Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (293)

Search Parameters:
Keywords = photovoltaic/wind/battery power system.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 5304 KiB  
Article
Multi-Criteria Optimization and Techno-Economic Assessment of a Wind–Solar–Hydrogen Hybrid System for a Plateau Tourist City Using HOMER and Shannon Entropy-EDAS Models
by Jingyu Shi, Ran Xu, Dongfang Li, Tao Zhu, Nanyu Fan, Zhanghua Hong, Guohua Wang, Yong Han and Xing Zhu
Energies 2025, 18(15), 4183; https://doi.org/10.3390/en18154183 - 7 Aug 2025
Abstract
Hydrogen offers an effective pathway for the large-scale storage of renewable energy. For a tourist city located in a plateau region rich in renewable energy, hydrogen shows great potential for reducing carbon emissions and utilizing uncertain renewable energy. Herein, the wind–solar–hydrogen stand-alone and [...] Read more.
Hydrogen offers an effective pathway for the large-scale storage of renewable energy. For a tourist city located in a plateau region rich in renewable energy, hydrogen shows great potential for reducing carbon emissions and utilizing uncertain renewable energy. Herein, the wind–solar–hydrogen stand-alone and grid-connected systems in the plateau tourist city of Lijiang City in Yunnan Province are modeled and techno-economically evaluated by using the HOMER Pro software (version 3.14.2) with the multi-criteria decision analysis models. The system is composed of 5588 kW solar photovoltaic panels, an 800 kW wind turbine, a 1600 kW electrolyzer, a 421 kWh battery, and a 50 kW fuel cell. In addition to meeting the power requirements for system operation, the system has the capacity to provide daily electricity for 200 households in a neighborhood and supply 240 kg of hydrogen per day to local hydrogen-fueled buses. The stand-alone system can produce 10.15 × 106 kWh of electricity and 93.44 t of hydrogen per year, with an NPC of USD 8.15 million, an LCOE of USD 0.43/kWh, and an LCOH of USD 5.26/kg. The grid-connected system can generate 10.10 × 106 kWh of electricity and 103.01 ton of hydrogen annually. Its NPC is USD 7.34 million, its LCOE is USD 0.11/kWh, and its LCOH is USD 3.42/kg. This study provides a new solution for optimizing the configuration of hybrid renewable energy systems, which will develop the hydrogen economy and create low-carbon-emission energy systems. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

30 pages, 2505 KiB  
Article
Battery Energy Storage Systems: Energy Market Review, Challenges, and Opportunities in Frequency Control Ancillary Services
by Gian Garttan, Sanath Alahakoon, Kianoush Emami and Shantha Gamini Jayasinghe
Energies 2025, 18(15), 4174; https://doi.org/10.3390/en18154174 - 6 Aug 2025
Abstract
Battery energy storage systems (BESS) are considered a good energy source to maintain supply and demand, mitigate intermittency, and ensure grid stability. The primary contribution of this paper is to provide a comprehensive overview of global energy markets and a critical analysis of [...] Read more.
Battery energy storage systems (BESS) are considered a good energy source to maintain supply and demand, mitigate intermittency, and ensure grid stability. The primary contribution of this paper is to provide a comprehensive overview of global energy markets and a critical analysis of BESS’ participation in frequency control ancillary service (FCAS) markets. This review synthesises the current state of knowledge on the evolution of the energy market and the role of battery energy storage systems in providing grid stability, particularly frequency control services, with a focus on their integration into evolving high-renewable-energy-source (RES) market structures. Specifically, solar PV and wind energy are emerging as the main drivers of RES expansion, accounting for approximately 61% of the global market share. A BESS offers greater flexibility in storage capacity, scalability and rapid response capabilities, making it an effective solution to address emerging security risks of the system. Moreover, a BESS is able to provide active power support through power smoothing when coupled with solar photovoltaic (PV) and wind generation. In this paper, we provide an overview of the current status of energy markets, the contribution of battery storage systems to grid stability and flexibility, as well as the challenges that BESS face in evolving electricity markets. Full article
Show Figures

Figure 1

25 pages, 2661 KiB  
Article
Fuzzy Logic-Based Energy Management Strategy for Hybrid Renewable System with Dual Storage Dedicated to Railway Application
by Ismail Hacini, Sofia Lalouni Belaid, Kassa Idjdarene, Hammoudi Abderazek and Kahina Berabez
Technologies 2025, 13(8), 334; https://doi.org/10.3390/technologies13080334 - 1 Aug 2025
Viewed by 229
Abstract
Railway systems occupy a predominant role in urban transport, providing efficient, high-capacity mobility. Progress in rail transport allows fast traveling, whilst environmental concerns and CO2 emissions are on the rise. The integration of railway systems with renewable energy source (RES)-based stations presents [...] Read more.
Railway systems occupy a predominant role in urban transport, providing efficient, high-capacity mobility. Progress in rail transport allows fast traveling, whilst environmental concerns and CO2 emissions are on the rise. The integration of railway systems with renewable energy source (RES)-based stations presents a promising avenue to improve the sustainability, reliability, and efficiency of urban transport networks. A storage system is needed to both ensure a continuous power supply and meet train demand at the station. Batteries (BTs) offer high energy density, while supercapacitors (SCs) offer both a large number of charge and discharge cycles, and high-power density. This paper proposes a hybrid RES (photovoltaic and wind), combined with batteries and supercapacitors constituting the hybrid energy storage system (HESS). One major drawback of trains is the long charging time required in stations, so they have been fitted with SCs to allow them to charge up quickly. A new fuzzy energy management strategy (F-EMS) is proposed. This supervision strategy optimizes the power flow between renewable energy sources, HESS, and trains. DC bus voltage regulation is involved, maintaining BT and SC charging levels within acceptable ranges. The simulation results, carried out using MATLAB/Simulink, demonstrate the effectiveness of the suggested fuzzy energy management strategy for various production conditions and train demand. Full article
Show Figures

Figure 1

28 pages, 13030 KiB  
Article
Meta-Heuristic Optimization for Hybrid Renewable Energy System in Durgapur: Performance Comparison of GWO, TLBO, and MOPSO
by Sudip Chowdhury, Aashish Kumar Bohre and Akshay Kumar Saha
Sustainability 2025, 17(15), 6954; https://doi.org/10.3390/su17156954 - 31 Jul 2025
Viewed by 192
Abstract
This paper aims to find an efficient optimization algorithm to bring down the cost function without compromising the stability of the system and respect the operational constraints of the Hybrid Renewable Energy System. To accomplish this, MATLAB simulations were carried out using three [...] Read more.
This paper aims to find an efficient optimization algorithm to bring down the cost function without compromising the stability of the system and respect the operational constraints of the Hybrid Renewable Energy System. To accomplish this, MATLAB simulations were carried out using three optimization techniques: Grey Wolf Optimization (GWO), Teaching–Learning-Based Optimization (TLBO), and Multi-Objective Particle Swarm Optimization (MOPSO). The study compared their outcomes to identify which method yielded the most effective performance. The research included a statistical analysis to evaluate how consistently and stably each optimization method performed. The analysis revealed optimal values for the output power of photovoltaic systems (PVs), wind turbines (WTs), diesel generator capacity (DGs), and battery storage (BS). A one-year period was used to confirm the optimized configuration through the analysis of capital investment and fuel consumption. Among the three methods, GWO achieved the best fitness value of 0.24593 with an LPSP of 0.12528, indicating high system reliability. MOPSO exhibited the fastest convergence behaviour. TLBO yielded the lowest Net Present Cost (NPC) of 213,440 and a Cost of Energy (COE) of 1.91446/kW, though with a comparatively higher fitness value of 0.26628. The analysis suggests that GWO is suitable for applications requiring high reliability, TLBO is preferable for cost-sensitive solutions, and MOPSO is advantageous for obtaining quick, approximate results. Full article
(This article belongs to the Special Issue Energy Technology, Power Systems and Sustainability)
Show Figures

Figure 1

25 pages, 2495 KiB  
Article
Integration Strategies for Large-Scale Renewable Interconnections with Grid Forming and Grid Following Inverters, Capacitor Banks, and Harmonic Filters
by Soham Ghosh, Arpit Bohra, Sreejata Dutta and Saurav Verma
Energies 2025, 18(15), 3934; https://doi.org/10.3390/en18153934 - 23 Jul 2025
Viewed by 247
Abstract
The transition towards a power system characterized by a reduced presence of synchronous generators (SGs) and an increased reliance on inverter-based resources (IBRs), including wind, solar photovoltaics (PV), and battery storage, presents new operational challenges, particularly when these sources exceed 50–60% of the [...] Read more.
The transition towards a power system characterized by a reduced presence of synchronous generators (SGs) and an increased reliance on inverter-based resources (IBRs), including wind, solar photovoltaics (PV), and battery storage, presents new operational challenges, particularly when these sources exceed 50–60% of the system’s demand. While current grid-following (GFL) IBRs, which are equipped with fast and rigid control systems, continue to dominate the inverter landscape, there has been a notable surge in research focused on grid-forming (GFM) inverters in recent years. This study conducts a comparative analysis of the practicality and control methodologies of GFM inverters relative to traditional GFL inverters from a system planning perspective. A comprehensive framework aimed at assisting system developers and consulting engineers in the grid-integration of wide-scale renewable energy sources (RESs), incorporating strategies for the deployment of inverters, capacitor banks, and harmonic filters, is proposed in this paper. The discussion includes an examination of the reactive power capabilities of the plant’s inverters and the provision of additional reactive power to ensure compliance with grid interconnection standards. Furthermore, the paper outlines a practical approach to assess the necessity for enhanced filtering measures to mitigate potential resonant conditions and achieve harmonic compliance at the installation site. The objective of this work is to offer useful guidelines and insights for the effective addition of RES into contemporary power systems. Full article
Show Figures

Figure 1

36 pages, 5532 KiB  
Article
Supporting Sustainable Development Goals with Second-Life Electric Vehicle Battery: A Case Study
by Muhammad Nadeem Akram and Walid Abdul-Kader
Sustainability 2025, 17(14), 6307; https://doi.org/10.3390/su17146307 - 9 Jul 2025
Viewed by 455
Abstract
To alleviate the impact of economic and environmental detriments caused by the increased demands of electric vehicle battery production and disposal, the use of spent batteries in second-life stationary applications such as energy storage for renewable sources or backup power systems, offers many [...] Read more.
To alleviate the impact of economic and environmental detriments caused by the increased demands of electric vehicle battery production and disposal, the use of spent batteries in second-life stationary applications such as energy storage for renewable sources or backup power systems, offers many benefits. This paper focuses on reducing the energy consumption cost and greenhouse gas emissions of Internet-of-Things-enabled campus microgrids by installing solar photovoltaic panels on rooftops alongside energy storage systems that leverage second-life batteries, a gas-fired campus power plant, and a wind turbine while considering the potential loads of a prosumer microgrid. A linear optimization problem is derived from the system by scheduling energy exchanges with the Ontario grid through net metering and solved by using Python 3.11. The aim of this work is to support Sustainable Development Goals, namely 7 (Affordable and Clean Energy), 11 (Sustainable Cities and Communities), 12 (Responsible Consumption and Production), and 13 (Climate Action). A comparison between a base case scenario and the results achieved with the proposed scenarios shows a significant reduction in electricity cost and greenhouse gas emissions and an increase in self-consumption rate and renewable fraction. This research work provides valuable insights and guidelines to policymakers. Full article
Show Figures

Figure 1

18 pages, 2458 KiB  
Article
Co-Optimized Design of Islanded Hybrid Microgrids Using Synergistic AI Techniques: A Case Study for Remote Electrification
by Ramia Ouederni and Innocent E. Davidson
Energies 2025, 18(13), 3456; https://doi.org/10.3390/en18133456 - 1 Jul 2025
Viewed by 488
Abstract
Off-grid and isolated rural communities in developing countries with limited resources require energy supplies for daily residential use and social, economic, and commercial activities. The use of data from space assets and space-based solar power is a feasible solution for addressing ground-based energy [...] Read more.
Off-grid and isolated rural communities in developing countries with limited resources require energy supplies for daily residential use and social, economic, and commercial activities. The use of data from space assets and space-based solar power is a feasible solution for addressing ground-based energy insecurity when harnessed in a hybrid manner. Advances in space solar power systems are recognized to be feasible sources of renewable energy. Their usefulness arises due to advances in satellite and space technology, making valuable space data available for smart grid design in these remote areas. In this case study, an isolated village in Namibia, characterized by high levels of solar irradiation and limited wind availability, is identified. Using NASA data, an autonomous hybrid system incorporating a solar photovoltaic array, a wind turbine, storage batteries, and a backup generator is designed. The local load profile, solar irradiation, and wind speed data were employed to ensure an accurate system model. Using HOMER Pro software V 3.14.2 for system simulation, a more advanced AI optimization was performed utilizing Grey Wolf Optimization and Harris Hawks Optimization, which are two metaheuristic algorithms. The results obtained show that the best performance was obtained with the Grey Wolf Optimization algorithm. This method achieved a minimum energy cost of USD 0.268/kWh. This paper presents the results obtained and demonstrates that advanced optimization techniques can enhance both the hybrid system’s financial cost and energy production efficiency, contributing to a sustainable electricity supply regime in this isolated rural community. Full article
(This article belongs to the Section F2: Distributed Energy System)
Show Figures

Figure 1

39 pages, 2307 KiB  
Article
Modeling of Energy Management System for Fully Autonomous Vessels with Hybrid Renewable Energy Systems Using Nonlinear Model Predictive Control via Grey Wolf Optimization Algorithm
by Harriet Laryea and Andrea Schiffauerova
J. Mar. Sci. Eng. 2025, 13(7), 1293; https://doi.org/10.3390/jmse13071293 - 30 Jun 2025
Viewed by 320
Abstract
This study presents a multi-objective predictive energy management system (EMS) for optimizing hybrid renewable energy systems (HRES) in autonomous marine vessels. The objective is to minimize fuel consumption and emissions while maximizing renewable energy usage and pure-electric sailing durations. The EMS combines nonlinear [...] Read more.
This study presents a multi-objective predictive energy management system (EMS) for optimizing hybrid renewable energy systems (HRES) in autonomous marine vessels. The objective is to minimize fuel consumption and emissions while maximizing renewable energy usage and pure-electric sailing durations. The EMS combines nonlinear model predictive control (NMPC) with metaheuristic optimizers—Grey Wolf Optimization (GWO) and Genetic Algorithm (GA)—and is benchmarked against a conventional rule-based (RB) method. The HRES architecture comprises photovoltaic arrays, vertical-axis wind turbines (VAWTs), diesel engines, generators, and a battery storage system. A ship dynamics model was used to represent propulsion power under realistic sea conditions. Simulations were conducted using real-world operational and environmental datasets, with state prediction enhanced by an Extended Kalman Filter (EKF). Performance is evaluated using marine-relevant indicators—fuel consumption; emissions; battery state of charge (SOC); and emission cost—and validated using standard regression metrics. The NMPC-GWO algorithm consistently outperformed both NMPC-GA and RB approaches, achieving high prediction accuracy and greater energy efficiency. These results confirm the reliability and optimization capability of predictive EMS frameworks in reducing emissions and operational costs in autonomous maritime operations. Full article
(This article belongs to the Special Issue Advancements in Hybrid Power Systems for Marine Applications)
Show Figures

Figure 1

18 pages, 1972 KiB  
Article
Learning from Arctic Microgrids: Cost and Resiliency Projections for Renewable Energy Expansion with Hydrogen and Battery Storage
by Paul Cheng McKinley, Michelle Wilber and Erin Whitney
Sustainability 2025, 17(13), 5996; https://doi.org/10.3390/su17135996 - 30 Jun 2025
Viewed by 500
Abstract
Electricity in rural Alaska is provided by more than 200 standalone microgrid systems powered predominantly by diesel generators. Incorporating renewable energy generation and storage to these systems can reduce their reliance on costly imported fuel and improve sustainability; however, uncertainty remains about optimal [...] Read more.
Electricity in rural Alaska is provided by more than 200 standalone microgrid systems powered predominantly by diesel generators. Incorporating renewable energy generation and storage to these systems can reduce their reliance on costly imported fuel and improve sustainability; however, uncertainty remains about optimal grid architectures to minimize cost, including how and when to incorporate long-duration energy storage. This study implements a novel, multi-pronged approach to assess the techno-economic feasibility of future energy pathways in the community of Kotzebue, which has already successfully deployed solar photovoltaics, wind turbines, and battery storage systems. Using real community load, resource, and generation data, we develop a series of comparison models using the HOMER Pro software tool to evaluate microgrid architectures to meet over 90% of the annual community electricity demand with renewable generation, considering both battery and hydrogen energy storage. We find that near-term planned capacity expansions in the community could enable over 50% renewable generation and reduce the total cost of energy. Additional build-outs to reach 75% renewable generation are shown to be competitive with current costs, but further capacity expansion is not currently economical. We additionally include a cost sensitivity analysis and a storage capacity sizing assessment that suggest hydrogen storage may be economically viable if battery costs increase, but large-scale seasonal storage via hydrogen is currently unlikely to be cost-effective nor practical for the region considered. While these findings are based on data and community priorities in Kotzebue, we expect this approach to be relevant to many communities in the Arctic and Sub-Arctic regions working to improve energy reliability, sustainability, and security. Full article
Show Figures

Figure 1

36 pages, 6279 KiB  
Article
Eel and Grouper Optimization-Based Fuzzy FOPI-TIDμ-PIDA Controller for Frequency Management of Smart Microgrids Under the Impact of Communication Delays and Cyberattacks
by Kareem M. AboRas, Mohammed Hamdan Alshehri and Ashraf Ibrahim Megahed
Mathematics 2025, 13(13), 2040; https://doi.org/10.3390/math13132040 - 20 Jun 2025
Cited by 1 | Viewed by 497
Abstract
In a smart microgrid (SMG) system that deals with unpredictable loads and incorporates fluctuating solar and wind energy, it is crucial to have an efficient method for controlling frequency in order to balance the power between generation and load. In the last decade, [...] Read more.
In a smart microgrid (SMG) system that deals with unpredictable loads and incorporates fluctuating solar and wind energy, it is crucial to have an efficient method for controlling frequency in order to balance the power between generation and load. In the last decade, cyberattacks have become a growing menace, and SMG systems are commonly targeted by such attacks. This study proposes a framework for the frequency management of an SMG system using an innovative combination of a smart controller (i.e., the Fuzzy Logic Controller (FLC)) with three conventional cascaded controllers, including Fractional-Order PI (FOPI), Tilt Integral Fractional Derivative (TIDμ), and Proportional Integral Derivative Acceleration (PIDA). The recently released Eel and Grouper Optimization (EGO) algorithm is used to fine-tune the parameters of the proposed controller. This algorithm was inspired by how eels and groupers work together and find food in marine ecosystems. The Integral Time Squared Error (ITSE) of the frequency fluctuation (ΔF) around the nominal value is used as an objective function for the optimization process. A diesel engine generator (DEG), renewable sources such as wind turbine generators (WTGs), solar photovoltaics (PVs), and storage components such as flywheel energy storage systems (FESSs) and battery energy storage systems (BESSs) are all included in the SMG system. Additionally, electric vehicles (EVs) are also installed. In the beginning, the supremacy of the adopted EGO over the Gradient-Based Optimizer (GBO) and the Smell Agent Optimizer (SAO) can be witnessed by taking into consideration the optimization process of the recommended regulator’s parameters, in addition to the optimum design of the membership functions of the fuzzy logic controller by each of these distinct algorithms. The subsequent phase showcases the superiority of the proposed EGO-based FFOPI-TIDμ-PIDA structure compared to EGO-based conventional structures like PID and EGO-based intelligent structures such as Fuzzy PID (FPID) and Fuzzy PD-(1 + PI) (FPD-(1 + PI)); this is across diverse symmetry operating conditions and in the presence of various cyberattacks that result in a denial of service (DoS) and signal transmission delays. Based on the simulation results from the MATLAB/Simulink R2024b environment, the presented control methodology improves the dynamics of the SMG system by about 99.6% when compared to the other three control methodologies. The fitness function dropped to 0.00069 for the FFOPI-TIDμ-PIDA controller, which is about 200 times lower than the other controllers that were compared. Full article
(This article belongs to the Special Issue Mathematical Methods Applied in Power Systems, 2nd Edition)
Show Figures

Figure 1

20 pages, 2188 KiB  
Article
Autonomous Electric Vehicle Charging Station Along a High-Traffic Road as a Model for Efficient Implementation of Emission-Free Economy
by Robert Kaznowski, Wojciech Ambroszko and Dariusz Sztafrowski
Energies 2025, 18(12), 3166; https://doi.org/10.3390/en18123166 - 16 Jun 2025
Viewed by 363
Abstract
The growing demand for electric vehicles (EV) has increased the need for reliable and sustainable charging infrastructure. To address this challenge, autonomous charging stations powered by renewable energy sources (RES) are a promising solution. This paper presents a simulation-based study that determines the [...] Read more.
The growing demand for electric vehicles (EV) has increased the need for reliable and sustainable charging infrastructure. To address this challenge, autonomous charging stations powered by renewable energy sources (RES) are a promising solution. This paper presents a simulation-based study that determines the optimal contribution of wind farms, photovoltaic systems, and energy storage to power an autonomous EV charging station. The simulation takes into account historical weather data, EV charging patterns, and renewable energy storage capacity. The results show that by combining RES and batteries, the charging station can operate autonomously minimizing the dependence on the power grid. Battery energy storage plays a key role in balancing intermittent RES generation and variable demand from the charging station. The simulation highlights the importance of adjusting parameters to optimize the energy utilization of the charging station and minimize the dependence on the grid. Further research is warranted to optimize the design, operation, and integration with advanced energy management systems to increase the efficiency and effectiveness of these charging stations. The development of a widespread autonomous charging infrastructure powered by renewable energy sources can accelerate the transition to clean transportation and support the energy system. Full article
Show Figures

Figure 1

27 pages, 1242 KiB  
Article
Implications of Battery and Gas Storage for Germany’s National Energy Management with Increasing Volatile Energy Sources
by Joachim Dengler and Björn Peters
Sustainability 2025, 17(12), 5295; https://doi.org/10.3390/su17125295 - 8 Jun 2025
Viewed by 2960
Abstract
Weather-dependent, volatile energy sources, such as wind power and solar photovoltaics (PV), contribute considerably to the German electric energy supply. The current German government aims to substantially increase their market share. Using high-resolution time-series data from energy production and demand measurements, we replicate [...] Read more.
Weather-dependent, volatile energy sources, such as wind power and solar photovoltaics (PV), contribute considerably to the German electric energy supply. The current German government aims to substantially increase their market share. Using high-resolution time-series data from energy production and demand measurements, we replicate and analyze scenarios from the “Klimaneutrales Deutschland 2045” (KND2045) study. KND2045 was the basis for the German Government’s 2021 decision to move the abolition of CO2 emissions from 2050 to 2045. The primary question in KND2045 is whether security of supply can be maintained by relying primarily on an effective duopoly of wind and solar power. We simulate scenarios for 2023, 2030, and 2045 using 15-min time-resolved measurements of wind and solar energy production and demand from 2023 and 2024, incorporating battery and gas storage systems into our model. We assess the overall economic costs for these scenarios. Our calculations demonstrate that the KND2045 scenarios are infeasible, as significant supply gaps persist during dark wind lulls, compromising security of supply. Instead, we propose improvements to these scenarios by incorporating nuclear energy as a backup to address KND2045’s shortcomings. Full article
Show Figures

Figure 1

24 pages, 2094 KiB  
Article
Optimizing Hybrid Renewable Energy Systems for Isolated Applications: A Modified Smell Agent Approach
by Manal Drici, Mourad Houabes, Ahmed Tijani Salawudeen and Mebarek Bahri
Eng 2025, 6(6), 120; https://doi.org/10.3390/eng6060120 - 1 Jun 2025
Viewed by 1130
Abstract
This paper presents the optimal sizing of a hybrid renewable energy system (HRES) for an isolated residential building using modified smell agent optimization (mSAO). The paper introduces a time-dependent approach that adapts the selection of the original SAO control parameters as the algorithm [...] Read more.
This paper presents the optimal sizing of a hybrid renewable energy system (HRES) for an isolated residential building using modified smell agent optimization (mSAO). The paper introduces a time-dependent approach that adapts the selection of the original SAO control parameters as the algorithm progresses through the optimization hyperspace. This modification addresses issues of poor convergence and suboptimal search in the original algorithm. Both the modified and standard algorithms were employed to design an HRES system comprising photovoltaic panels, wind turbines, fuel cells, batteries, and hydrogen storage, all connected via a DC-bus microgrid. The components were integrated with the microgrid using DC-DC power converters and supplied a designated load through a DC-AC inverter. Multiple operational scenarios and multi-objective criteria, including techno-economic metrics such as levelized cost of energy (LCOE) and loss of power supply probability (LPSP), were evaluated. Comparative analysis demonstrated that mSAO outperforms the standard SAO and the honey badger algorithm (HBA) used for the purpose of comparison only. Our simulation results highlighted that the PV–wind turbine–battery system achieved the best economic performance. In this case, the mSAO reduced the LPSP by approximately 38.89% and 87.50% over SAO and the HBA, respectively. Similarly, the mSAO also recorded LCOE performance superiority of 4.05% and 28.44% over SAO and the HBA, respectively. These results underscore the superiority of the mSAO in solving optimization problems. Full article
Show Figures

Figure 1

30 pages, 5552 KiB  
Article
Techno-Economic Analysis and Optimization of the Hybrid System for a Research Campus—Case Study Center for Research, Innovation, and Technology Transfer in Cuenca-Ecuador
by Daniel Icaza-Alvarez and David Borge-Diez
Energies 2025, 18(11), 2746; https://doi.org/10.3390/en18112746 - 26 May 2025
Cited by 1 | Viewed by 576
Abstract
Energy development based on renewable energy has gained widespread acceptance in society, especially in recent years. Among the initiatives currently being promoted are those promoted by higher education institutions that utilize available space on their campuses by configuring energy systems to incorporate renewable [...] Read more.
Energy development based on renewable energy has gained widespread acceptance in society, especially in recent years. Among the initiatives currently being promoted are those promoted by higher education institutions that utilize available space on their campuses by configuring energy systems to incorporate renewable generation technologies. This study conducts a techno-economic analysis of a hybrid energy system that combines photovoltaic systems, wind turbines, hydrokinetic turbines, batteries, and fuel generators for the Center for Research, Innovation, and Technology Transfer of the Universidad Católica de Cuenca (UCACUE) in southern Ecuador. Using data collected on site, particularly from the CIITT campus meteorological station and recorded on the RESMUCC platform, the size of each renewable system configuration is optimized based on the three proposed energy control algorithms. The designs of the different configurations developed using the Homer Pro tool are then compared in terms of costs and energy generated. The results show that the system, which includes photovoltaic systems, wind turbines, hydrokinetic turbines, and fuel-powered generators, has the lowest cost, at USD 0.33/kWh. Full article
Show Figures

Figure 1

40 pages, 8881 KiB  
Article
Optimal Sustainable Energy Management for Isolated Microgrid: A Hybrid Jellyfish Search-Golden Jackal Optimization Approach
by Dilip Kumar, Yogesh Kumar Chauhan, Ajay Shekhar Pandey, Ankit Kumar Srivastava, Raghavendra Rajan Vijayaraghavan, Rajvikram Madurai Elavarasan and G. M. Shafiullah
Sustainability 2025, 17(11), 4801; https://doi.org/10.3390/su17114801 - 23 May 2025
Viewed by 564
Abstract
This study presents an advanced hybrid energy management system (EMS) designed for isolated microgrids, aiming to optimize the integration of renewable energy sources with backup systems to enhance energy efficiency and ensure a stable power supply. The proposed EMS incorporates solar photovoltaic (PV) [...] Read more.
This study presents an advanced hybrid energy management system (EMS) designed for isolated microgrids, aiming to optimize the integration of renewable energy sources with backup systems to enhance energy efficiency and ensure a stable power supply. The proposed EMS incorporates solar photovoltaic (PV) and wind turbine (WT) generation systems, coupled with a battery energy storage system (BESS) for energy storage and management and a microturbine (MT) as a backup solution during low generation or peak demand periods. Maximum power point tracking (MPPT) is implemented for the PV and WT systems, with additional control mechanisms such as pitch angle, tip speed ratio (TSR) for wind power, and a proportional-integral (PI) controller for battery and microturbine management. To optimize EMS operations, a novel hybrid optimization algorithm, the JSO-GJO (Jellyfish Search and Golden Jackal hybrid Optimization), is applied and benchmarked against Particle Swarm Optimization (PSO), Bacterial Foraging Optimization (BFO), Artificial Bee Colony (ABC), Grey Wolf Optimization (GWO), and Whale Optimization Algorithm (WOA). Comparative analysis indicates that the JSO-GJO algorithm achieves the highest energy efficiency of 99.20%, minimizes power losses to 0.116 kW, maximizes annual energy production at 421,847.82 kWh, and reduces total annual costs to USD 50,617,477.51. These findings demonstrate the superiority of the JSO-GJO algorithm, establishing it as a highly effective solution for optimizing hybrid isolated EMS in renewable energy applications. Full article
(This article belongs to the Special Issue Smart Grid Technologies and Energy Sustainability)
Show Figures

Figure 1

Back to TopTop