First Report of Candida auris Candidemia in Portugal: Genomic Characterisation and Antifungal Resistance-Associated Genes Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients, Strain Identification and Clinical Data
2.2. DNA Extraction
2.3. Genome Sequencing and Assembly
2.4. InDel and Structural Variants Detection
2.5. Phylogenomic Analysis
2.6. Antifungal Susceptibility Profile
2.7. Molecular Detection of Antifungal Resistance Gene Mutations
Candidemia | Colonisation | |||||||
---|---|---|---|---|---|---|---|---|
SCO 267 | SCO 276 | SCO 279 | SCO248 | SCO 275 | SCO 240 | SCO242 | SCO266 | |
Sex/age | Male/66 | Male/67 | Female/58 | Female/64 | Male/51 | Male/59 | Male/77 | Male/63 |
Sample | blood culture | blood culture | blood culture | CVC | CVC | rectal swab | urine | axillary and groin swab |
Hospital ward | ICU | surgery | medicine | infectiology | orthopaedics | surgery | surgery | surgery |
Days of hospitalisation until the first isolation | 91 | 106 | 110 | 22 | 132 | 34 | 15 | 79 |
ICU before isolation | yes | yes | no | yes | no | yes | no | no |
Antifungal treatment | micafungin | Caspofungin + amphotericin B | caspofungin | no | no | no | no | no |
Underlying disease | Oesophageal neoplasia, dyslipidemia | Gastric adenocarcinoma, peritonitis, HTN, dyslipidemia | Severe gonarthrosis, infection after total knee arthroplasty, DM2, HTN, dyslipidemia | hepatic abscess by Clostridium difficile, DM2, HTN, dyslipidemia | chronic osteomyelitis | Colon neoplasia, faecal peritonitis | Pancreatic adenocarcinoma DM2, HTN | Biliary tract neoplasia, acute cholangitis with hepatic abscess |
Outcome | deceased | deceased | alive | alive | alive | alive | alive | deceased |
Category | Genes | Mechanism/Function | References |
---|---|---|---|
Drug targets and ergosterol biosynthesis (Azoles/Polyenes) | ERG11 | Azole target; mutations reduce drug binding | [27,28] |
ERG2, ERG3, ERG4, ERG5, ERG6, ERG10, ERG25 | Enzymes in ergosterol pathway; alterations affect membrane composition and polyene/azole susceptibility | ||
Efflux pumps (ABC/MFS transporters) | CDR1, CDR2, CDR4, MDR1, SNQ2 | Drug transporters that expel antifungals; overexpression or mutations increase azole resistance | [29,30] |
Transcription factors | TAC1B, UPC2, MRR1, CRZ1 | Regulate expression of efflux pumps or ergosterol pathway; CRZ1 modulates stress response and tolerance | [29,31] |
Epigenetic regulators | GCN5, SET1, SET2, RTT109, DOT1 | chromatin remodelling and antifungal stress response gene expression | [32] |
Echinocandin target/1,3-β-glucan synthase | FKS1, FKS2 | Subunits of 1,3-β-glucan synthase; hotspot mutations confer echinocandin resistance | [33] |
Stress response and antifungal tolerance | HSP90, CNA1 | Chaperone and calcineurin subunit; modulate stress response and tolerance to echinocandins/azoles | [34] |
Other tolerance/stress and metabolism | CIS2 | Cystathionine γ-lyase; involved in sulfur metabolism, redox homeostasis, and stress response | [35] |
Pheromone/export and signalling | STE6 | ABC transporter for a-factor pheromone export; may influence mating and signalling | [36] |
3. Results
3.1. Case Patient Description and Timeline
3.2. Genome Statistics and Phylogenomic Analysis
3.3. Genetic Variants Detection
3.4. Antifungal Susceptibility
3.5. Analysis of Resistance-Associated Mutations
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lockhart, S.R.; Etienne, K.A.; Vallabhaneni, S.; Farooqi, J.; Chowdhary, A.; Govender, N.P.; Colombo, A.L.; Calvo, B.; Cuomo, C.A.; Desjardins, C.A.; et al. Simultaneous Emergence of Multidrug-Resistant Candida auris on 3 Continents Confirmed by Whole-Genome Sequencing and Epidemiological Analyses. Clin. Infect. Dis. 2017, 64, 134–140. [Google Scholar] [CrossRef] [PubMed]
- Lyman, M.; Forsberg, K.; Sexton, D.J.; Chow, N.A.; Lockhart, S.R.; Jackson, B.R.; Chiller, T. Worsening Spread of Candida auris in the United States, 2019 to 2021. Ann. Intern. Med. 2023, 176, 489–495. [Google Scholar] [CrossRef]
- Biswal, M.; Rudramurthy, S.M.; Jain, N.; Shamanth, A.S.; Sharma, D.; Jain, K.; Yaddanapudi, L.N.; Chakrabarti, A. Controlling a possible outbreak of Candida auris infection: Lessons learnt from multiple interventions. J. Hosp. Infect. 2017, 97, 363–370. [Google Scholar] [CrossRef] [PubMed]
- Burki, T. WHO publish fungal priority pathogens list. Lancet Microbe 2023, 4, e74. [Google Scholar] [CrossRef]
- Alvarez-Moreno, C.A.; Morales-López, S.; Rodriguez, G.J.; Rodriguez, J.Y.; Robert, E.; Picot, C.; Ceballos-Garzon, A.; Parra-Giraldo, C.M.; Le Pape, P. The Mortality Attributable to Candidemia in C. auris Is Higher than That in Other Candida Species: Myth or Reality? J. Fungi 2023, 9, 430. [Google Scholar] [CrossRef]
- Cendejas-Bueno, E.; Kolecka, A.; Alastruey-Izquierdo, A.; Theelen, B.; Groenewald, M.; Kostrzewa, M.; Cuenca-Estrella, M.; Gomez-Lopez, A.; Boekhout, T. Reclassification of the Candida haemulonii complex as Candida haemulonii (C. haemulonii group I), C. duobushaemulonii sp. nov. (C. haemulonii group II), and C. haemulonii var. vulnera var. nov.: Three multiresistant human pathogenic yeasts. J. Clin. Microbiol. 2012, 50, 3641–3651. [Google Scholar]
- Liu, F.; Hu, Z.D.; Zhao, X.M.; Zhao, W.N.; Feng, Z.X.; Yurkov, A.; Alwasel, S.; Boekhout, T.; Bensch, K.; Hui, F.L.; et al. Phylogenomic analysis of the Candida auris-Candida haemuli clade and related taxa in the Metschnikowiaceae, and proposal of thirteen new genera, fifty-five new combinations and nine new species. Persoonia 2024, 52, 22–43. [Google Scholar] [CrossRef] [PubMed]
- Suphavilai, C.; Ko, K.K.K.; Lim, K.M.; Tan, M.G.; Boonsimma, P.; Chu, J.J.K.; Goh, S.S.; Rajandran, P.; Lee, L.C.; Tan, K.Y.; et al. Detection and characterisation of a sixth Candida auris clade in Singapore: A genomic and phenotypic study. Lancet Microbe 2024, 5, 100878. [Google Scholar] [CrossRef]
- Chow, N.A.; De Groot, T.; Badali, H.; Abastabar, M.; Chiller, T.M.; Meis, J.F. Potential fifth clade of Candida auris, Iran, 2018. Emerg. Infect. Dis. 2019, 25, 1780–1781. [Google Scholar] [CrossRef]
- Khan, T.; Faysal, N.I.; Hossain, M.M.; Mah, E.M.S.; Haider, A.; Moon, S.B.; Sen, D.; Ahmed, D.; Parnell, L.A.; Jubair, M.; et al. Emergence of the novel sixth Candida auris Clade VI in Bangladesh. Microbiol. Spectr. 2024, 12, e0354023. [Google Scholar] [CrossRef] [PubMed]
- Semenya, M.D.; Aladejana, A.E.; Ndlovu, S.I. Characterization of susceptibility patterns and adaptability of the newly emerged Candida auris. Int. Microbiol. 2024, 28, 575–587. [Google Scholar] [CrossRef]
- Munoz, J.F.; Welsh, R.M.; Shea, T.; Batra, D.; Gade, L.; Howard, D.; Rowe, L.A.; Meis, J.F.; Litvintseva, A.P.; Cuomo, C.A. Clade-specific chromosomal rearrangements and loss of subtelomeric adhesins in Candida auris. Genetics 2021, 218, iyab029. [Google Scholar] [CrossRef]
- Das, S.; Singh, S.; Tawde, Y.; Dutta, T.K.; Rudramurthy, S.M.; Kaur, H.; Shaw, T.; Ghosh, A. Comparative fitness trade-offs associated with azole resistance in Candida auris clinical isolates. Heliyon 2024, 10, e32386. [Google Scholar] [CrossRef]
- Carolus, H.; Sofras, D.; Boccarella, G.; Sephton-Clark, P.; Biriukov, V.; Cauldron, N.C.; Lobo Romero, C.; Vergauwen, R.; Yazdani, S.; Pierson, S.; et al. Acquired amphotericin B resistance leads to fitness trade-offs that can be mitigated by compensatory evolution in Candida auris. Nat. Microbiol. 2024, 9, 3304–3320. [Google Scholar] [CrossRef] [PubMed]
- Henriques, J.; Mixão, V.; Cabrita, J.; Duarte, T.I.; Sequeira, T.; Cardoso, S.; Germano, N.; Dias, L.; Bento, L.; Duarte, S.; et al. Candida auris in Intensive Care Setting: The First Case Reported in Portugal. J. Fungi 2023, 9, 837. [Google Scholar] [CrossRef] [PubMed]
- FastQC: A Quality Control Tool for High Throughput Sequence. Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 27 August 2025).
- Mikheenko, A.; Prjibelski, A.; Saveliev, V.; Antipov, D.; Gurevich, A. Versatile genome assembly evaluation with QUAST-LG. Bioinformatics 2018, 34, i142–i150. [Google Scholar] [CrossRef] [PubMed]
- Bertels, F.; Silander, O.K.; Pachkov, M.; Rainey, P.B.; van Nimwegen, E. Automated reconstruction of whole-genome phylogenies from short-sequence reads. Mol. Biol. Evol. 2014, 31, 1077–1088. [Google Scholar] [CrossRef]
- Letunic, I.; Bork, P. Interactive Tree of Life (iTOL) v6: Recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Res. 2024, 52, W78–W82. [Google Scholar] [CrossRef]
- The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs for Antifungal Agents, Version 11.0, 2024. Available online: http://www.eucast.org/astoffungi/clinicalbreakpointsforantifungals/ (accessed on 31 July 2025).
- Institute CLS: Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts, 3rd ed.; CLSI doxument M27A3; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2008.
- The European Committee on Antimicrobial Susceptibility Testing. Testing ECoAS: EUCAST Definitive Document E.Def 7.4—Method for the Determination of Broth Dilution Minimum Inhibitory Concentrations of Antifungal Agents for Yeasts; 2023. Available online: https://www.eucast.org/ (accessed on 31 July 2025).
- Institute CLS: Epidemiological Cutoff Values for Antifungal Susceptibility Testing, 4th ed.; CLSI supplemenmt M27-M57S; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2022.
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: Architecture and applications. BMC Bioinform. 2009, 10, 421. [Google Scholar] [CrossRef] [PubMed]
- Cingolani, P.; Platts, A.; Wang le, L.; Coon, M.; Nguyen, T.; Wang, L.; Land, S.J.; Lu, X.; Ruden, D.M. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 2012, 6, 80–92. [Google Scholar] [CrossRef] [PubMed]
- Thorvaldsdottir, H.; Robinson, J.T.; Mesirov, J.P. Integrative Genomics Viewer (IGV): High-performance genomics data visualization and exploration. Brief. Bioinform. 2013, 14, 178–192. [Google Scholar] [CrossRef]
- Ceballos-Garzon, A.; Penuela, A.; Valderrama-Beltran, S.; Vargas-Casanova, Y.; Ariza, B.; Parra-Giraldo, C.M. Emergence and circulation of azole-resistant C. albicans, C. auris and C. parapsilosis bloodstream isolates carrying Y132F, K143R or T220L Erg11p substitutions in Colombia. Front. Cell Infect. Microbiol. 2023, 13, 1136217. [Google Scholar] [CrossRef]
- Rybak, J.M.; Barker, K.S.; Muñoz, J.F.; Parker, J.E.; Ahmad, S.; Mokaddas, E.; Abdullah, A.; Elhagracy, R.S.; Kelly, S.L.; Cuomo, C.A.; et al. In vivo emergence of high-level resistance during treatment reveals the first identified mechanism of amphotericin B resistance in Candida auris. Clin. Microbiol. Infect. 2022, 28, 838–843. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Hind, C.; Furner-Pardoe, J.; Sutton, J.M.; Rahman, K.M. Understanding the mechanisms of resistance to azole antifungals in Candida species. JAC Antimicrob. Resist. 2025, 7, dlaf106. [Google Scholar] [CrossRef] [PubMed]
- Wasi, M.; Khandelwal, N.K.; Moorhouse, A.J.; Nair, R.; Vishwakarma, P.; Bravo Ruiz, G.; Ross, Z.K.; Lorenz, A.; Rudramurthy, S.M.; Chakrabarti, A.; et al. ABC Transporter Genes Show Upregulated Expression in Drug-Resistant Clinical Isolates of Candida auris: A Genome-Wide Characterization of ATP-Binding Cassette (ABC) Transporter Genes. Front. Microbiol. 2019, 10, 1445. [Google Scholar] [CrossRef]
- Rybak, J.M.; Muñoz, J.F.; Barker, K.S.; Parker, J.E.; Esquivel, B.D.; Berkow, E.L.; Lockhart, S.R.; Gade, L.; Palmer, G.E.; White, T.C.; et al. Mutations in TAC1B: A novel genetic determinant of clinical fluconazole resistance in Candida auris. mBio 2020, 11, 10–1128. [Google Scholar] [CrossRef]
- Zhang, Y.; Zeng, L.; Huang, X.; Wang, Y.; Chen, G.; Moses, M.; Zou, Y.; Xiong, S.; Xue, W.; Dong, Y.; et al. Targeting epigenetic regulators to overcome drug resistance in the emerging human fungal pathogen Candida auris. Nat. Commun. 2025, 16, 4668. [Google Scholar] [CrossRef]
- Ahmed, S.H.; El-Kholy, I.M.A.; El-Mehalawy, A.A.; Mahmoud, E.M.; Elkady, N.A. Molecular characterization of some multidrug resistant Candida Auris in egypt. Sci. Rep. 2025, 15, 4917. [Google Scholar] [CrossRef]
- Singh, S.D.; Robbins, N.; Zaas, A.K.; Schell, W.A.; Perfect, J.R.; Cowen, L.E. Hsp90 governs echinocandin resistance in the pathogenic yeast Candida albicans via calcineurin. PLoS Pathog. 2009, 5, e1000532. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Coste, A.T.; Bachmann, D.; Sanglard, D.; Lamoth, F. Deciphering the Mrr1/Mdr1 Pathway in Azole Resistance of Candida auris. Antimicrob. Agents Chemother. 2022, 66, e0006722. [Google Scholar] [CrossRef]
- Yadav, A.; Singh, A.; Wang, Y.; Haren, M.H.V.; Singh, A.; de Groot, T.; Meis, J.F.; Xu, J.; Chowdhary, A. Colonisation and Transmission Dynamics of Candida auris among Chronic Respiratory Diseases Patients Hospitalised in a Chest Hospital, Delhi, India: A Comparative Analysis of Whole Genome Sequencing and Microsatellite Typing. J. Fungi 2021, 7, 81. [Google Scholar] [CrossRef]
- Arendrup, M.C.; Guinea, J.; Arikan-Akdagli, S.; Meijer, E.F.J.; Meis, J.F.; Buil, J.B.; Dannaoui, E.; Giske, C.G.; Lyskova, P.; Meletiadis, J.; et al. How to Interpret MICs of Amphotericin B, Echinocandins and Flucytosine Against Candida Auris (Candidozyma auris) According to the Newly Established European Committee for Antimicrobial Susceptibility Testing (EUCAST) Breakpoints. Clin. Microbiol. Infect. 2025, in press. [CrossRef] [PubMed]
- Xu, Z.; Zhang, L.; Han, R.; Ding, C.; Shou, H.; Duan, X.; Zhang, S. A Candidemia Case Caused by a Novel Drug-Resistant Candida auris with the Y132F Mutation in Erg11 in Mainland China. Infect. Drug Resist. 2023, 16, 3065–3072. [Google Scholar] [CrossRef]
- Ben Abid, F.; Salah, H.; Sundararaju, S.; Dalil, L.; Abdelwahab, A.H.; Salameh, S.; Ibrahim, E.B.; Almaslmani, M.A.; Tang, P.; Perez-Lopez, A.; et al. Molecular characterization of Candida auris outbreak isolates in Qatar from patients with COVID-19 reveals the emergence of isolates resistant to three classes of antifungal drugs. Clin. Microbiol. Infect. 2023, 29, 1083.e1081–1083.e1087. [Google Scholar] [CrossRef]
- Yan, L.; Zhao, F.; Zhang, K.; Wang, P.; Hu, S. Isolation of Fluconazole-Resistant South Asian Clade Candida auris in Beijing, China. Am. J. Trop. Med. Hyg. 2025, 113, 184–186. [Google Scholar] [CrossRef] [PubMed]
- Proctor, D.M.; Dangana, T.; Sexton, D.J.; Fukuda, C.; Yelin, R.D.; Stanley, M.; Bell, P.B.; Baskaran, S.; Deming, C.; Chen, Q.; et al. Integrated genomic, epidemiologic investigation of Candida auris skin colonization in a skilled nursing facility. Nat. Med. 2021, 27, 1401–1409. [Google Scholar] [CrossRef] [PubMed]
- Sexton, D.J.; Bentz, M.L.; Welsh, R.M.; Derado, G.; Furin, W.; Rose, L.J.; Noble-Wang, J.; Pacilli, M.; McPherson, T.D.; Black, S.; et al. Positive Correlation Between Candida auris Skin-Colonization Burden and Environmental Contamination at a Ventilator-Capable Skilled Nursing Facility in Chicago. Clin. Infect. Dis. 2021, 73, 1142–1148. [Google Scholar] [CrossRef] [PubMed]
- Alanio, A.; Snell, H.M.; Cordier, C.; Desnos-Olivier, M.; Dellière, S.; Aissaoui, N.; Sturny-Leclère, A.; Da Silva, E.; Eblé, C.; Rouveau, M.; et al. First Patient-to-Patient Intrahospital Transmission of Clade I Candida auris in France Revealed after a Two-Month Incubation Period. Microbiol. Spectr. 2022, 10, e0183322. [Google Scholar] [CrossRef]
- Al-Siyabi, T.; Al Busaidi, I.; Balkhair, A.; Al-Muharrmi, Z.; Al-Salti, M.; Al’Adawi, B. First report of Candida auris in Oman: Clinical and microbiological description of five candidemia cases. J. Infect. 2017, 75, 373–376. [Google Scholar] [CrossRef]
- Southwick, K.; Ostrowsky, B.; Greenko, J.; Adams, E.; Lutterloh, E.; Denis, R.J.; Patel, R.; Erazo, R.; Fernandez, R.; Bucher, C.; et al. A description of the first Candida auris-colonized individuals in New York State, 2016–2017. Am. J. Infect. Control 2022, 50, 358–360. [Google Scholar] [CrossRef]
- Simon, S.P.; Li, R.; Silver, M.; Andrade, J.; Tharian, B.; Fu, L.; Villanueva, D.; Abascal, D.G.; Mayer, A.; Truong, J.; et al. Comparative Outcomes of Candida auris Bloodstream Infections: A Multicenter Retrospective Case-Control Study. Clin. Infect. Dis. 2023, 76, E1436–E1443. [Google Scholar] [CrossRef]
- Chow, N.A.; Gade, L.; Tsay, S.V.; Forsberg, K.; Greenko, J.A.; Southwick, K.L.; Barrett, P.M.; Kerins, J.L.; Lockhart, S.R.; Chiller, T.M.; et al. Multiple introductions and subsequent transmission of multidrug-resistant Candida auris in the USA: A molecular epidemiological survey. Lancet Infect. Dis. 2018, 18, 1377–1384. [Google Scholar] [CrossRef]
- Kekana, D.; Naicker, S.D.; Shuping, L.; Velaphi, S.; Nakwa, F.L.; Wadula, J.; Govender, N.P. Candida auris Clinical Isolates Associated with Outbreak in Neonatal Unit of Tertiary Academic Hospital, South Africa. Emerg. Infect. Dis. 2023, 29, 2044–2053. [Google Scholar] [CrossRef]
- Sharma, D.; Paul, R.A.; Rudramurthy, S.M.; Kashyap, N.; Bhattacharya, S.; Soman, R.; Shankarnarayan, S.A.; Chavan, D.; Singh, S.; Das, P.; et al. Impact of FKS1 Genotype on Echinocandin In Vitro Susceptibility in Candida auris and In Vivo Response in a Murine Model of Infection. Antimicrob. Agents Chemother. 2022, 66, e0165221. [Google Scholar] [CrossRef]
- Arendrup, M.C.; Patterson, T.F. Multidrug-resistant candida: Epidemiology, molecular mechanisms, and treatment. J. Infect. Dis. 2017, 216, S445–S451. [Google Scholar] [CrossRef]
- Lewis, J.S., 2nd; Wiederhold, N.P.; Hakki, M.; Thompson, G.R., 3rd. New Perspectives on Antimicrobial Agents: Isavuconazole. Antimicrob. Agents Chemother. 2022, 66, e0017722. [Google Scholar] [CrossRef]
- Pappas, P.G.; Kauffman, C.A.; Andes, D.R.; Clancy, C.J.; Marr, K.A.; Ostrosky-Zeichner, L.; Reboli, A.C.; Schuster, M.G.; Vazquez, J.A.; Walsh, T.J.; et al. Clinical Practice Guideline for the Management of Candidiasis: 2016 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2016, 62, e1–e50. [Google Scholar] [CrossRef]
- Frías-De-león, M.G.; Hernández-Castro, R.; Vite-Garín, T.; Arenas, R.; Bonifaz, A.; Castañón-Olivares, L.; Acosta-Altamirano, G.; Martínez-Herrera, E. Antifungal resistance in Candida auris: Molecular determinants. Antibiotics 2020, 9, 568. [Google Scholar] [CrossRef]
- Chaabane, F.; Graf, A.; Jequier, L.; Coste, A.T. Review on Antifungal Resistance Mechanisms in the Emerging Pathogen Candida auris. Front. Microbiol. 2019, 10, 2788. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, J. Associations between Genomic Variants and Antifungal Susceptibilities in the Archived Global Candida auris Population. J. Fungi 2024, 10, 86. [Google Scholar] [CrossRef]
- Hirayama, T.; Miyazaki, T.; Tanaka, R.; Kitahori, N.; Yoshida, M.; Takeda, K.; Ide, S.; Iwanaga, N.; Tashiro, M.; Takazono, T.; et al. TAC1b mutation in Candida auris decreases manogepix susceptibility owing to increased CDR1 expression. Antimicrob. Agents Chemother. 2025, 69, e0150824. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.F.; Zhang, H.; Liu, L.L.; Guo, L.N.; Liu, W.J.; Liu, Y.L.; Li, D.D.; Zhao, Y.; Zhu, R.Y.; Li, Y.; et al. Genome-wide analysis of in vivo-evolved Candida auris reveals multidrug-resistance mechanisms. Mycopathologia 2024, 189, 35. [Google Scholar] [CrossRef]
- Massic, L.; Doorley, L.A.; Jones, S.J.; Richardson, I.; Siao, D.D.; Siao, L.; Dykema, P.; Hua, C.; Schneider, E.; Cuomo, C.A.; et al. Acquired Amphotericin B Resistance Attributed to a Mutated ERG3 in Candidozyma auris. ASM J. 2025, e00601-25. [Google Scholar] [CrossRef]
- Kodedova, M.; Sychrova, H. Changes in the Sterol Composition of the Plasma Membrane Affect Membrane Potential, Salt Tolerance and the Activity of Multidrug Resistance Pumps in Saccharomyces cerevisiae. PLoS ONE 2015, 10, e0139306. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, S.E.; Jacobs, J.L.; Dennis, E.K.; Taimur, S.; Rana, M.; Patel, D.; Gitman, M.; Patel, G.; Schaefer, S.; Iyer, K.; et al. Candida auris Pan-Drug-Resistant to Four Classes of Antifungal Agents. Antimicrob. Agents Chemother. 2022, 66, e0005322. [Google Scholar] [CrossRef] [PubMed]
- Biagi, M.J.; Wiederhold, N.P.; Gibas, C.; Wickes, B.L.; Lozano, V.; Bleasdale, S.C.; Danziger, L. Development of high-level echinocandin resistance in a patient with recurrent candida auris candidemia secondary to chronic candiduria. Open Forum Infect. Dis. 2019, 6, ofz262. [Google Scholar] [CrossRef]
- Miyazaki, T.; Yamauchi, S.; Inamine, T.; Nagayoshi, Y.; Saijo, T.; Izumikawa, K.; Seki, M.; Kakeya, H.; Yamamoto, Y.; Yanagihara, K.; et al. Roles of calcineurin and Crz1 in antifungal susceptibility and virulence of Candida glabrata. Antimicrob. Agents Chemother. 2010, 54, 1639–1643. [Google Scholar] [CrossRef]
- Chen, Y.L.; Brand, A.; Morrison, E.L.; Silao, F.G.; Bigol, U.G.; Malbas, F.F., Jr.; Nett, J.E.; Andes, D.R.; Solis, N.V.; Filler, S.G.; et al. Calcineurin controls drug tolerance, hyphal growth, and virulence in Candida dubliniensis. Eukaryot. Cell 2011, 10, 803–819. [Google Scholar] [CrossRef]
General Features | Strains | |||||||
---|---|---|---|---|---|---|---|---|
SCO 240 | SCO 242 | SCO 248 | SCO 266 | SCO 267 | SCO 275 | SCO 276 | SCO 279 | |
Total length (bp) | 12,252,649 | 12,252,724 | 12,252,809 | 12,252,617 | 12,253,318 | 12,252,600 | 12,252,471 | 12,252,602 |
Contigs | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 |
Largest contig (bp) | 3,148,704 | 3,148,755 | 3,148,719 | 3,148,682 | 3,148,861 | 3,148,688 | 3,148,687 | 3,148,708 |
GC (%) | 45.34 | 45.34 | 45.34 | 45.34 | 45.33 | 45.34 | 45.34 | 45.34 |
N50 (bp) | 2,337,416 | 2,337,416 | 2,337,434 | 2,337,386 | 2,337,558 | 2,337,379 | 2,337,346 | 2,337,360 |
N75 (bp) | 1,318,631 | 1,318,648 | 1,318,659 | 1,318,666 | 1,318,682 | 1,318,617 | 1,318,615 | 1,318,621 |
L50 (bp) | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
L75 (bp) | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
Coverage | 225× | 214× | 212× | 223× | 149× | 230× | 247× | 214× |
GenBank Accession Number | CP163311-CP163317 | CP163318-CP163324 | CP163325-CP163331 | CP163332-CP163338 | CP163339-CP163345 | CP163346-CP163352 | CP163353-CP163359 | CP163360-CP163366 |
FLC | VRC | PSC | ISC | ANF | MCF | CSF | AmB | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Clinical isolate | MIC | Phen | MIC | Phen | MIC | Phen | MIC | Phen | MIC | Phen | MIC | Phen | MIC– | Phen# | MIC | Phen |
SCO 240 | >64 | ND | 0.125 | ND | 0.03 | ND | 0.03 | ND | 0.5 | R | 0.125 | S | 0.5 | R | 4 | R |
SCO 242 | >64 | ND | 0.125 | ND | 0.03 | ND | 0.03 | ND | 0.5 | R | 0.25 | S | >4 | R | 1 | IE |
SCO 248 | >64 | ND | 0.06 | ND | 1 | ND | 0.0075 | ND | 2 | R | 2 | R | >4 | R | 4 | R |
SCO 266 | >64 | ND | 0.5 | ND | 0.03 | ND | 0.06 | ND | 2 | R | 1 | R | >4 | R | 4 | R |
SCO 267 | >64 | ND | 0.5 | ND | 0.03 | ND | 0.06 | ND | 2 | R | 1 | R | >4 | R | 4 | R |
SCO 275 | >64 | ND | 0.06 | ND | 1 | ND | 0.015 | ND | 4 | R | 4 | R | >4 | R | 4 | R |
SCO 276 | >64 | ND | 0.125 | ND | 0.015 | ND | 0.03 | ND | 0.25 | S | 0.5 | R | >4 | R | 4 | R |
SCO 279 | >64 | ND | 0.125 | ND | 2 | ND | 0.0075 | ND | 4 | R | 4 | R | 1 | R | 4 | R |
Gene | Change | Mutation | Variant | Isolates of This Study |
---|---|---|---|---|
CIS2 | c.220A>G p.Lys74Glu | K74E | Missense variant | all |
ERG4 | c.576G>T p.Met192Ile | M192I | Missense variant | all |
SNQ2 | c.72C>T (p.Lys52Asp) | K52N | Missense variant | all |
c.4306T>A (p.Glu1464Lys) | E1464K | Missense variant | all | |
ERG11 | c.396A>T (p.Tyr132Phe) | Y132F | Missense variant | all |
CDR1 | c.2126A>T (p.Glu709Asp) | E709D | Missense variant | all |
TAC1b | c.861C>A (p.Ala709Ser) | A583S | Missense variant | all |
STE6 | c.2157G>T | - | Synonymous variant | all |
CRZ1 | c.710C>A (p.Ser237Tyr) | S237Y | Missense variant | all |
GCN5 | c.439_444del | p.(Glu134_Asn135del) | In-frame deletion | SCO 240, SCO 248, SCO 266, SCO 275, SCO 279 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miranda, I.M.; Gonçalves, M.F.M.; Pinheiro, D.; Hilário, S.; Paiva, J.A.; Guimarães, J.T.; de Oliveira, S.C. First Report of Candida auris Candidemia in Portugal: Genomic Characterisation and Antifungal Resistance-Associated Genes Analysis. J. Fungi 2025, 11, 716. https://doi.org/10.3390/jof11100716
Miranda IM, Gonçalves MFM, Pinheiro D, Hilário S, Paiva JA, Guimarães JT, de Oliveira SC. First Report of Candida auris Candidemia in Portugal: Genomic Characterisation and Antifungal Resistance-Associated Genes Analysis. Journal of Fungi. 2025; 11(10):716. https://doi.org/10.3390/jof11100716
Chicago/Turabian StyleMiranda, Isabel M., Micael F. M. Gonçalves, Dolores Pinheiro, Sandra Hilário, José Artur Paiva, João Tiago Guimarães, and Sofia Costa de Oliveira. 2025. "First Report of Candida auris Candidemia in Portugal: Genomic Characterisation and Antifungal Resistance-Associated Genes Analysis" Journal of Fungi 11, no. 10: 716. https://doi.org/10.3390/jof11100716
APA StyleMiranda, I. M., Gonçalves, M. F. M., Pinheiro, D., Hilário, S., Paiva, J. A., Guimarães, J. T., & de Oliveira, S. C. (2025). First Report of Candida auris Candidemia in Portugal: Genomic Characterisation and Antifungal Resistance-Associated Genes Analysis. Journal of Fungi, 11(10), 716. https://doi.org/10.3390/jof11100716