistics based on standard agronomic methods. Additionally, the degree of cross-compatibility and pollen viability among the cultivars were studied, and their significance for cultivar hybridization was analyzed. The highest fruit weight was observed in the Cinderella cultivar (26.2 g), and a moderate negative correlation (r = −0.688) was found between fruit number and fruit weight. These findings demonstrate the potential of molecular tools for assessing genetic diversity and provide valuable insights for breeding programs aimed at developing improved strawberry cultivars with desirable agronomic traits. Full article
Show Figures

Figure 1

13 pages, 2846 KB  
Article
Whole Genome Re-Sequencing Reveals Insights into the Genetic Diversity and Fruit Flesh Color of Guava
by Jiale Huang, Xianghui Yang, Chongbin Zhao, Ze Peng and Jun Chen
Horticulturae 2025, 11(10), 1194; https://doi.org/10.3390/horticulturae11101194 - 3 Oct 2025
Abstract
Guava (Psidium guajava L.), a perennial species native to tropical regions of the Americas, holds significant economic value and plays an important role in the global fruit industry. Although several reference genomes have been published, population-level genomic studies remain limited, hindering genetic [...] Read more.
Guava (Psidium guajava L.), a perennial species native to tropical regions of the Americas, holds significant economic value and plays an important role in the global fruit industry. Although several reference genomes have been published, population-level genomic studies remain limited, hindering genetic improvement efforts. In this study, we conducted whole genome re-sequencing of 62 guava accessions, primarily from Southern China and Brazil. A total of 4,887,006 high-quality SNPs and 731,469 InDels were identified for population genomic analyses. Phylogenetic and population structure analyses revealed subgroupings that largely corresponded to geographic origins. The data indicated that extensive hybridization between accessions from Brazil and or within China has contributed to the development of many dominant commercial varieties. Genetic diversity analyses showed that Brazilian accessions exhibited higher nucleotide diversity and more rapid linkage disequilibrium decay than those from China. Environmental factors and artificial selection likely imposed selective pressures that shaped guava’s adaptability and agronomic traits. A preliminary genome-wide association study (GWAS) identified PgMYB4 as a candidate gene potentially associated with fruit flesh color. These findings provide novel insights into the genetic diversity, population history, and domestication of guava, and lay a valuable foundation for future breeding and improvement strategies. Full article
(This article belongs to the Section Genetics, Genomics, Breeding, and Biotechnology (G2B2))
Show Figures

Figure 1

35 pages, 8491 KB  
Article
Pathogen Survey in Agrocybe chaxingu and Characterization of the Dominant Pathogen Fuligo gyrosa
by Xutao Chen, Guoliang Meng, Mengqian Liu, Jiancheng Dai, Guanghua Huo, Caihong Dong and Yunhui Wei
Horticulturae 2025, 11(10), 1190; https://doi.org/10.3390/horticulturae11101190 - 2 Oct 2025
Abstract
Agrocybe chaxingu is a commercially important edible mushroom in China, valued for its rich bioactive compounds and distinctive umami flavor. In recent years, frequent disease outbreaks have severely limited production, as many pathogens spread rapidly and are difficult to control, posing a significant [...] Read more.
Agrocybe chaxingu is a commercially important edible mushroom in China, valued for its rich bioactive compounds and distinctive umami flavor. In recent years, frequent disease outbreaks have severely limited production, as many pathogens spread rapidly and are difficult to control, posing a significant threat to the sustainable development of the industry. In this study, a systematic disease survey across major A. chaxingu cultivation areas in Jiangxi Province led to the isolation and identification of 17 potential fungal pathogens and 2 potential myxomycete pathogens using combined morphological characterization and multilocus phylogenetic analyses including the internal transcribed spacer (ITS) region, 28S large subunit ribosomal RNA (LSU), translation elongation factor (tef1), RNA polymerase largest subunit (rpb1), RNA polymerase second largest subunit (rpb2), Histone (H3), Beta tubulin (tub2), and 18S ribosomal RNA (18S rRNA). Among the identified diseases, white slime disease showed the highest incidence (17.3%) and was attributed to the slime mold Fuligo gyrosa, with pathogenicity confirmed according to Koch’s postulates. F. gyrosa proved highly virulent to both fruiting bodies and mycelia, enveloping host mycelium via plasmodial expansion, inhibiting growth, inducing structural rupture, and causing progressive degradation. Infection was accompanied by the deposition of characteristic stress-related pigments in the mycelium. This study provides the first detailed characterization of F. gyrosa infection dynamics in A. chaxingu mycelium. These findings provide new insights into the myxomycete pathogenesis in edible fungi and provide a foundation for the accurate diagnosis, targeted prevention, and sustainable management of diseases in A. chaxingu cultivation. Full article
(This article belongs to the Special Issue Advances in Propagation and Cultivation of Mushroom)
Show Figures

Figure 1

20 pages, 2427 KB  
Article
Role of Enzymes and Metabolites Produced by Bacillus spp. in the Suppression of Meloidogyne incognita in Tomato
by Mariana Viana Castro, Luanda Medeiros Santana, Everaldo Antônio Lopes, Walter Vieira da Cunha, Vittoria Catara, Giulio Dimaria and Liliane Evangelista Visotto
Horticulturae 2025, 11(10), 1189; https://doi.org/10.3390/horticulturae11101189 - 2 Oct 2025
Abstract
The management of Meloidogyne incognita often depends on chemical nematicides, which pose environmental and health risks. This study investigated the potential of bacterial strains isolated from uncultivated native soil as biocontrol agents and plant growth-promoting rhizobacteria (PGPR) in tomato plants artificially infected with [...] Read more.
The management of Meloidogyne incognita often depends on chemical nematicides, which pose environmental and health risks. This study investigated the potential of bacterial strains isolated from uncultivated native soil as biocontrol agents and plant growth-promoting rhizobacteria (PGPR) in tomato plants artificially infected with this nematode. Fifteen strains were screened in vitro for nematicidal and ovicidal activity, and four promising strains (307, GB16, GB24, and GB29) were selected for greenhouse trials. All strains reduced the nematode reproduction factor and the number of nematodes/g of root. Strains 307 and GB24 showed the highest reductions, 61.39 and 57.24%, respectively. Despite some positive physiological trends, Bacillus spp. did not promote a significant increase in plant growth. Metabolomic analysis revealed that the strains produced a wide range of primary metabolites with potential nematicidal activity. All strains also secreted proteases and chitinases, enzymes linked to nematode cuticle degradation. Preliminary identification based on the 16S rRNA gene and phylogenetic analysis grouped the four strains into the Bacillus subtilis group (strains GB16, GB29 and 307) or Bacillus cereus group (strain GB24); however, genome sequencing will be required in future studies. Overall, strains 307 and GB24 demonstrated strong biocontrol potential, supporting their use as sustainable and complementary alternatives to chemical nematicides. Full article
(This article belongs to the Special Issue Horticultural Plant Disease Management Using Advanced Biotechnology)
Show Figures

Graphical abstract

18 pages, 3623 KB  
Article
Identification of the CDPK Pan-Genomic Family in Pear (Pyrus spp.) and Analysis of Its Response to Venturia nashicola
by Xing Hu, Yixuan Lian, Zhaoyun Yang, Tong Li, Yuqin Song and Liulin Li
Horticulturae 2025, 11(10), 1181; https://doi.org/10.3390/horticulturae11101181 - 2 Oct 2025
Abstract
This study investigated the phylogenetic relationships in the pear calcium-dependent protein kinase (CDPK) pan-gene family and elucidated its role in the resistance to scab disease caused by Venturia nashicola. By integrating data from eight genomic sets from five cultivated pear species, Pyrus [...] Read more.
This study investigated the phylogenetic relationships in the pear calcium-dependent protein kinase (CDPK) pan-gene family and elucidated its role in the resistance to scab disease caused by Venturia nashicola. By integrating data from eight genomic sets from five cultivated pear species, Pyrus bretschneideri, P. ussuriensis, P. sinkiangensis, P pyrifolia, and P. communis, along with P. betulifolia and interspecific hybrids, 63 PyCDPK family members were identified. Among these, P. communis possessed the highest number of CDPK genes, whereas P. bretschneiderilia had the fewest. These genes encode proteins ranging from 459 to 810 amino acids in length, and are predominantly localized to the cell membrane. Six genes, PyCDPK9, PyCDPK11, PyCDPK12, PyCDPK14, PyCDPK16, and PyCDPK19, were classified as core members of the pan-genome, and PyCDPK19 showed evidence of positive selection pressure. Clustering analysis and transcriptomic expression profiling of disease-resistance-related CDPKs identified PyCDPK19 as a key candidate associated with scab resistance. Promoter analysis revealed that the regulatory region of PyCDPK19 contains multiple cis-acting elements involved in defense responses and methyl jasmonate signaling. Transient overexpression of PyCDPK19 in tobacco leaves induced hypersensitive cell necrosis, accompanied by significant increases in hydrogen peroxide (H2O2) accumulation and malondialdehyde (MDA) content. Similarly, overexpression in pear fruit callus tissue followed by pathogen inoculation resulted in elevated levels of both H2O2 and MDA. Collectively, these findings indicate that PyCDPK19 mediates defense responses through the activation of the reactive oxygen species pathway in both tobacco and pear plants, providing a promising genetic target for enhancing scab resistance in pears. Full article
(This article belongs to the Section Genetics, Genomics, Breeding, and Biotechnology (G2B2))
Show Figures

Figure 1

19 pages, 4129 KB  
Article
Comprehensive Virome Analysis of Commercial Lilies in South Korea by RT-PCR, High-Throughput Sequencing, and Phylogenetic Analyses
by Dongjoo Min, Yeonhwa Jo, Jisoo Park, Gyeong Geun Min, Jin-Sung Hong and Won Kyong Cho
Int. J. Mol. Sci. 2025, 26(19), 9598; https://doi.org/10.3390/ijms26199598 - 1 Oct 2025
Abstract
Viral diseases pose a significant threat to lily (Lilium spp.) cultivation; however, large-scale assessments of virus prevalence and diversity in South Korea are limited. This study combined RT-PCR surveys, high-throughput sequencing (HTS), and analyses of 48 lily hybrid transcriptomes to characterize the [...] Read more.
Viral diseases pose a significant threat to lily (Lilium spp.) cultivation; however, large-scale assessments of virus prevalence and diversity in South Korea are limited. This study combined RT-PCR surveys, high-throughput sequencing (HTS), and analyses of 48 lily hybrid transcriptomes to characterize the lily virome. RT-PCR screening of 100 samples from 13 regions showed that 87% were infected, primarily with lily mottle virus (LMoV, 65%), Plantago asiatica mosaic virus (PlAMV, 34%), cucumber mosaic virus (CMV, 34%), and lily symptomless virus (LSV, 25%). Mixed infections were approximately twice as frequent as single infections and were associated with greater symptom severity, particularly in triple-virus combinations. High-throughput sequencing expanded detection to six viruses, including milk vetch dwarf virus (MDV) and lily virus B (LVB), the latter confirmed as a variant of strawberry latent ringspot virus (SLRSV). Near-complete genomes of several viruses were assembled and validated through RT-PCR. Transcriptome mining identified eight virus species across 26 cultivars; PlAMV was the most common, and viral loads varied significantly among hybrids. Phylogenetic analyses revealed close relationships between Korean and Chinese isolates and host-related clustering in PlAMV. These findings highlight the complexity of lily viromes in South Korea and provide essential resources for diagnostics, disease management, and biosecurity. Full article
(This article belongs to the Special Issue Molecular Approach to Fern Development)
Show Figures

Graphical abstract

22 pages, 6066 KB  
Article
Genome-Wide Identification and Analysis of Chitinase GH18 Gene Family in Trichoderma longibrachiatum T6 Strain: Insights into Biocontrol of Heterodera avenae
by Cizhong Duan, Jia Liu, Shuwu Zhang and Bingliang Xu
J. Fungi 2025, 11(10), 714; https://doi.org/10.3390/jof11100714 - 1 Oct 2025
Abstract
The cereal cyst nematode, Heterodera avena, is responsible for substantial economic losses in the global production of wheat, barley, and other cereal crops. Extracellular enzymes, particularly those from the glycoside hydrolase 18 (GH18) family, such as chitinases secreted by Trichoderma spp., play [...] Read more.
The cereal cyst nematode, Heterodera avena, is responsible for substantial economic losses in the global production of wheat, barley, and other cereal crops. Extracellular enzymes, particularly those from the glycoside hydrolase 18 (GH18) family, such as chitinases secreted by Trichoderma spp., play a crucial role in nematode control. However, the genome-wide analysis of Trichoderma longibrachiatum T6 (T6) GH18 family genes in controlling of H. avenae remains unexplored. Through phylogenetic analysis and bioinformatics tools, we identified and conducted a detailed analysis of 18 GH18 genes distributed across 13 chromosomes. The analysis encompassed gene structure, evolutionary development, protein characteristics, and gene expression profiles following T6 parasitism on H. avenae, as determined by RT-qPCR. Our results indicate that 18 GH18 members in T6 were clustered into three major groups (A, B, and C), which comprise seven subgroups. Each subgroup exhibits highly conserved catalytic domains, motifs, and gene structures, while the cis-acting elements demonstrate extensive responsiveness to hormones, stress-related signals, and light. These members are significantly enriched in the chitin catabolic process, extracellular region, and chitinase activity (GO functional enrichment), and they are involved in amino sugar and nucleotide sugar metabolism (KEGG pathway enrichment). Additionally, 13 members formed an interaction network, enhancing chitin degradation efficiency through synergistic effects. Interestingly, 18 members of the GH18 family genes were expressed after T6 parasitism on H. avenae cysts. Notably, GH18-3 (Group B) and GH18-16 (Group A) were significantly upregulated, with average increases of 3.21-fold and 3.10-fold, respectively, from 12 to 96 h after parasitism while compared to the control group. Meanwhile, we found that the GH18-3 and GH18-16 proteins exhibit the highest homology with key enzymes responsible for antifungal activity in T. harzianum, demonstrating dual biocontrol potential in both antifungal activity and nematode control. Overall, these results indicate that the GH18 family has undergone functional diversification during evolution, with each member assuming specific biological roles in T6 effect on nematodes. This study provides a theoretical foundation for identifying novel nematicidal genes from T6 and cultivating highly efficient biocontrol strains through transgenic engineering, which holds significant practical implications for advancing the biocontrol of plant-parasitic nematodes (PPNs). Full article
(This article belongs to the Section Fungal Genomics, Genetics and Molecular Biology)
Show Figures

Figure 1

12 pages, 1742 KB  
Article
Climate Change and Severe Drought Impact on Aflatoxins and Fungi in Brazil Nuts: A Molecular Approach
by Ariane Mendonça Kluczkovski, Janaína Santos Barroncas, Hanna Lemos, Heloisa Lira Barros, Leiliane Sodré, Liliana de Oliveira Rocha, Taynara Souza Soto, Maria Luana Vinhote and Augusto Kluczkovski
Int. J. Mol. Sci. 2025, 26(19), 9592; https://doi.org/10.3390/ijms26199592 - 1 Oct 2025
Abstract
The Brazil nut production chain, which is reliant on Amazonian environmental conditions, is significantly affected by climate change, particularly extreme droughts, which decrease production and compromise sanitary quality. This study evaluated the influence of severe drought on aflatoxin concentrations and sequence toxigenic fungi [...] Read more.
The Brazil nut production chain, which is reliant on Amazonian environmental conditions, is significantly affected by climate change, particularly extreme droughts, which decrease production and compromise sanitary quality. This study evaluated the influence of severe drought on aflatoxin concentrations and sequence toxigenic fungi in Brazil nuts harvested during the 2023 off-season. Aflatoxins were quantified using high-performance liquid chromatography, while fungal sequencing involved DNA extraction, PCR, and sequencing analysis. Findings indicated that all Brazil nut samples collected during extreme drought contained detectable aflatoxins, with 10% exceeding the legal threshold of 10 µg/kg. Phylogenetic analysis identified four isolates as Penicillium citrinum. Additional morphological and sequencing analyses identified Aspergillus species from the Circumdati and Flavi sections, although one isolate could not be taxonomically classified. These results demonstrate the aflatoxin production by fungi in Brazil nuts in an unprecedented way under drought conditions. Furthermore, the diversity of fungal species during drought underscores the risk of contamination, emphasizing the necessity for monitoring future harvests to improve management and ensure product safety. Full article
(This article belongs to the Section Molecular Toxicology)
Show Figures

Graphical abstract

62 pages, 3880 KB  
Article
Integrative Taxonomy Revealed Cryptic Diversity in the West African Grasshopper Genus Serpusia Karsch, 1891 (Orthoptera: Catantopinae)
by Jeanne Agrippine Yetchom Fondjo, Alain Christel Wandji, Reza Zahiri, Oliver Hawlitschek and Claudia Hemp
Insects 2025, 16(10), 1020; https://doi.org/10.3390/insects16101020 - 1 Oct 2025
Abstract
Background/Objectives: Despite their ecological significance, DNA barcoding data for African rainforest Orthoptera remain underrepresented globally, limiting progress in species discovery, biodiversity assessment, and conservation. This study aimed to generate molecular data for morphologically identified Serpusia Karsch, 1891 species to evaluate their taxonomic status. [...] Read more.
Background/Objectives: Despite their ecological significance, DNA barcoding data for African rainforest Orthoptera remain underrepresented globally, limiting progress in species discovery, biodiversity assessment, and conservation. This study aimed to generate molecular data for morphologically identified Serpusia Karsch, 1891 species to evaluate their taxonomic status. Methods: Specimens were collected from multiple sites in Cameroon and analyzed using DNA barcoding with COI-5P and 16S rDNA markers. Species delimitation was performed with Automatic Barcode Gap Discovery, and phylogenetic relationships were inferred using Maximum Likelihood and Bayesian Inference. Additionally, external morphology and the male phallic complex were examined. Results: Molecular analyses delineated 19 MOTUs, five corresponding to Serpusia opacula, seven to Serpusia succursor and the remainder to outgroups. Similarity-based assignments matched these MOTUs to 19 BINs. Phylogenetic reconstruction revealed S. opacula and S. succursor as two genetically distinct clades, with the S. opacula group more closely related to Aresceutica Karsch, 1896 than to the S. succursor group. Accordingly, we established a new genus, Paraserpusia gen. nov., to accommodate S. succursor. Within the S. opacula group, five species are recognized: one previously described (S. opacula) and four new species (S. kennei sp. nov., S. missoupi sp. nov., S. seinoi sp. nov., and S. verhaaghi sp. nov.). The former S. succursor, now Paraserpusia succursor, is divided into six well-supported lineages, five of which are formally described here (P. hoeferi sp. nov., P. husemanni sp. nov., P. kekeunoui sp. nov., P. tamessei sp. nov., and P. tindoi sp. nov.). A haplotype network based on COI-5P sequences corroborates three major clades corresponding to the S. opacula group, the S. succursor group, and Aresceutica. Diagnostic morphological differences between Serpusia and Paraserpusia are consistently supported across characters. Conclusions: This integrative approach reveals substantial hidden diversity within Serpusia and highlights the importance of combining molecular and morphological data to uncover and formally describe previously overlooked taxa. Full article
(This article belongs to the Section Insect Systematics, Phylogeny and Evolution)
17 pages, 3902 KB  
Article
Whole-Genome Resequencing Provides Insights into the Genetic Structure and Evolution of Paulownia spp.
by Yang Zhao, Jie Qiao, Chaowei Yang, Baoping Wang, Yuanyuan Si, Siqin Liu, Xinliang Zhang and Yanzhi Feng
Forests 2025, 16(10), 1533; https://doi.org/10.3390/f16101533 - 1 Oct 2025
Abstract
Paulownia trees are grown globally for their robust timber, agroforestry, and effective carbon dioxide drawdown. China possesses rich Paulownia germplasm resources, offering favorable material for the genetic improvement. Understanding the taxonomy and phylogenetic relationships of Paulownia species is essential for the advancement of [...] Read more.
Paulownia trees are grown globally for their robust timber, agroforestry, and effective carbon dioxide drawdown. China possesses rich Paulownia germplasm resources, offering favorable material for the genetic improvement. Understanding the taxonomy and phylogenetic relationships of Paulownia species is essential for the advancement of germplasm innovation. In this study, we re-sequenced 67 typical accessions of 11 species within the Paulownia genus. A total of 16,163,790 high-quality single nucleotide polymorphisms (SNPs) were identified. Based on these markers, these accessions were classified into three groups: P. fortunei and P. lampropylla (Group I); P. tomentosa, P. fargesii, and P. kawakamii (Group II); and P. taiwaniana, P. jianshiensis, P. catalpifolia, P. elongata, P. ichangensis, and P. albiphloea (Group III). Using maximum likelihood estimation, population genetic structure analysis revealed that the 11 species originated from four different ancestral populations. The two predominant breeding species—P. fortunei and P. tomentosa—exhibit divergent origins: P. fortunei arose from hybridization between two ancestral species followed by complex admixture, whereas P. tomentosa retains a predominantly singular ancestral lineage, with traces of P. kawakamii. The genetic diversity (π) of P. tomentosa was 0.002588, which was considerably lower than that of P. fortune (0.004181) suggesting that P. tomentosa is subjected to a stronger breeding selection during the evolution than P. fortune. A total of 59 selected regions and 65 genes were identified by selective sweep analysis. These genes may be involved in biological processes such as morphological development and response to abiotic stress and hormonal activity regulation. These findings provide valuable references for further research on the genetic differentiation and adaptive evolutionary mechanisms of Paulownia species, laying a foundation for future germplasm innovation and variety improvement. Full article
(This article belongs to the Special Issue Tree Breeding: Genetic Diversity, Differentiation and Conservation)
Show Figures

Figure 1

Back to TopTop