Evaluating Landscape Fragmentation and Consequent Environmental Impact of Solar Parks Installation in Natura 2000 Protected Areas: The Case of the Thessaly Region, Central Greece
Abstract
1. Introduction
2. Materials and Methods
2.1. Case Study Area
2.2. Materials
2.3. Methods
2.3.1. Collection and Analysis of Geospatial Data
2.3.2. Creation of Possible Scenarios
- S0: It constitutes the reference scenario, meaning there are no solar park projects in the study area (CLC18 data only)—see Figure 3.
- S1: The most likely scenario for the distribution of solar parks in the study area, as it includes existing parks and all parks approved for installation—see Figure 4.
- S2: The over-installation scenario, which represents the installation of solar park projects at all stages of permitting. This includes all projects in scenario S1 along with those with a low probability of installation—see Figure 5.
- SL1: It concerns the installation of solar parks with a capacity of less than 1 MW (considered “small”), for which, under the legislation, the environmental impact assessment process is relatively simple.
- SG1: It concerns the installation of all solar parks, including those with a capacity less than 1 MW as well as those with a capacity of greater than 1 MW (considered “large”), as in Scenario S2. For the large installations, under the legislation, the environmental impact assessment process includes field work.
- S0-CH: It concerns only the critical habitats of protected bird species in the SPA in the reference Scenario S0, i.e., excluding all solar parks in the study area (CLC 18 data only)
- SL1-CH: It concerns only the critical habitats of the protected bird species in the SPA, using the corresponding land cover data and solar park data in the Scenario SL1.
- SG1-CH: It concerns only the critical habitats of the protected bird species in the SPA, using the corresponding land cover data and solar park data in the Scenario SG1.
2.3.3. Calculation of Landscape Metrics and Comparison of the Different Scenarios
- Seasonal Herbaceous Vegetation (SHV). This is agricultural land with seasonal herbaceous vegetation.
- Permanent Herbaceous Vegetation (PHV). This category includes all arable land with permanent herbaceous vegetation (including intensive and extensive grasslands). It also includes all vegetation-covered, but non-woody surfaces, including natural grasslands, clear cuts, pastures, parks, lawns in residential gardens, or green areas related to traffic. In the study area, PHV refers to grasslands and pastures with herbaceous vegetation that is permanent but not woody, and it can be found scattered among the seasonal agricultural fields.
- Sparse or No Vegetation (SNV). According to the EUNIS (European Environment Agency), the SNV type includes miscellaneous bare habitats, with vascular plants absent or very sparse. In the study, it refers to sparse vegetation and unstable areas with stones, boulders, or rubble on steep slopes where the vegetation layer covers between 10% and 50% of the surface, which can be abandoned areas and areas that have bare surfaces (rocks, boulders, bare soil). This type of land can be found in marginal areas of the Thessaly plain.
3. Results
3.1. Landscape Metrics
3.2. Changes in Land Cover
3.3. Changes in Connectivity
3.4. Changes in Fragmentation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EU | European Union |
SPA | Special Protection Area |
UAA | Utilized Agricultural Area |
GIS | Geographic Information System |
LecoS | Landscape ecology Statistics |
References
- Hasan, S.S.; Zhen, L.; Miah, M.G.; Ahamed, T.; Samie, A. Impact of land use change on ecosystem services: A review. Environ. Dev. 2020, 34, 100527. [Google Scholar] [CrossRef]
- Davison, C.W.; Rahbek, C.; Morueta-Holme, N. Land-use change and biodiversity: Challenges for assembling evidence on the greatest threat to nature. Glob. Change Biol. 2021, 27, 5414–5429. [Google Scholar] [CrossRef]
- Allan, J.R.; Possingham, H.P.; Atkinson, S.C.; Waldron, A.; Di Marco, M.; Butchart, S.H.M.; Adams, V.M.; Kissling, W.D.; Worsdell, T.; Sandbrook, C.; et al. The minimum land area requiring conservation attention to safeguard biodiversity. Science 2022, 376, 1094–1101. [Google Scholar] [CrossRef]
- Caro, T.; Rowe, Z.; Berger, J.; Wholey, P.; Dobson, A. An inconvenient misconception: Climate change is not the principal driver of biodiversity loss. Conserv. Lett. 2022, 15, e12868. [Google Scholar] [CrossRef]
- Jaureguiberry, P.; Titeux, N.; Wiemers, M.; Bowler, D.E.; Coscieme, L.; Golden, A.S.; Guerra, C.A.; Jacob, U.; Takahashi, Y.; Settele, J.; et al. The direct drivers of recent global anthropogenic biodiversity loss. Sci. Adv. 2022, 8, eabm9982. [Google Scholar] [CrossRef]
- Isbell, F.; Balvanera, P.; Mori, A.S.; He, J.; Bullock, J.M.; Regmi, G.R.; Seabloom, E.W.; Ferrier, S.; Sala, O.E.; Guerrero-Ramírez, N.R.; et al. Expert perspectives on global biodiversity loss and its drivers and impacts on people. Front. Ecol. Environ. 2023, 21, 94–103. [Google Scholar] [CrossRef]
- Kati, V.; Kassara, C.; Panagos, P.; Tampouratzi, L.; Gotsis, D.; Tzortzakaki, O.; Petridou, M.; Psaralexi, M.; Sidiropoulos, L.; Vasilakis, D.; et al. The overlooked threat of land take from wind energy infrastructures: Quantification, drivers and policy gaps. J. Environ. Manag. 2023, 348, 119340. [Google Scholar] [CrossRef] [PubMed]
- McWilliams, C.; Lurgi, M.; Montoya, J.M.; Sauve, A.; Montoya, D. The stability of multitrophic communities under habitat loss. Nat. Commun. 2019, 10, 2322. [Google Scholar] [CrossRef] [PubMed]
- Brambilla, M.; Guidali, F.; Begri, I. The importance of an agricultural mosaic for Cirl Buntings Emberiza cirlus in Italy. Ibis 2008, 150, 628–632. [Google Scholar] [CrossRef]
- Terres, J.-M.; Scacchiafichi, L.N.; Wania, A.; Ambar, M.; Anguiano, E.; Buckwell, A.; Coppola, A.; Gocht, A.; Källström, H.N.; Pointereau, P.; et al. Farmland abandonment in Europe: Identification of drivers and indicators, and development of a composite indicator of risk. Land Use Policy 2015, 49, 20–34. [Google Scholar] [CrossRef]
- Bengtsson, J.; Bullock, J.M.; Egoh, B.; Everson, C.; Everson, T.; O’Connor, T.; O’Farrell, P.J.; Smith, H.G.; Lindborg, R. Grasslands—more important for ecosystem services than you might think. Ecosphere 2019, 10, e02582. [Google Scholar] [CrossRef]
- Moran, J.; Byrne, D.; Carlier, B.; Finn, J.A.; Uallachain, D.; Sullivan, C.A. Management of high nature value farmland in the Republic of Ireland: 25 years evolving toward locally adapted results-orientated solutions and payments. Ecol. Soc. 2021, 26, 20. [Google Scholar] [CrossRef]
- Voudouri, A.; Chaideftou, E.; Sfougaris, A. Topsoil seed bank as feeding ground for farmland birds: A comparative assessment in agricultural habitats. Land 2021, 10, 967. [Google Scholar] [CrossRef]
- Alblas, E.; van Zeben, J. ‘Farming out’ biodiversity: Implementing EU nature law through agri-environmental schemes. Earth Syst. Gov. 2023, 17, 100180. [Google Scholar] [CrossRef]
- Eurostat Statistics Explained. Glossary: Utilised Agricultural Area (UAA). Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Glossary:Utilised_agricultural_area_(UAA) (accessed on 5 October 2024).
- Perpiñá Castillo, C.; Kavalov, B.; Diogo, V.; Jacobs-Crisioni, C.; Batista e Silva, F.; Lavalle, C. Agricultural Land Abandonment in the EU Within 2015–2030; European Commission: Brussels, Belgium, 2018. [Google Scholar]
- Zakkak, S.; Chatzaki, M.; Karamalis, N.; Kati, V. Spiders in the context of agricultural land abandonment in Greek Mountains: Species responses, community structure and the need to preserve traditional agricultural landscapes. J. Insect Conserv. 2014, 18, 599–611. [Google Scholar] [CrossRef]
- Zakkak, S.; Radovic, A.; Nikolov, S.C.; Shumka, S.; Kakalis, L.; Kati, V. Assessing the effect of agricultural land abandonment on bird communities in southern-eastern Europe. J. Environ. Manag. 2015, 164, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Nunez-Regueiro, M.; Siddiqui, S.E.; Fletcher, R.J., Jr. Effects of bioenergy on biodiversity arising from land-use change and crop type. Conserv. Biol. 2019, 35, 77–87. [Google Scholar] [CrossRef]
- Szangolies, L.; Rohwander, M.S.; Jeltsch, F. Single large AND several small habitat patches: A community perspective on their importance for biodiversity. Basic Appl. Ecol. 2022, 65, 16–27. [Google Scholar] [CrossRef]
- Chontos, K.; Tsiripidis, I. Open Habitats under Threat in Mountainous, Mediterranean Landscapes: Land Abandonment Consequences in the Vegetation Cover of the Thessalian Part of Mt Agrafa (Central Greece). Land 2023, 12, 846. [Google Scholar] [CrossRef]
- European Environment Agency. State of Nature in the EU—Results from Reporting Under the Nature Directives 2013–2018; EEA Report No 10/2020; Publications Office of the European Union: Luxembourg, 2020; Available online: https://www.eea.europa.eu/en/analysis/publications/state-of-nature-in-the-eu-2020 (accessed on 20 August 2024).
- REN21. Renewables 2023 Global Status Report Collection: Global Overview; REN21 Secretariat: Paris, France, 2023; Available online: https://www.ren21.net/gsr-2023/ (accessed on 15 September 2024).
- European Commission. The Wildlife Sensitivity Mapping Manual: Practical Guidance for Renewable Energy Planning in the European Union; Publications Office of the European Union: Luxembourg, 2020; Available online: https://op.europa.eu/en/publication-detail/-/publication/a3f185b8-0c30-11eb-bc07-01aa75ed71a1/language-en (accessed on 10 April 2024).
- Sargentis, G.-F.; Siamparina, P.; Sakki, G.-K.; Efstratiadis, A.; Chiotinis, M.; Koutsoyiannis, D. Agricultural Land or Photovoltaic Parks? The Water–Energy–Food Nexus and Land Development Perspectives in the Thessaly Plain, Greece. Sustainability 2021, 13, 8935. [Google Scholar] [CrossRef]
- Tinsley, E.; Froidevaux, J.S.P.; Zsebok, S.; Szabadi, K.L.; Jones, G. Renewable Energies and Biodiversity: Impact of Ground-Mounted Solar Photovoltaic Sites on Bat Activity. J. Appl. Ecol. 2023, 60, 1752–1762. [Google Scholar] [CrossRef]
- Kirk-Hall, P.; Whitney, W.; Richardson, J. Land Use Conflicts Between Wind and Solar Renewable Energy and Agriculture Uses. Law Fac. Scholarsh. 2022, 104, 21. Available online: https://researchrepository.wvu.edu/cgi/viewcontent.cgi?article=1104&context=law_faculty (accessed on 10 May 2024).
- Das, S.; Adhikary, P.P.; Kumar, P.; Bera, B. Urban Wetland Fragmentation and Ecosystem Service Assessment Using Integrated Machine Learning Algorithm and Spatial Landscape Analysis. Geocarto Int. 2021, 37, 7800–7818. [Google Scholar] [CrossRef]
- Zatelli, P.; Gobbi, S.; Tattoni, C.; Cantiani, M.G.; La Porta, N.; Rocchini, D.; Zorzi, N.; Ciolli, M. Relevance of the Cell Neighborhood Size in Landscape Metrics Evaluation and Free or Open Source Software Implementations. ISPRS Int. J. Geo-Inf. 2019, 8, 586. [Google Scholar] [CrossRef]
- Murunga, K.W.; Nyadawa, M.; Sang, J.; Cheruiyot, C. Characterizing Landscape Fragmentation of Koitobos River Sub-Basin, Trans-Nzoia, Kenya. Heliyon 2024, 10, e29237. [Google Scholar] [CrossRef] [PubMed]
- Christakis, C.E.; Sfougaris, A.I. Foraging Habitat Selection by the Lesser Kestrel Falco naumanni During the Different Phases of Breeding and the Post Breeding Period in Central Greece. Ornithol. Sci. 2021, 20, 175–183. [Google Scholar] [CrossRef]
- Bounas, A. Falco naumanni. The Red List of Greece. Available online: https://redlist.necca.gov.gr/en/assessment/?id=224415641 (accessed on 20 October 2024).
- Bounas, A.; Sotiropoulos, K. Change of Feeding Strategy Prior to Migration: A Comparative Diet Analysis in the Lesser Kestrel (Falco naumanni). Avian Biol. Res. 2017, 10, 27–35. [Google Scholar] [CrossRef]
- Christakis, C.; Makri, M.; Alivizatos, H.; Sfougaris, A. Lesser Kestrel Falco naumanni Diet During Different Phases of Breeding and Post Breeding Periods in Central Greece. Avocetta 2023, 47, 1–17. [Google Scholar] [CrossRef]
- Portolou, D.; Bourdakis, S.; Vlachos, C.; Kastritis, T.; Dimalexis, T. (Eds.) Important Bird Areas of Greece: Priority Sites for Conservation; Hellenic Ornithological Society: Athens, Greece, 2009. (In Greek) [Google Scholar]
- Aparicio, J.M.; Muñoz, A.; Cordero, P.J.; Bonal, R. Causes of the Recent Decline of a Lesser Kestrel (Falco naumanni) Population Under an Enhanced Conservation Scenario. Ibis 2022, 165, 388–402. [Google Scholar] [CrossRef]
- Friedemann, G.; Yom-Tov, Y.; Motro, U.; Leshem, Y. Shift in Nesting Ground of the Long-Legged Buzzard (Buteo rufinus) in Judea, Israel—An Effect of Habitat Change. Biol. Conserv. 2011, 144, 402–406. [Google Scholar] [CrossRef]
- Demedzhiev, D.; Dobrev, V.; Popgeorgiev, G. Effects of Habitat Change on Territory Occupancy, Breeding Density and Breeding Success of Long-Legged Buzzard (Buteo rufinus Cretzschmar, 1827) in Besaparski Ridove Special Protection Area (Natura 2000), Southern Bulgaria. Acta Zool. Bulg. 2014, 5, 191–200. [Google Scholar]
- Baltag, E.S.; Pocora, V.; Bolboaca, L.E.; Ion, C. The Importance of Low-Intensive Agricultural Landscape for Birds of Prey. Land 2021, 10, 252. [Google Scholar] [CrossRef]
- Demedzhiev, D. Breeding Parameters and Factors Influencing the Reproduction of an Expanding Long-Legged Buzzard (Buteo rufinus) Population Under High Breeding Density Conditions. J. Ornithol. 2022, 163, 405–415. [Google Scholar] [CrossRef]
- CLCplus Backbone 2018 (Raster 10 m), Europe, 3-Yearly. European Union’s Copernicus Land Monitoring Service Information. Available online: https://sdi.eea.europa.eu/catalogue/copernicus/api/records/cd534ebf-f553-42f0-9ac1-62c1dc36d32c?language=all (accessed on 12 December 2023).
- Natura 2000. European Network of Protected Sites. Available online: https://sdi.eea.europa.eu/catalogue/srv/api/records/0801ff11-24ae-4c6b-852f-029965df5bc5?language=all (accessed on 15 August 2024).
- Hadjicharalambous, H.; Dimalexis, A.; Bourdakis, S.; Bouzbouras, D. Definition of Methodology and Specification Drafting for the Evaluation of Areas and Their Designation as Special Protection Areas for Birds, with Pilot Implementation in 10 Areas: Volume of Analytical Specifications; Hellenic Ministry for the Environment, Physical Planning and Public Works, Athens and Greek Biotope/Wetland Centre (EKBY): Thermi, Greece, 2004. Available online: https://ypen.gov.gr/wp-content/uploads/legacy/Files/Perivallon/Diaxeirisi%20Fysikoy%20Perivallontos/Ektheseis%20-%20Meletes/20200326_ornithologiki_aksiologisi_GR056.pdf (accessed on 19 June 2025). (In Greek)
- McGarigal, K.S.; Cushman, S.; Maile, N.; Ene, E. FRAGSTATS: Spatial Pattern Analysis Program for Categorical Maps. Available online: https://www.researchgate.net/publication/259011515_FRAGSTATS_Spatial_pattern_analysis_program_for_categorical_maps (accessed on 12 February 2024).
- Turner, M.G.; Gardner, R.H. Landscape Ecology in Theory: Pattern and Process, 2nd ed.; Springer: New York, NY, USA, 2015. [Google Scholar]
- Rehbein, J.A.; Watson, J.E.M.; Lane, J.L.; Sonter, L.J.; Venter, O.; Atkinson, S.C.; Allan, J.R. Renewable energy development threatens many globally important biodiversity areas. Glob. Change Biol. 2020, 26, 3040–3051. [Google Scholar] [CrossRef]
- Beinnun, L.; van Bochove, J.; Ng, C.; Fletcher, C.; Wilson, D.; Phair, N.; Carbone, G. Mitigating Biodiversity Impacts Associated with Solar and Wind Energy Development. Guidelines for Project Developers; IUCN: Gland, Switzerland; The Biodiversity Consultancy: Cambridge, UK, 2021. [Google Scholar]
- Kim, J.Y.; Koide, D.; Ishihama, F.; Kadoya, T.; Nishihiro, J. Current site planning of medium to large solar power systems accelerates the loss of the remaining semi-natural and agricultural habitats. Sci. Total Environ. 2021, 779, 146475. [Google Scholar] [CrossRef]
- Trisurat, Y.; Shrestha, R.P.; Alkemade, R. Land Use, Climate Change and Biodiversity Modelling: Perspectives and Applications; IGI Global: Hershey, PA, USA, 2011. [Google Scholar]
- Jung, M.; Leco, S. A python plugin for automated landscape ecology analysis. Ecol. Inform. 2016, 31, 18–21. [Google Scholar] [CrossRef]
- Thomas, K.A.; Jarchow, C.J.; Arundel, T.R.; Jamwal, P.; Borens, A.; Drost, C.A. Landscape-scale wildlife species richness metrics to inform wind and solar energy facility siting: An Arizona case study. Energy Policy 2018, 116, 145–152. [Google Scholar] [CrossRef]
- Klein, J.; Haverkamp, P.J.; Lindberg, E.; Griesser, M.; Eggers, S. Remotely sensed forest understory density and nest predator occurrence interact to predict suitable breeding habitat and the occurrence of a resident boreal bird species. Ecol. Evol. 2020, 10, 2238–2252. [Google Scholar] [CrossRef]
- Yang, X.; Mu, Y.; Yang, L.; Yu, Y.; Wu, Z. Impacts of climate change on forest biodiversity changes in Northeast China. Remote Sens. 2024, 16, 4058. [Google Scholar] [CrossRef]
- Schmiedel, I.; Bergmeir, E.; Culmsee, H. Plant species richness patterns along a gradient of landscape modification intensity in Lower Saxony, Germany. Landsc. Urban Plan. 2015, 141, 41–51. [Google Scholar] [CrossRef]
- Wei, X.; Xiao, X.; Li, Q.; Li, P.; Xiang, C. Evaluating the effectiveness of landscape configuration metrics from landscape composition metrics. Landsc. Ecol. Eng. 2017, 13, 169–181. [Google Scholar] [CrossRef]
- Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 2003, 34, 487–515. [Google Scholar] [CrossRef]
- Ernst & Young Global Limited (EY). Renewable Energy Country Attractiveness Index (RECAI) 2023, 61st ed.; Ernst & Young: London, UK, 2023. [Google Scholar]
- European Commission. Reasoned Opinion Art. 258 NATURE—Failure to Comply with Habitats Directive When Planning Windfarm Projects in Greece (Case Number INFR(2014)4073). Available online: https://ec.europa.eu/atwork/applying-eu-law/infringements-proceedings/infringement_decisions/?lang_code=en (accessed on 10 May 2024).
- Dimalexis, A.; Kastritis, T.; Manolopoulos, A.; Korbeti, M.; Fric, J.; Saravia Mullin, V.; Xirouchakis, S.; Bousbouras, D. Identification and Mapping of Sensitive Bird Areas to Wind Farm Development in Greece; Hellenic Ornithological Society: Athens, Greece, 2010; p. 126. [Google Scholar]
- WWF. Wind Farms in Thrace: Updating the Proposal for Proper Site Selection; WWF: Dadia, Athens, Greece, 2013. Available online: https://tethys.pnnl.gov/sites/default/files/publications/WWF-windfarms-Thrace.pdf (accessed on 15 May 2024).
- Kati, V.; Kassara, C.; Vrontisi, Z.; Moustakas, A. The biodiversity–wind energy–land use nexus in a global biodiversity hotspot. Sci. Total Environ. 2021, 768, 144471. [Google Scholar] [CrossRef]
- Gaston, K.J.; Jackson, S.F.; Nagy, A.; Cantu-Salazar, L.; Johnson, M. Protected areas in Europe: Principle & Practice. Ann. N. Y. Acad. Sci. 2008, 1134, 97–119. [Google Scholar] [CrossRef]
- Hasa, E.; Hysa, A.; Teqja, Z. Quantifying landscape fragmentation via effective mesh size landscape metric: Case of Albania. Agric. For. 2021, 67, 215–230. [Google Scholar] [CrossRef]
- Harrison, C.; Lloyd, H.; Field, C. Evidence Review of the Impact of Solar Farms on Birds, Bats and General Ecology, 1st ed.; Natural England: York, UK; Manchester Metropolitan University: Manchester, UK, 2017. [Google Scholar]
- Watson, J.E.M.; Venegas-Li, R.; Grantham, H.; Dudley, N.; Stolton, S.; Rao, M.; Woodley, S.; Hockings, M.; Burkart, K.; Simmonds, J.S.; et al. Priorities for protected area expansion so nations can meet their Kunming-Montreal Global Biodiversity Framework commitments. Integr. Conserv. 2023, 2, 1–16. [Google Scholar] [CrossRef]
- Hochkirch, A.; Schmitt, T.; Beninde, J.; Hiery, M.; Kinitz, T.; Kirschey, J.; Matenaar, D.; Rohde, K.; Stoefen, A.; Wagner, N.; et al. Europe Needs a New Vision for a Natura 2000 Network. Conserv. Lett. 2012, 6, 462–467. [Google Scholar] [CrossRef]
- Cooper, D.S. Industrial-scale solar projects and birds in the California desert: Assessing impacts and developing mitigation. In Proceedings of the Sonoran Joint Venture, Tucson, AZ, USA, 10 November 2016. [Google Scholar]
- Taylor, R.; Conway, J.; Gabb, O.; Gillespie, J. Potential Ecological Impacts of Ground-Mounted Photovoltaic Solar Panels; BSG Ecology: Newport, UK, 2019. [Google Scholar]
- Rahman, A.; Farrok, O.; Haque, M.M. Environmental impact of renewable energy source based electrical power plants: Solar, wind, hydroelectric, biomass, geothermal, tidal, ocean, and osmotic. Renew. Sustain. Energy Rev. 2022, 161, 112279. [Google Scholar] [CrossRef]
- Lafitte, A.; Sordello, R.; Ouedraogo, D.Y.; Thiery, C.; Marx, G.; Froidevaux, J.; Schatz, C.; Kerbiriou, C.; Gourdain, P.; Reyjol, Y. Existing evidence on the effects of photovoltaic panels on biodiversity: A systematic map with critical appraisal of study validity. Environ. Evid. 2023, 12, 25. [Google Scholar] [CrossRef] [PubMed]
- Peschel, R.; Peschel, T.; Marchand, M.; Hauke, J. Solar Parks—Profits for Biodiversity; Association of Energy Market Innovators (bne/Bundesverband Neue Energiewirtschaft e.V.): Berlin, Germany, 2019. [Google Scholar]
- Sathaye, J.; Lucon, O.; Rahman, A.; Christensen, J.; Denton, F.; Fujino, J.; Heath, G.; Mirya, M.; Rudnick, H.; Schlaepfer, A.; et al. Renewable Energy in the Context of Sustainable Development. In IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation; Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Seyboth, K., Matschoss, P., Kadner, S., Zwickel, P., Eickemeier, G., Hansen, G., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2011. [Google Scholar]
- Hernandez, R.R.; Easter, S.B.; Murphy-Mariscal, M.L.; Maestre, F.T.; Tavassoli, M.; Allen, E.B.; Barrows, C.W.; Belnap, J.; Ochoa-Hueso, R.; Ravi, S.; et al. Environmental impacts of utility-scale solar energy. Renew. Sustain. Energy Rev. 2014, 29, 766–779. [Google Scholar] [CrossRef]
- Dinesh, H.; Pearce, J.M. The potential of agrivoltaic systems. Renew. Sustain. Energy Rev. 2016, 54, 299–308. [Google Scholar] [CrossRef]
- Ravi, S.; Macknick, J.; Lobell, D.; Field, C.; Ganesan, K.; Jain, R.; Elchinger, M.; Stoltenberg, B. Colocation opportunities for large solar infrastructures and agriculture in drylands. Appl. Energy 2016, 165, 383–392. [Google Scholar] [CrossRef]
- Handler, R.; Pearce, J.M. Greener sheep: Life cycle analysis of integrated sheep agrivoltaic systems. Cleaner Energy Syst. 2022, 3, 100036. [Google Scholar] [CrossRef]
- Xia, Z.; Li, Y.; Zhang, W.; Chen, R.; Guo, S.; Zhang, P.; Du, P. Solar photovoltaic program helps turn deserts green in China: Evidence from satellite monitoring. J. Environ. Manag. 2022, 324, 116338. [Google Scholar] [CrossRef]
- Endiz, M.S. Agrivoltaic Systems: Combining Food and Energy Production. In Proceedings of the International Conference on Engineering Technologies (ICENTE’23), Konya, Turkey, 23–25 November 2023. [Google Scholar]
- Montag, H.; Parker, G.; Clarkson, T. The Effects of Solar Farms on Local Biodiversity: A Comparative Study; Clarkson and Woods: Blackford, UK; Wychwood Biodiversity: Kingsbridge, UK, 2016. [Google Scholar]
- Blaydes, H.; Potts, S.G.; Whyatt, J.D.; Armstrong, A. Opportunities to enhance pollinator biodiversity in solar parks. Renew. Sustain. Energy Rev. 2021, 145, 111065. [Google Scholar] [CrossRef]
- Jarčuška, B.; Gálffyová, M.; Schnürmacher, R.; Baláž, M.; Mišík, M.; Repel, M.; Fulín, M.; Kerestúr, D.; Lackovičová, Z.; Mojžiš, M.; et al. Solar parks can enhance bird diversity in agricultural landscape. J. Environ. Manag. 2024, 351, 119902. [Google Scholar] [CrossRef]
- Zanden, H.B.V.; Nelson, D.M.; Conkling, T.J.; Allison, T.D.; Diffendorfer, J.E.; Dietsch, T.V.; Fesnock, A.L.; Loss, S.R.; Ortiz, P.A.; Paulman, R.; et al. The geographic extent of bird populations affected by renewable-energy development. Conserv. Biol. 2024, 38, e14191. [Google Scholar] [CrossRef]
- Bošnjakovic, M.; Santa, R.; Crnac, Z.; Bošnjaković, T. Environmental Impact of PV Power Systems. Sustainability 2023, 15, 11888. [Google Scholar] [CrossRef]
- Beatty, B.; Macknick, J.; McCall, J.; Braus, G. Native Vegetation Performance Under a Solar PV Array at the National Wind Technology Center; David Buckner ESCO Associates Inc.: Skokie, IL, USA; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2017. Available online: www.nrel.gov/publications (accessed on 5 February 2024).
- Gasparatos, A.; Doll, C.N.H.; Esteban, M.; Ahmed, A.; Olang, T.A. Renewable energy and biodiversity: Implications for transitioning to a Green Economy. Renew. Sustain. Energy Rev. 2017, 70, 161–184. [Google Scholar] [CrossRef]
- Smallwood, K.S. Utility-scale solar impacts to volant wildlife. J. Wildl. Manag. 2022, 86, e22216. [Google Scholar] [CrossRef]
- Gustafson, E. Quantifying Landscape Spatial Pattern: What Is the State of the Art? Ecosystems 1998, 1, 143–156. [Google Scholar] [CrossRef]
Data | Source | Data Type | Date of Access |
---|---|---|---|
CLC + Backbone 2018 Europe, 3-yearly | Copernicus Land Monitoring Service | Raster—10 m | December 2023 |
Natura 2000 areas | European network of protected sites (Natura 2000) | Vector | July 2022 |
Critical avifauna habitats | Greek Ministry of Environment and Energy (https://ypen.gov.gr/perivallon/viopoikilotita/diktyo-natura-2000/ (accessed on 20 July 2022)) | Vector | July 2022 |
Solar parks with Producer Certificate (Power > 1 MW) | Greek Regulatory Authority for Waste, Energy & Water (RAAEY) (https://geo.rae.gr/ (accessed on 10 April 2024)) | Vector | April 2024 |
Solar parks with Installation Permit (Power > 1 MW) | Greek Regulatory Authority for Waste, Energy & Water (RAAEY) | Vector—Shapefile (shp.) | April 2024 |
Solar parks with Operating License (Power > 1 MW) | Greek Regulatory Authority for Waste, Energy & Water (RAAEY) (https://geo.rae.gr/ (accessed on 10 April 2024)) | Vector—Shapefile (shp.) | April 2024 |
Solar parks (Power < 1 MW) | Management Unit of Protected Areas of Thessaly—Natural Environment & Climate Change Agency. (https://www.thessaly.gov.gr/organotikidomi/ypiresia?gd_id=10&dnsi_id=2 (accessed on 5 May 2024)) | Descriptive data (centrobaric coordinates of installation fields, areas of installation land, park power capacity, etc.) | May 2024 |
Scenario | Metric | ||||
---|---|---|---|---|---|
Composition Metrics | Connectivity Metrics | Fragmentation Metrics | |||
PLAND | PLADJ | MESH | TE | ED | |
S0 | 74.483 | 88.5 | 45,667.172 | 3,497,100 | 36.47 |
S1 | 70.296 | 87.3 | 44,293.959 | 3,660,900 | 39.79 |
S2 | 65.638 | 87.5 | 34,140.697 | 3,368,900 | 36.47 |
SL1 | 69.873 | 87.6 | 44,668.738 | 3,538,000 | 38.84 |
SG1 | 64.701 | 87.5 | 33,349.116 | 3,319,600 | 36.13 |
S0-CH | 62.290 | 71.7 | 115.563 | 1,098,000 | 82.27 |
SL1-CH | 56.422 | 72.4 | 122.039 | 963,900 | 82.23 |
SG1-CH | 52.735 | 72.1 | 113.046 | 913,900 | 76.95 |
Scenario | Metric | ||||
---|---|---|---|---|---|
Composition Metrics | Connectivity Metrics | Fragmentation Metrics | |||
PLAND | PLADJ | MESH | TE | ED | |
S0 | 16.558 | 51.4 | 184.288 | 4,073,200 | 42.47 |
S1 | 15.053 | 51.7 | 16.080 | 3,675,200 | 39.94 |
S2 | 13.103 | 48.2 | 50.863 | 3,509,700 | 38.00 |
SL1 | 14.992 | 52.1 | 113.564 | 3,617,900 | 39.72 |
SG1 | 12.639 | 48.0 | 45.193 | 3,406,600 | 37.08 |
S0-CH | 22.073 | 40.6 | 5.683 | 996,800 | 74.68 |
SL1-CH | 18.107 | 42.0 | 4.861 | 789,400 | 67.34 |
SG1-CH | 16.828 | 40.2 | 4.229 | 766,400 | 64.53 |
Scenario | Metric | ||||
---|---|---|---|---|---|
Composition Metrics | Connectivity Metrics | Fragmentation Metrics | |||
PLAND | PLADJ | MESH | TE | ED | |
S0 | 0.261 | 28.4 | 0.027 | 111,800 | 1.17 |
S1 | 0.236 | 24.8 | 0.021 | 108,900 | 1.18 |
S2 | 0.242 | 26.3 | 0.018 | 108,500 | 1.17 |
SL1 | 0.248 | 27.3 | 0.025 | 108,500 | 1.19 |
SG1 | 0.210 | 24.7 | 0.017 | 97,400 | 1.06 |
S0-CH | 0.324 | 25.4 | 0.023 | 20,600 | 1.54 |
SL1-CH | 0.305 | 26.4 | 0.026 | 19,000 | 1.62 |
SG1-CH | 0.247 | 19.5 | 0.009 | 17,800 | 1.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faraslis, I.; Margaritopoulou, V.; Christakis, C.; Providas, E. Evaluating Landscape Fragmentation and Consequent Environmental Impact of Solar Parks Installation in Natura 2000 Protected Areas: The Case of the Thessaly Region, Central Greece. Sustainability 2025, 17, 7158. https://doi.org/10.3390/su17157158
Faraslis I, Margaritopoulou V, Christakis C, Providas E. Evaluating Landscape Fragmentation and Consequent Environmental Impact of Solar Parks Installation in Natura 2000 Protected Areas: The Case of the Thessaly Region, Central Greece. Sustainability. 2025; 17(15):7158. https://doi.org/10.3390/su17157158
Chicago/Turabian StyleFaraslis, Ioannis, Vassiliki Margaritopoulou, Christos Christakis, and Efthimios Providas. 2025. "Evaluating Landscape Fragmentation and Consequent Environmental Impact of Solar Parks Installation in Natura 2000 Protected Areas: The Case of the Thessaly Region, Central Greece" Sustainability 17, no. 15: 7158. https://doi.org/10.3390/su17157158
APA StyleFaraslis, I., Margaritopoulou, V., Christakis, C., & Providas, E. (2025). Evaluating Landscape Fragmentation and Consequent Environmental Impact of Solar Parks Installation in Natura 2000 Protected Areas: The Case of the Thessaly Region, Central Greece. Sustainability, 17(15), 7158. https://doi.org/10.3390/su17157158