You are currently on the new version of our website. Access the old version .
PolymersPolymers
  • This is an early access version, the complete PDF, HTML, and XML versions will be available soon.
  • Article
  • Open Access

9 January 2026

Light-Induced Structural Evolutions in Electrostatic Nanoassemblies

,
and
1
Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials, Friedrich-Alexander Universität Erlangen-Nürnberg, Egerlandstr. 3, D-91058 Erlangen, Germany
2
Institut Laue-Langevin, DS/LSS, 71 Avenue des Martyrs, F-38000 Grenoble, France
*
Author to whom correspondence should be addressed.
This article belongs to the Section Polymer Chemistry

Abstract

Studying nanoscale self-assembly in real time using external stimuli unlocks new opportunities for dynamic and adaptive materials. While electrostatic self-assembly is well-established, real-time monitoring of its structural evolution under light irradiation remains largely unexploited. In this study, we employ light-responsive azobenzene dyes (Acid Yellow 38, AY38) and pH-sensitive polyamidoamine (PAMAM) dendrimers to investigate the kinetics of electrostatic self-assembly under UV irradiation. Using a custom in situ small-angle neutron scattering (SANS) setup, we track the real-time morphological transformations of self-assembled structures with sub-minute resolution. We introduce two distinct pathways: method A (pre-irradiated cis-AY38 for controlled, slow kinetics) and method B (direct UV-induced self-assembly, fast kinetics). The results reveal that trans-cis isomerization kinetics dictate the rate of self-assembly, influencing aggregate stability, ζ-potential evolution, and final morphology. Structural analysis using dynamic and static light scattering (DLS and SLS) and SANS elucidates a transition from spherical to ellipsoidal morphologies governed by electrostatic and dipole-dipole interactions. These findings establish photoisomerization-driven self-assembly as a robust mechanism for tunable nanoscale architectures, paving the way for adaptive photonic materials, targeted drug delivery, and reconfigurable nanostructures.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.