Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (596)

Search Parameters:
Keywords = photon-photon scattering

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 726 KB  
Article
Gamma-Ray Attenuation Performance of PEEK Reinforced with Natural Pumice and Palygorskite
by Ahmed Alharbi
Polymers 2026, 18(2), 198; https://doi.org/10.3390/polym18020198 - 11 Jan 2026
Viewed by 210
Abstract
Lightweight, lead-free polymer–mineral composites have attracted increasing interest as radiation-attenuating materials for applications where reduced mass and environmental compatibility are required. In this work, the γ-ray attenuation behavior of poly(ether ether ketone) (PEEK) reinforced with natural palygorskite and pumice was evaluated at [...] Read more.
Lightweight, lead-free polymer–mineral composites have attracted increasing interest as radiation-attenuating materials for applications where reduced mass and environmental compatibility are required. In this work, the γ-ray attenuation behavior of poly(ether ether ketone) (PEEK) reinforced with natural palygorskite and pumice was evaluated at filler concentrations of 10–40 wt%. Photon interaction parameters, including the linear attenuation coefficient (μ), half-value layer (HVL), mean free path (λ), and effective atomic number (Zeff), were computed over the energy range 15 keV–15 MeV using the Phy-X/PSD platform and validated through full Geant4 Monte Carlo transmission simulations. At 15 keV, μ increased from 1.46cm1 for pure PEEK to 4.21cm1 and 8.499cm1 for the 40 wt% palygorskite- and pumice-filled composites, respectively, reducing the HVL from 0.69 cm to 0.24 cm and 0.11 cm. The corresponding Zeff values increased from 6.5 (pure PEEK) to 9.4 (40 wt% palygorskite) and 15.3 (40 wt% pumice), reflecting the influence of higher-Z oxide constituents in pumice. At higher photon energies, the attenuation curves converged as Compton scattering became dominant, although pumice-filled PEEK retained marginally higher μ and shorter λ up to the MeV region. These findings demonstrate that natural mineral fillers can enhance the photon attenuation behavior of PEEK while retaining the known thermal stability and mechanical performance of the polymer matrix as reported in the literature, indicating their potential use as lightweight, secondary radiation-attenuating components in medical, industrial, and aerospace applications. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Graphical abstract

29 pages, 14639 KB  
Article
Light-Induced Structural Evolutions in Electrostatic Nanoassemblies
by Mohit Agarwal, Ralf Schweins and Franziska Gröhn
Polymers 2026, 18(2), 190; https://doi.org/10.3390/polym18020190 - 9 Jan 2026
Viewed by 290
Abstract
Studying nanoscale self-assembly in real time using external stimuli unlocks new opportunities for dynamic and adaptive materials. While electrostatic self-assembly is well-established, real-time monitoring of its structural evolution under light irradiation remains largely unexploited. In this study, we employ light-responsive azobenzene dyes (Acid [...] Read more.
Studying nanoscale self-assembly in real time using external stimuli unlocks new opportunities for dynamic and adaptive materials. While electrostatic self-assembly is well-established, real-time monitoring of its structural evolution under light irradiation remains largely unexploited. In this study, we employ light-responsive azobenzene dyes (Acid Yellow 38, AY38) and pH-sensitive polyamidoamine (PAMAM) dendrimers to investigate the kinetics of electrostatic self-assembly under UV irradiation. Using a custom in situ small-angle neutron scattering (SANS) setup, we track the real-time morphological transformations of self-assembled structures with sub-minute resolution. We introduce two distinct pathways: method A (pre-irradiated cis-AY38 for controlled, slow kinetics) and method B (direct UV-induced self-assembly, fast kinetics). The results reveal that trans-cis isomerization kinetics dictate the rate of self-assembly, influencing aggregate stability, ζ-potential evolution, and final morphology. Structural analysis using dynamic and static light scattering (DLS and SLS) and SANS elucidates a transition from spherical to ellipsoidal morphologies governed by electrostatic and dipole-dipole interactions. These findings establish photoisomerization-driven self-assembly as a robust mechanism for tunable nanoscale architectures, paving the way for adaptive photonic materials, targeted drug delivery, and reconfigurable nanostructures. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

16 pages, 3473 KB  
Article
Hybrid Phy-X/PSD–Geant4 Assessment of Gamma and Neutron Shielding in Lead-Free HDPE Composites Reinforced with High-Z Oxides
by Ahmed Alharbi, Nassar N. Asemi and Hamed Alnagran
Polymers 2026, 18(2), 179; https://doi.org/10.3390/polym18020179 - 9 Jan 2026
Viewed by 310
Abstract
This study evaluates lead-free high-density polyethylene (HDPE) composites reinforced with high-Z oxides (Bi2O3, WO3, Gd2O3, TeO2, and a Bi2O3/WO3 hybrid) as lightweight materials for gamma-ray and [...] Read more.
This study evaluates lead-free high-density polyethylene (HDPE) composites reinforced with high-Z oxides (Bi2O3, WO3, Gd2O3, TeO2, and a Bi2O3/WO3 hybrid) as lightweight materials for gamma-ray and fast-neutron shielding. A hybrid computational framework combining Phy-X/PSD with Geant4 Monte Carlo simulations was used to obtain key shielding parameters, including the linear and mass attenuation coefficients (μ, μ/ρ), half-value layer (HVL), mean free path (MFP), effective atomic number (Zeff), effective electron density (Neff), exposure and energy-absorption buildup factors (EBF, EABF), and fast-neutron removal cross section (ΣR). The incorporation of heavy oxides produced a pronounced improvement in gamma-ray attenuation, particularly at low energies, where the linear attenuation coefficient increased from below 1 cm−1 for neat HDPE to values exceeding 130–150 cm−1 for Bi- and W-rich composites. In the intermediate Compton-scattering region (≈0.3–1 MeV), all oxide-reinforced systems maintained a clear attenuation advantage, with μ values around 0.12–0.13 cm−1 compared with ≈0.07 cm−1 for pure HDPE. At higher photon energies, the dense composites continued to outperform the polymer matrix, yielding μ values of approximately 0.07–0.09 cm−1 versus ≈0.02 cm−1 for HDPE due to enhanced pair-production interactions. The Bi2O3/WO3 hybrid composite exhibited attenuation behavior comparable, and in some regions slightly exceeding, that of the single-oxide systems, indicating that mixed fillers can effectively balance density and shielding efficiency. Oxide addition significantly reduced exposure and energy-absorption buildup factors below 1 MeV, with a moderate increase at higher energies associated with secondary radiation processes. Fast-neutron removal cross sections were also modestly enhanced, with Gd2O3-containing composites showing the highest values due to the combined effects of hydrogen moderation and neutron capture. The close agreement between Phy-X/PSD and Geant4 results confirms the reliability of the dual-method approach. Overall, HDPE composites containing about 60 wt.% oxide filler offer a practical compromise between shielding performance, manufacturability, and environmental safety, making them promising candidates for medical, nuclear, and aerospace radiation-protection applications. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

16 pages, 15481 KB  
Article
Evaluation of Scatter Correction Methods in SPECT Images: A Phantom-Based Study of TEW and ESSE Methods
by Ryutaro Mori, Koichi Okuda, Tomoya Okamoto, Yoshihisa Niioka, Kazuya Tsushima, Masakatsu Tsurugaya, Shota Hosokawa and Yasuyuki Takahashi
Radiation 2026, 6(1), 1; https://doi.org/10.3390/radiation6010001 - 7 Jan 2026
Viewed by 164
Abstract
We compared scatter correction (SC) in single-photon emission computed tomography (SPECT) images using effective scatter source estimation (ESSE) and the triple-energy window (TEW) method. We acquired 99mTc and 123I images of brain, myocardial, and performance phantoms containing rods with different [...] Read more.
We compared scatter correction (SC) in single-photon emission computed tomography (SPECT) images using effective scatter source estimation (ESSE) and the triple-energy window (TEW) method. We acquired 99mTc and 123I images of brain, myocardial, and performance phantoms containing rods with different diameters. We assessed contrast ratios (CRs) and ROI-based noise metrics (coefficient of variation, signal-to-noise ratio, and contrast-to-noise ratio [CNR] ). Under 99mTc, ESSE yielded higher CRs than TEW across all phantoms (mean difference 0.04, range 0.01–0.05) and produced the highest CNR in the myocardial phantom, improving the conspicuousness of the simulated defect. Under 123I, CR differences between ESSE and TEW were small and inconsistent (performance phantom: −0.04 to 0.06; brain phantom: −0.01 to 0.00). A Monte Carlo simulation (point source in air) showed substantial photopeak window penetration for cardiac high-resolution collimators (40.0%) but low penetration for medium-energy general-purpose collimators (5.1%), supporting photopeak contamination as a contributor to the 123I findings and potentially attenuating the apparent advantage of model-based SC that does not explicitly account for penetration photons. These findings suggest that SC selection should consider the radionuclide and imaging target and that ESSE might be a reasonable option for 99mTc myocardial imaging under the settings examined. Full article
Show Figures

Figure 1

20 pages, 3425 KB  
Article
Sensing Through Tissues Using Diffuse Optical Imaging and Genetic Programming
by Ganesh M. Balasubramaniam, Ami Hauptman and Shlomi Arnon
Sensors 2026, 26(1), 318; https://doi.org/10.3390/s26010318 - 3 Jan 2026
Viewed by 410
Abstract
Diffuse optical imaging (DOI) uses scattered light to non-invasively sense and image highly diffuse media, including biological tissues such as the breast and brain. Despite its clinical potential, widespread adoption remains limited because physical constraints, limited available datasets, and conventional reconstruction algorithms struggle [...] Read more.
Diffuse optical imaging (DOI) uses scattered light to non-invasively sense and image highly diffuse media, including biological tissues such as the breast and brain. Despite its clinical potential, widespread adoption remains limited because physical constraints, limited available datasets, and conventional reconstruction algorithms struggle with the strongly nonlinear, ill-posed inverse problem posed by multiple photon scattering. We introduce Diffuse optical Imaging using Genetic Programming (DI-GP), a physics-guided and fully interpretable genetic programming framework for DOI. Grounded in the diffusion equation, DI-GP evolves closed-form symbolic mappings that enable fast and accurate 2-D reconstructions in strongly scattering media. Unlike deep neural networks, Genetic Programming (GP) naturally produces symbolic expressions, explicit rules, and transparent computational pipelines—an increasingly important capability as regulatory and high-stakes domains (e.g., FDA/EMA, medical imaging regulation) demand explainable and auditable AI systems, and where training data are often scarce. DI-GP delivers substantially faster inference and improved qualitative and quantitative reconstruction performance compared to analytical baselines. We validate the approach in both simulations and tabletop experiments, recovering targets without prior knowledge of shape or location at depths exceeding ~25 transport mean-free paths. Additional experiments demonstrate centimeter-scale imaging in tissue-like media, highlighting the promise of DI-GP for non-invasive deep-tissue imaging and its potential as a foundation for practical DOI systems. Full article
Show Figures

Figure 1

41 pages, 1152 KB  
Article
Incoherent Processes in Dilepton Production in Proton–Nucleus Scattering at High Energies
by Sergei P. Maydanyuk and Gyorgy Wolf
Universe 2026, 12(1), 12; https://doi.org/10.3390/universe12010012 - 1 Jan 2026
Viewed by 176
Abstract
(1) Purpose: Incoherent processes in production of lepton pairs (dileptons) are studied for the scattering of protons on nuclei. Methods: New quantum mechanical model is constructed on the basis (1) generalization of the nuclear model of emission of photons in the proton-nucleus reactions [...] Read more.
(1) Purpose: Incoherent processes in production of lepton pairs (dileptons) are studied for the scattering of protons on nuclei. Methods: New quantum mechanical model is constructed on the basis (1) generalization of the nuclear model of emission of photons in the proton-nucleus reactions from low to intermediate energies, (2) formalism of dilepton production. Results: (1) The coherent cross sections of dilepton production in p+Be at proton beam energy Ep of 2.1 GeV calculated by model are in good agreement with experimental data of DLS Collaboration. (2) Dilepton production for 9Be, 12C, 16O, 24Mg, 44Ca, 197Au at Ep=2.1 GeV are studied. Coherent cross sections of dilepton production are monotonously decreased with increasing mass of nuclei. (3) At larger Ep dileptons are produced more intensively. (4) Incoherent processes in production of dileptons are studied for p + 9Be at Ep = 2.1 GeV. Agreement between experimental data and calculated cross sections is better, in to include incoherent processes to the model. A new phenomenon of suppression of production of dileptons at low energies due to incoherent processes is observed. This is explained by dominant coherent contribution at very low energies. (5) Longitudinal amplitude of virtual photon suppresses the cross section of dilepton production a little (effect is observed for p + 9Be at Ep = 2.1 GeV). (6) The contribution from incoherent processes plays a leading role in the dilepton production ((the ratio between the incoherent and coherent terms is 10–100). Also our model provides the tendencies of the full spectrum for p + 93Nb at Ep = 3.5 GeV in good agreement with experimental data obtained by HADES collaboration, and shows large role of incoherent processes. Conclusions: Incoherent processes are much more important than coherent ones in study of dilepton production in this reaction. Full article
Show Figures

Figure 1

10 pages, 1187 KB  
Article
Gigantic Vortical Dichroism and Handedness-Dependent Optical Response in Spiral Metamaterials
by Kangzhun Peng, Hengyue Luo, Shiqi Luo, Zhi-Yuan Li and Wenyao Liang
Nanomaterials 2026, 16(1), 65; https://doi.org/10.3390/nano16010065 - 1 Jan 2026
Viewed by 282
Abstract
Light carrying orbital angular momentum (OAM) has emerged as a promising tool for manipulating light–matter interactions, providing an additional degree of freedom to explore chiral-optical phenomena at the nanoscale. When such vortex beams interact with chiral metamaterials, a unique phenomenon of optical asymmetry [...] Read more.
Light carrying orbital angular momentum (OAM) has emerged as a promising tool for manipulating light–matter interactions, providing an additional degree of freedom to explore chiral-optical phenomena at the nanoscale. When such vortex beams interact with chiral metamaterials, a unique phenomenon of optical asymmetry known as vortical dichroism (VD) arises. Nevertheless, most existing chiral metamaterials exhibit limited VD responses, and the underlying physical mechanisms are yet to be fully clarified. In this work, we propose three-dimensional spiral metamaterials that achieve gigantic VD effect. This pronounced VD effect originates from the intrinsic coupling between the spiral structure and the chirality inherent to optical vortices, which leads to strongly asymmetric scattering intensities for left- and right-handed OAM beams of opposite topological charges. Numerical simulations confirm a remarkable VD value of 0.69. Further analysis of electric field distributions reveals that the asymmetric VD response stems from a handedness-dependent excitation of distinct electromagnetic modes. For opposite handedness, spatial mode mismatch results in enhanced scattering. In contrast, matching handedness enables efficient energy coupling into a guided spiral mode, which suppresses scattering. These findings not only deepen the physical understanding of VD mechanisms but also establish a versatile platform for developing advanced chiral photonic devices and enhancing OAM-based light–matter interactions. Full article
Show Figures

Graphical abstract

15 pages, 31607 KB  
Article
Photonic-Assisted Simultaneous Frequency and Angle of Arrival Measurement Based on Stimulated Brillouin Scattering
by Liangshun Zhao, Yue Zhang, Ju Chen, Fangyi Chen, Caili Gong and Yongfeng Wei
Photonics 2025, 12(12), 1215; https://doi.org/10.3390/photonics12121215 - 9 Dec 2025
Viewed by 316
Abstract
The multidimensional parameter measurement of microwave signals, including temporal, spatial, and frequency, is essential for electronic warfare and radar systems. In this article, we present a photonic scheme for real-time microwave frequency and angle-of-arrival (AOA) measurement based on stimulated Brillouin scattering (SBS). In [...] Read more.
The multidimensional parameter measurement of microwave signals, including temporal, spatial, and frequency, is essential for electronic warfare and radar systems. In this article, we present a photonic scheme for real-time microwave frequency and angle-of-arrival (AOA) measurement based on stimulated Brillouin scattering (SBS). In the proposed system, the unknown signal under test (SUT) received by adjacent antennas is injected into a dual-drive Mach–Zehnder modulator (DDMZM). Two branches of the SUT with phase difference interfere in the optical domain, converting phase difference into the power of optical sidebands. These optical sidebands are scanned by combining SBS with frequency-to-time mapping (FTTM) to achieve simultaneous measurement of the AOA and frequency. Consequently, the frequency and AOA of the SUT are mapped to the time interval and normalized amplitude of the output electrical pulses, respectively. Results show that the system can achieve the frequency measurement of multiple RF signals in the range of 5–15 GHz and AOA measurement in the range of −70° to 70°, with measurement errors of ±5 MHz and ±2°, respectively. Furthermore, the frequency measurement range can be flexibly adjusted by tuning the pump optical driving signals. Full article
(This article belongs to the Special Issue Optical Measurement Systems, 2nd Edition)
Show Figures

Figure 1

15 pages, 11792 KB  
Article
A Nanosatellite-Sized Detector for Sub-MeV Charged Cosmic Ray Fluxes in Low Earth Orbit: The Low-Energy Module (LEM) Onboard the NUSES Space Mission
by Riccardo Nicolaidis, Andrea Abba, Domenico Borrelli, Adriano Di Giovanni, Luigi Ferrentino, Giovanni Franchi, Francesco Nozzoli, Giancarlo Pepponi, Lorenzo Perillo, David Schledewitz and Enrico Verroi
Particles 2025, 8(4), 97; https://doi.org/10.3390/particles8040097 - 4 Dec 2025
Viewed by 361
Abstract
NUSES is a planned space mission aiming to test new observational and technological approaches related to the study of low-energy cosmic rays, gamma rays, and high-energy astrophysical neutrinos. Two scientific payloads will be hosted onboard the NUSES space mission: Terzina and Zirè. Terzina [...] Read more.
NUSES is a planned space mission aiming to test new observational and technological approaches related to the study of low-energy cosmic rays, gamma rays, and high-energy astrophysical neutrinos. Two scientific payloads will be hosted onboard the NUSES space mission: Terzina and Zirè. Terzina will be an optical telescope readout by SiPM arrays for the detection and study of Cerenkov light emitted by Extensive Air Showers (EASs) generated by high-energy cosmic rays and neutrinos in the atmosphere. Zirè will focus on the detection of protons and electrons up to a few hundred MeV and 0.1–30 MeV photons and will include the Low-Energy Module (LEM). The LEM will be a particle spectrometer devoted to the observation of fluxes of low-energy electrons in the 0.1–7-MeV range and protons in the 3–50 MeV range in low Earth orbit (LEO) followed by the hosting platform. The detection of Particle Bursts (PBs) in this physics channel of interest could provide insights into understanding complex phenomena such as possible correlations between seismic events or volcanic activity with the collective motion of particles in the plasma populating Van Allen belts. With its compact size and limited acceptance, the LEM will allow the exploration of hostile environments such as the South Atlantic Anomaly (SAA) and the inner Van Allen belt, in which the anticipated electron fluxes are on the order of 106 to 107 electrons per square centimeter per steradian per second. Concerning the vast literature on space-based particle spectrometers, the innovative aspect of the LEM resides in its compactness, within 10×10×10 cm3, and in its “active collimation” approach to dealing with the problem of multiple scattering at these low energies. In this work, the geometry of the detector, its detection concept, its operation modes, and the hardware adopted will be presented. Some preliminary results from a Monte Carlo simulation (Geant4) will be shown. Full article
Show Figures

Figure 1

13 pages, 728 KB  
Article
Simulation of Gamma-Ray Attenuation in Zeolite–Polymer Composites for Low-Cost Sustainable Radiation Shielding
by Ahmed Alharbi, Hamed Alnagran and Saleh Alashrah
Polymers 2025, 17(23), 3141; https://doi.org/10.3390/polym17233141 - 26 Nov 2025
Viewed by 488
Abstract
Lightweight and lead-free radiation shields are increasingly developed to overcome the toxicity and handling challenges associated with conventional heavy-metal-based materials. In this study, the γ-ray attenuation behavior of polymer–zeolite composites was examined by reinforcing high-density polyethylene (HDPE) and polylactic acid (PLA) with [...] Read more.
Lightweight and lead-free radiation shields are increasingly developed to overcome the toxicity and handling challenges associated with conventional heavy-metal-based materials. In this study, the γ-ray attenuation behavior of polymer–zeolite composites was examined by reinforcing high-density polyethylene (HDPE) and polylactic acid (PLA) with natural clinoptilolite zeolite at concentrations of 10–40 wt%. Photon-interaction parameters, including the linear attenuation coefficient (μ), half-value layer (HVL), mean free path (λ), and effective atomic number (Zeff), were evaluated over 15 keV–15 MeV using the Phy-X/PSD platform. Zeolite incorporation consistently enhanced photon attenuation, particularly at low energies dominated by the photoelectric effect. At 15 keV, the HVL decreased from 0.60 cm to 0.08 cm for HDPE and from 0.043 cm to 0.033 cm for PLA as the zeolite loading increased to 40 wt%. Correspondingly, Zeff increased from 2.7 to 4.3 for HDPE and from 6.5 to 11.6 for PLA, while μ reached approximately 41 cm−1 and 56 cm−1 at 15 keV for the respective 40 wt% composites. Beyond about 1 MeV, differences between compositions became minimal as Compton scattering dominated. PLA–zeolite composites exhibited higher μ and lower HVL than HDPE–zeolite, whereas HDPE maintained an advantage in mixed-field environments owing to its hydrogen-rich matrix. The results confirm that zeolite-reinforced polymers are safe, low-cost, and lightweight materials suitable for radiation shielding in medical, nuclear, and aerospace applications. Full article
(This article belongs to the Section Smart and Functional Polymers)
Show Figures

Graphical abstract

21 pages, 6349 KB  
Article
PLPGR-Net: Photon-Level Physically Guided Restoration Network for Underwater Laser Range-Gated Image
by Qing Tian, Longfei Hu, Zheng Zhang and Qiang Yang
J. Mar. Sci. Eng. 2025, 13(12), 2217; https://doi.org/10.3390/jmse13122217 - 21 Nov 2025
Viewed by 433
Abstract
Underwater laser range-gated imaging (ULRGI) effectively suppresses backscatter from water bodies through a time-gated photon capture mechanism, significantly extending underwater detection ranges compared to conventional imaging techniques. However, as imaging distance increases, rapid laser power attenuation causes localized pixel loss in captured images. [...] Read more.
Underwater laser range-gated imaging (ULRGI) effectively suppresses backscatter from water bodies through a time-gated photon capture mechanism, significantly extending underwater detection ranges compared to conventional imaging techniques. However, as imaging distance increases, rapid laser power attenuation causes localized pixel loss in captured images. To address ULRGI’s limitations in multi-frame stacking—particularly poor real-time performance and artifact generation—this paper proposes the Photon-Level Physically Guided Underwater Laser-Gated Image Restoration Network (PLPGR-Net). To overcome image degradation caused by water scattering and address the challenge of strong coupling between target echo signals and scattering noise, we designed a three-branch architecture driven by photon-level physical priors. This architecture comprises: scattering background suppression module, sparse photon perception module, and enhanced U-Net high-frequency information recovery module. By establishing a multidimensional physical constraint loss system, we guide image reconstruction across three dimensions—pixels, features, and physical laws—ensuring the restored results align with underwater photon distribution characteristics. This approach significantly enhances operational efficiency in critical applications such as underwater infrastructure inspection and cultural relic detection. Comparative experiments using proprietary datasets and state-of-the-art denoising and underwater image restoration algorithms validate the method’s outstanding performance in deeply integrating physical interpretability with deep learning generalization capabilities. Full article
(This article belongs to the Special Issue Advancements in Deep-Sea Equipment and Technology, 3rd Edition)
Show Figures

Figure 1

25 pages, 3658 KB  
Review
A Review of High-Sensitivity SERS-Active Photonic Crystal Fiber Sensors for Chemical and Biological Detection
by Jiaying Luo, Jia Sun, Huacai Chen, Chunliu Zhao and Manping Ye
Sensors 2025, 25(22), 6982; https://doi.org/10.3390/s25226982 - 15 Nov 2025
Viewed by 1009
Abstract
This review critically surveys the emerging integration of Surface-Enhanced Raman Scattering (SERS) with photonic-crystal fibers (PCFs) for chemical and biological detection, an area still scarce in the literature. SERS exploits electromagnetic and chemical enhancement to overcome the intrinsic weakness of Raman scattering, while [...] Read more.
This review critically surveys the emerging integration of Surface-Enhanced Raman Scattering (SERS) with photonic-crystal fibers (PCFs) for chemical and biological detection, an area still scarce in the literature. SERS exploits electromagnetic and chemical enhancement to overcome the intrinsic weakness of Raman scattering, while PCF offers low transmission loss and a strong evanescent field that further amplify the signal. The structural designs of PCF, encompassing solid-core and hollow-core variants, are discussed and their respective advantages in different sensing scenarios are presented. Applications in chemical detection, biomedicine, and explosive identification are detailed, demonstrating the versatility and potential of PCF-SERS sensors. Future efforts will focus on robust PCF geometries that guarantee stable and reproducible signals, AI-driven spectral algorithms, hybrid fibre architectures and scalable manufacturing. These advances are expected to translate PCF-SERS from bench-top demonstrations to routine deployment in environmental monitoring, clinical diagnostics and food-safety control. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

31 pages, 827 KB  
Article
Asymptotic Freedom and Vacuum Polarization Determine the Astrophysical End State of Relativistic Gravitational Collapse: Quark–Gluon Plasma Star Instead of Black Hole
by Herman J. Mosquera Cuesta, Fabián H. Zuluaga Giraldo, Wilmer D. Alfonso Pardo, Edgardo Marbello Santrich, Guillermo U. Avendaño Franco and Rafael Fragozo Larrazabal
Universe 2025, 11(11), 375; https://doi.org/10.3390/universe11110375 - 12 Nov 2025
Viewed by 957
Abstract
A general relativistic model of an astrophysical hypermassive extremely magnetized ultra-compact self-bound quark–gluon plasma (QGP: ALICE/LHC) object that is supported against its ultimate gravitational implosion by the simultaneous action of the vacuum polarization driven by nonlinear electrodynamics (NLED: ATLAS/LHC: light-by-light scattering)—the vacuum “awakening”—and [...] Read more.
A general relativistic model of an astrophysical hypermassive extremely magnetized ultra-compact self-bound quark–gluon plasma (QGP: ALICE/LHC) object that is supported against its ultimate gravitational implosion by the simultaneous action of the vacuum polarization driven by nonlinear electrodynamics (NLED: ATLAS/LHC: light-by-light scattering)—the vacuum “awakening”—and the asymptotic freedom, a key feature of quantum chromodynamics (QCD), is presented. These QCD stars can be the final figures of the equilibrium of collapsing stellar cores permeated by magnetic fields with strengths well beyond the Schwinger threshold due to being self-bound, and for which post-supernova fallback material pushes the nascent remnant beyond its stability, forcing it to collapse into a hybrid hypermassive neutron star (HHMNS). Hypercritical accretion can drive its innermost core to spontaneously break away color confinement, powering a first-order hadron-to-quark phase transition to a sea of ever-freer quarks and gluons. This core is hydro-stabilized by the steady, endlessly compression-admitting asymptotic freedom state, possibly via gluon-mediated enduring exchange of color charge among bound states, e.g., the odderon: a glueball state of three gluons, or either quark-pairing (color superconductivity) or tetraquark/pentaquark states (LHCb Coll.). This fast—at the QGP speed of sound—but incremental quark–gluon deconfinement unbinds the HHMNS’s baryons so catastrophically that transforms it, turning it inside-out, into a neat self-bound QGP star. A solution to the nonlinear Tolman–Oppenheimer–Volkoff (TOV) equation is obtained—that clarifies the nonlinear effects of both NLED and QCD on the compact object’s structure—which clearly indicates the occurrence of hypermassive QGP/QCD stars with a wide mass spectrum (0MStarQGP 7 M and beyond), for star radii (0RStarQGP24 km and beyond) with B-fields (1014BStarQGP1016 G and beyond). This unexpected feature is described by a novel mass vs. radius relation derived within this scenario. Hence, endowed with these physical and astrophysical characteristics, such QCD stars can definitively emulate what the true (theoretical) black holes are supposed to gravitationally do in most astrophysical settings. This color quark star could be found through a search for its eternal “yo-yo” state gravitational-wave emission, or via lensing phenomena like a gravitational rainbow (quantum mechanics and gravity interaction), as in this scenario, it is expected that the light deflection angle—directly influenced by the larger effective mass/radius (MStarQGP(B), RStarQGP(B)) and magnetic field of the deflecting object—increases as the incidence angle decreases, in view of the lower values of the impact parameter. The gigantic—but not infinite—surface gravitational redshift, due to NLED photon acceleration, makes the object appear dark. Full article
(This article belongs to the Section Cosmology)
Show Figures

Figure 1

15 pages, 2747 KB  
Article
Characterization and Performance Analysis of Underwater Optical Time and Frequency Dissemination Link Based on Monte Carlo Simulation and Experimental Demonstration
by Yibo Yuan, Hengrui Liu, Ziyi Wang, Hanwen Zhang, Xujin Li, Jianfeng Cui and Yiguang Yang
Sensors 2025, 25(22), 6861; https://doi.org/10.3390/s25226861 - 10 Nov 2025
Viewed by 545
Abstract
Underwater Wireless Optical Communication (UWOC) plays a crucial role in marine exploration and observation due to its high speed and low latency characteristics, while research on underwater time and frequency transfer (UTFT) is relatively lacking. The complicated underwater environments, absorption and scattering effects [...] Read more.
Underwater Wireless Optical Communication (UWOC) plays a crucial role in marine exploration and observation due to its high speed and low latency characteristics, while research on underwater time and frequency transfer (UTFT) is relatively lacking. The complicated underwater environments, absorption and scattering effects severely degrade signal stability and signal-to-noise-ratio (SNR). In response to this issue, a photon packet transmission model is established based on the Monte Carlo simulation (MCS). The effects of different parameters, including water conditions, divergence angles, receiving apertures, are systematically analyzed, with key indicators such as phase noise and Allan deviation, identified as performance measures. An experimental platform is also built using kaolin turbidity to obtain experimental results corresponding to different frequencies and turbidity levels, which are then compared with simulation results. The high consistency between simulation and experimental results verifies the reliability of the proposed model. This research provides a feasible method for performance prediction and tolerance design of UTFT networks. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

26 pages, 6195 KB  
Article
From Chains to Chromophores: Tailored Thermal and Linear/Nonlinear Optical Features of Asymmetric Pyrimidine—Coumarin Systems
by Prescillia Nicolas, Stephania Abdallah, Dong Chen, Giorgia Rizzi, Olivier Jeannin, Koen Clays, Nathalie Bellec, Belkis Bilgin-Eran, Huriye Akdas-Kiliç, Jean-Pierre Malval, Stijn Van Cleuvenbergen and Franck Camerel
Molecules 2025, 30(21), 4322; https://doi.org/10.3390/molecules30214322 - 6 Nov 2025
Viewed by 607
Abstract
Eleven novel asymmetric pyrimidine derivatives were synthesized. The pyrimidine core was functionalized with a coumarin chromophore and a pro-mesogenic fragment bearing either chiral or linear alkyl chains of variable length and substitution patterns. The thermal properties were investigated using polarized optical microscopy, differential [...] Read more.
Eleven novel asymmetric pyrimidine derivatives were synthesized. The pyrimidine core was functionalized with a coumarin chromophore and a pro-mesogenic fragment bearing either chiral or linear alkyl chains of variable length and substitution patterns. The thermal properties were investigated using polarized optical microscopy, differential scanning calorimetry, and small-angle X-ray scattering, revealing that only selected derivatives exhibited liquid crystalline phases with ordered columnar or smectic organizations. Linear and nonlinear optical properties were characterized by UV–Vis absorption, fluorescence spectroscopy, two-photon absorption, and second-harmonic generation. Optical responses were found to be highly sensitive to the substitution pattern: derivatives functionalized at the 4 and 3,4,5 positions exhibited enhanced 2PA cross-sections and pronounced SHG signals, whereas variations in alkyl chain length exerted only a minor influence. Notably, compounds forming highly ordered non-centrosymmetric mesophases produced robust SHG-active thin films. Importantly, strong SHG responses were obtained without the need for a chiral center, as the inherent asymmetry of the linear alkyl chain derivatives was sufficient to drive self-organization into non-centrosymmetric materials. These results demonstrate that asymmetric pyrimidine-based architectures combining π-conjugation and controlled supramolecular organization are promising candidates for nonlinear optical applications such as photonic devices, multiphoton imaging, and optical data storage. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

Back to TopTop