Learning from Arctic Microgrids: Cost and Resiliency Projections for Renewable Energy Expansion with Hydrogen and Battery Storage
Abstract
1. Introduction
2. Materials and Methods
2.1. Approach
2.2. Data and Model Validation
2.3. Simulation Scenarios for Techno-Economic Comparisons
2.4. Parameters and Sizing
Parameter Group | Parameter | Value |
---|---|---|
Economic parameters | Diesel fuel cost | 3.27 USD/gal [9] |
Inflation rate | 3% [39] | |
Discount rate | 6% | |
Project lifetime | 25 years | |
Diesel generators | Min. run time | 60 min |
Min. load ratio | 30% | |
Overhaul interval | 30,000 h | |
Grid parameters | Dispatch strategy | Load-following |
Max. capacity shortage | 1% | |
Operating reserves 1 | 30% |
Component | Capital Cost | Replacement Cost | O&M |
---|---|---|---|
EWT wind turbines † | USD 5500/kW | 100% | USD 75/kW/year |
Solar PV † | USD 3250/kW | 100% | USD 10/kW/year |
950 kWh Li-ion BESS † | USD 1000/kWh | 75% | USD 10/kWh/year |
ABB inverter † | USD 270/kW | 100% | USD 0/year ‡ |
4 MWh Li-ion BESS [40] † | USD 500/kWh | 100% | USD 8.8/kWh/year |
1 MW wind turbines [15] | USD 6000/kW | 100% | USD 75/kW/year |
PEM electrolyzer [38] | USD 2000/kW | 20% ** | USD 100/kW/year |
PEM fuel cell [35] | USD 2000/kW | 20% ** | USD 0.02/op. h |
H2 cylinder storage [34] * | USD 1500/kg | 100% | USD 30/kg/year |
2.5. Assessing Seasonal Storage
3. Results and Discussion
3.1. Lowest Cost Scenarios Across Microgrid Architectures
3.2. Sensitivity Analysis
3.3. Feasibility of Seasonal Storage
4. Conclusions
4.1. Key Trends
4.2. Limitations and Future Work
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BESS | Battery energy storage system |
CAPEX | Capital expenditures |
HOMER | Hybrid Optimization of Multiple Energy Resources |
HRM | Hybrid renewable microgrid |
LCOE | Levelized cost of energy |
MiLP | Mixed-integer linear programming |
NPC | Net present cost |
OPEX | Operating expenses |
O&M | Operations and maintenance |
PEM | Proton-exchange membrane |
PtH | Power-to-hydrogen |
References
- Smil, V. Energy and Civilization: A History; The MIT Press: Cambridge, MA, USA, 2017. [Google Scholar]
- IEA. World Energy Outlook 2024—Analysis; International Energy Agency: Paris, France, 2024. [Google Scholar]
- Smith, O.; Cattell, O.; Farcot, E.; O’Dea, R.D.; Hopcraft, K.I. The effect of renewable energy incorporation on power grid stability and resilience. Sci. Adv. 2022, 8, eabj6734. [Google Scholar] [CrossRef] [PubMed]
- Oyekale, J.; Petrollese, M.; Tola, V.; Cau, G. Impacts of Renewable Energy Resources on Effectiveness of Grid-Integrated Systems: Succinct Review of Current Challenges and Potential Solution Strategies. Energies 2020, 13, 4856. [Google Scholar] [CrossRef]
- Azeem, F.; Narejo, G.B.; Shah, U.A. Integration of renewable distributed generation with storage and demand side load management in rural islanded microgrid. Energy Effic. 2020, 13, 217–235. [Google Scholar] [CrossRef]
- Trivedi, R.; Patra, S.; Sidqi, Y.; Bowler, B.; Zimmermann, F.; Deconinck, G.; Papaemmanouil, A.; Khadem, S. Community-Based Microgrids: Literature Review and Pathways to Decarbonise the Local Electricity Network. Energies 2022, 15, 918. [Google Scholar] [CrossRef]
- Holdmann, G.P.; Wies, R.W.; Vandermeer, J.B. Renewable Energy Integration in Alaska’s Remote Islanded Microgrids: Economic Drivers, Technical Strategies, Technological Niche Development, and Policy Implications. Proc. IEEE 2019, 107, 1820–1837. [Google Scholar] [CrossRef]
- Green, N.; Mueller-Stoffels, M.; Whitney, E. An Alaska case study: Diesel generator technologies. J. Renew. Sustain. Energy 2017, 9, 061701. [Google Scholar] [CrossRef]
- Alaska Energy Authority. Power Cost Equalization Program FY24 Report; Technical Report; Alaska Energy Authority: Anchorage, AK, USA, 2025. [Google Scholar]
- Energy Information Administration. Alaska State Energy Profile Data. 2025. Available online: https://www.eia.gov/state/print.php?sid=AK (accessed on 13 February 2025).
- IEA. Integrating Solar and Wind; Technical Report; International Energy Agency: Paris, France, 2024. [Google Scholar]
- Meadows, R.; Edgerly, E.; Jordan, R.; Beshilas, L. Renewable Energy Integration in Remote Alaska Communities; Technical Report NREL/TP-5700-90685, 2522802, MainId: 9246; U.S. Department of Energy: Washington, DC, USA, 2025. [CrossRef]
- Whitney, E.; Pike, C. An Alaska case study: Solar photovoltaic technology in remote microgrids. J. Renew. Sustain. Energy 2017, 9, 061704. [Google Scholar] [CrossRef]
- VanderMeer, J.; Mueller-Stoffels, M.; Whitney, E. Wind power project size and component costs: An Alaska case study. J. Renew. Sustain. Energy 2017, 9, 061703. [Google Scholar] [CrossRef]
- Kotzebue Electric Association. Our Renewable Energy. 2022. Available online: https://www.kea.coop/renewable-energy/our-renewable-energy/ (accessed on 13 February 2025).
- Alaska Energy Authority. Power Cost Equalization Program FY05 Report; Technical Report; Alaska Energy Authority: Anchorage, AK, USA, 2006. [Google Scholar]
- Vaziri Rad, M.A.; Kasaeian, A.; Niu, X.; Zhang, K.; Mahian, O. Excess electricity problem in off-grid hybrid renewable energy systems: A comprehensive review from challenges to prevalent solutions. Renew. Energy 2023, 212, 538–560. [Google Scholar] [CrossRef]
- Ismail, M.S.; Moghavvemi, M.; Mahlia, T.M.I.; Muttaqi, K.M.; Moghavvemi, S. Effective utilization of excess energy in standalone hybrid renewable energy systems for improving comfort ability and reducing cost of energy: A review and analysis. Renew. Sustain. Energy Rev. 2015, 42, 726–734. [Google Scholar] [CrossRef]
- Launch Alaska. ProjectSpotlight: Kotzebue Electric Association. 2022. Available online: https://www.launchalaska.com/deployment/kotzebue-electric (accessed on 6 June 2025).
- Jacobson, M.Z.; Cameron, M.A.; Hennessy, E.M.; Petkov, I.; Meyer, C.B.; Gambhir, T.K.; Maki, A.T.; Pfleeger, K.; Clonts, H.; McEvoy, A.L.; et al. 100% clean and renewable Wind, Water, and Sunlight (WWS) all-sector energy roadmaps for 53 towns and cities in North America. Sustain. Cities Soc. 2018, 42, 22–37. [Google Scholar] [CrossRef]
- Jacobson, M.Z. Batteries or hydrogen or both for grid electricity storage upon full electrification of 145 countries with wind-water-solar? iScience 2024, 27, 108988. [Google Scholar] [CrossRef] [PubMed]
- Bolt, G.; Wilber, M.; Huang, D.; Sambor, D.J.; Aggarwal, S.; Whitney, E. Modeling and Evaluating Beneficial Matches between Excess Renewable Power Generation and Non-Electric Heat Loads in Remote Alaska Microgrids. Sustainability 2022, 14, 3884. [Google Scholar] [CrossRef]
- Mitchell, A.; Madden, D.; Wilber, M.; Dolan, C. Wind Economic Analysis Project: An Alaska Case Study for Integration of High-Penetration Wind Energy in Marshall, AK; Technical Report UAF/ACEP/TP-02-0001; Alaska Center for Energy and Power (ACEP): Fairbanks, AK, USA, 2024. [Google Scholar]
- Simpkins, T.; Cutler, D.; Hirsch, B.; Olis, D.; Anderson, K. Cost-optimal pathways to 75% fuel reduction in remote Alaskan villages. In Proceedings of the 2015 IEEE Conference on Technologies for Sustainability (SusTech), Ogden, UT, USA, 30 July–1 August 2015; pp. 125–130. [Google Scholar] [CrossRef]
- Giovanniello, M.A.; Wu, X.Y. Hybrid lithium-ion battery and hydrogen energy storage systems for a wind-supplied microgrid. Appl. Energy 2023, 345, 121311. [Google Scholar] [CrossRef]
- Dawood, F.; Shafiullah, G.M.; Anda, M. Stand-Alone Microgrid with 100% Renewable Energy: A Case Study with Hybrid Solar PV-Battery-Hydrogen. Sustainability 2020, 12, 2047. [Google Scholar] [CrossRef]
- Hunter, C.A.; Penev, M.M.; Reznicek, E.P.; Eichman, J.; Rustagi, N.; Baldwin, S.F. Techno-economic analysis of long-duration energy storage and flexible power generation technologies to support high-variable renewable energy grids. Joule 2021, 5, 2077–2101. [Google Scholar] [CrossRef]
- Van, L.P.; Chi, K.D.; Duc, T.N. Review of hydrogen technologies based microgrid: Energy management systems, challenges and future recommendations. Int. J. Hydrogen Energy 2023, 48, 14127–14148. [Google Scholar] [CrossRef]
- Whitney, E.; Koleva, M.; Kilcher, L.; Raun, J. Alaska Hydrogen Opportunities Report; Technical Report NREL/TP–5700-88753, UAF/ACEP/TP-05-0001, 2483257; Alaska Center for Energy and Power: Fairbanks, AK, USA, 2024. [Google Scholar] [CrossRef]
- Toal, H.; Pike, C.; Riley, D.; Burnham, L. Optimizing a Hybrid East-West Vertical and Equator-Facing Bifacial Solar PV Array for a High-Latitude Microgrid. In Proceedings of the 2024 IEEE 52nd Photovoltaic Specialist Conference (PVSC), Seattle, WA, USA, 9–14 June 2024; pp. 1775–1777. [Google Scholar] [CrossRef]
- Huld, T.; Müller, R.; Gambardella, A. A new solar radiation database for estimating PV performance in Europe and Africa. Sol. Energy 2012, 86, 1803–1815. [Google Scholar] [CrossRef]
- HOMER Pro Support 3.16. Available online: https://support.ul-renewables.com/homer-manuals-pro/index.html (accessed on 1 January 2024).
- National Renewable Energy Laboratory. Annual Technology Baseline 2024. 2024. Available online: https://atb.nrel.gov/ (accessed on 25 March 2025).
- MIT Energy Initiative. The Future of Energy Storage; Massachusetts Institute of Technology: Cambridge, MA, USA, 2022. [Google Scholar]
- U.S. Department of Energy. Hydrogen and Fuel Cell Technologies Office Multi-Year Program Plan: Fuel Cell Technologies; Technical Report; U.S. Department of Energy: Washington, DC, USA, 2024.
- Arjona, V. Electrolyzer Installations in the United States; Technical Report 23002; U.S. Department of Energy: Washington, DC, USA, 2023.
- Kleen, G.; Gibbons, W.; Fornaciari, J. Heavy-Duty Fuel Cell System Cost; Technical Report 23002; U.S. Department of Energy: Washington, DC, USA, 2023.
- Badgett, A.; Brauch, J.; Thatte, A.; Rubin, R.; Skangos, C.; Wang, X.; Ahluwalia, R.; Pivovar, B.; Ruth, M. Updated Manufactured Cost Analysis for Proton Exchange Membrane Water Electrolyzers; Technical Report NREL/TP–6A20-87625, 2311140, MainId:88400; NREL: Golden, CO, USA, 2024. [CrossRef]
- Kneifel, J.D. Energy Price Indices and Discount Factors for Life-Cycle Cost Analysis—2024: Annual Supplement to NIST Handbook 135; NIST: Gaithersburg, MD, USA, 2024. [Google Scholar]
- Tesla. Megapack: Utility-Scale Energy Storage. 2025. Available online: https://www.tesla.com/megapack (accessed on 16 May 2025).
Scenario | Minimum Renewable %1 | Diesel (kW) | Solar (kW) | Wind (kW) | BESS (kWh) | H2 Considered |
---|---|---|---|---|---|---|
No renewables (NR) | 0% | 7895 | 0 | 0 | 0 | No |
Base case (BC) | 25% | 7895 | 1206 | 1800 | 950 | No |
Near-term (NT) | 50% | 7895 | 2206 | 3800 | 4000–16,000 | No |
Medium-term (MT) | 75% | ? | ? | ? | ? | Yes |
Long-term (LT) | 90% | ? | ? | ? | ? | Yes |
Electrolyzer (kW) | Fuel Cell (kW) | H2 Storage (kg) | Storage Duration (h) |
---|---|---|---|
800 | 500 | 840 | 4 |
2500 | 1000 | 3000 | 12 |
5000 | 3500 | 5000 | 24 |
10,000 | 48 |
Scenario | NPC (USD millions) | LCOE (USD/kWh) | CAPEX (USD millions) | Renewable Fraction * (%) | Diesel Consumed (gallons) |
---|---|---|---|---|---|
No renewables (NR) | USD 114 | USD 0.30 | USD 0.00 | 0.0% | 1,410,000 |
Base case (BC) | USD 93.9 | USD 0.25 | USD 4.57 | 28% | 1,030,000 |
Near-term (no grants) | USD 87.5 | USD 0.23 | USD 21.8 | 55.2% | 657,000 |
Near-term(grant-funded) | USD 71.2 | USD 0.19 | USD 7.07 | 57.7% | 621,000 |
Medium-term battery( MT-BESS) | USD 92.9 | USD 0.24 | USD 49.3 | 75.0% | 363,000 |
Medium-term hybrid (MT-BESS/H2) | USD 95.1 | USD 0.25 | USD 50.2 | 75.0% | 366,000 |
Long-term battery (LT-BESS) | USD 137 | USD 0.36 | USD 98.5 | 90.1% | 143,000 |
Long-term hybrid (LT-BESS/H2) | USD 138 | USD 0.36 | USD 98.4 | 90.0% | 144,000 |
Scenario | Min. Renewable % | Diesel (kW) | Solar (kW) | Wind (kW) | BESS (MWh) | H2 Storage * |
---|---|---|---|---|---|---|
No renewables (NR) | 0% | 7895 | 0 | 0 | 0 | N/A |
Base case (BC) | 25% | 7895 | 1206 | 1800 | 0.95 | N/A |
Near-term | 50% | 7895 | 2206 | 3800 | 4–16 | N/A |
Medium-term battery (MT-BESS) | 75% | 2865 | 5000 | 5800 | 16 | N/A |
Medium-term hybrid (MT-BESS/H2) | 75% | 2865 | 4700 | 5800 | 12 | 840 kg (4-h) |
Long-term battery (LT-BESS) | 90% | 2865 | 9000 | 8800 | 44 | N/A |
Long-term hybrid (LT-BESS/H2) | 90% | 2865 | 9000 | 8800 | 20 | 3000 kg (12-h) |
Scenario | Electrolyzer (kW) | Fuel Cell (kW) | H2 Storage (kg) | Battery (MWh) | NPC (millions USD) |
---|---|---|---|---|---|
No hydrogen | 0 | 0 | 0 | 44 | USD 137 |
Pilot-scale | 800 | 500 | 840 | 32 | USD 138 |
Moderate | 2500 | 1000 | 3000 | 20 | USD 138 |
Large-scale | 5000 | 3500 | 5000 | 0 | USD 155 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McKinley, P.C.; Wilber, M.; Whitney, E. Learning from Arctic Microgrids: Cost and Resiliency Projections for Renewable Energy Expansion with Hydrogen and Battery Storage. Sustainability 2025, 17, 5996. https://doi.org/10.3390/su17135996
McKinley PC, Wilber M, Whitney E. Learning from Arctic Microgrids: Cost and Resiliency Projections for Renewable Energy Expansion with Hydrogen and Battery Storage. Sustainability. 2025; 17(13):5996. https://doi.org/10.3390/su17135996
Chicago/Turabian StyleMcKinley, Paul Cheng, Michelle Wilber, and Erin Whitney. 2025. "Learning from Arctic Microgrids: Cost and Resiliency Projections for Renewable Energy Expansion with Hydrogen and Battery Storage" Sustainability 17, no. 13: 5996. https://doi.org/10.3390/su17135996
APA StyleMcKinley, P. C., Wilber, M., & Whitney, E. (2025). Learning from Arctic Microgrids: Cost and Resiliency Projections for Renewable Energy Expansion with Hydrogen and Battery Storage. Sustainability, 17(13), 5996. https://doi.org/10.3390/su17135996