Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (287)

Search Parameters:
Keywords = photoluminescence lifetime

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1647 KiB  
Article
Application of Iron Oxides in the Photocatalytic Degradation of Real Effluent from Aluminum Anodizing Industries
by Lara K. Ribeiro, Matheus G. Guardiano, Lucia H. Mascaro, Monica Calatayud and Amanda F. Gouveia
Appl. Sci. 2025, 15(15), 8594; https://doi.org/10.3390/app15158594 - 2 Aug 2025
Viewed by 178
Abstract
This study reports the synthesis and evaluation of iron molybdate (Fe2(MoO4)3) and iron tungstate (FeWO4) as photocatalysts for the degradation of a real industrial effluent from aluminum anodizing processes under visible light irradiation. The oxides [...] Read more.
This study reports the synthesis and evaluation of iron molybdate (Fe2(MoO4)3) and iron tungstate (FeWO4) as photocatalysts for the degradation of a real industrial effluent from aluminum anodizing processes under visible light irradiation. The oxides were synthesized via a co-precipitation method in an aqueous medium, followed by microwave-assisted hydrothermal treatment. Structural and morphological characterizations were performed using X-ray diffraction, field-emission scanning electron microscopy, Raman spectroscopy, ultraviolet–visible (UV–vis), and photoluminescence (PL) spectroscopies. The effluent was characterized by means of ionic chromatography, total organic carbon (TOC) analysis, physicochemical parameters (pH and conductivity), and UV–vis spectroscopy. Both materials exhibited well-crystallized structures with distinct morphologies: Fe2(MoO4)3 presented well-defined exposed (001) and (110) surfaces, while FeWO4 showed a highly porous, fluffy texture with irregularly shaped particles. In addition to morphology, both materials exhibited narrow bandgaps—2.11 eV for Fe2(MoO4)3 and 2.03 eV for FeWO4. PL analysis revealed deep defects in Fe2(MoO4)3 and shallow defects in FeWO4, which can influence the generation and lifetime of reactive oxygen species. These combined structural, electronic, and morphological features significantly affected their photocatalytic performance. TOC measurements revealed degradation efficiencies of 32.2% for Fe2(MoO4)3 and 45.3% for FeWO4 after 120 min of irradiation. The results highlight the critical role of morphology, optical properties, and defect structures in governing photocatalytic activity and reinforce the potential of these simple iron-based oxides for real wastewater treatment applications. Full article
(This article belongs to the Special Issue Application of Nanomaterials in the Field of Photocatalysis)
Show Figures

Figure 1

10 pages, 1762 KiB  
Article
Optical Characterization of the Interplay Between Carrier Localization and Carrier Injection in Self-Assembled GaSb/GaAs Quantum Dots
by Si-Yuan Ma, Ying Wang, Yuriy I. Mazur, Morgan E. Ware, Gregory J. Salamo and Bao Lai Liang
Optics 2025, 6(3), 33; https://doi.org/10.3390/opt6030033 - 23 Jul 2025
Viewed by 268
Abstract
The optical properties of a heterostructure containing GaSb/GaAs quantum dots (QDs) have been systematically investigated via photoluminescence (PL) measurements to gain insights into carrier dynamics. The QD and wetting layer (WL) emissions exhibit a complementary dependence on the excitation intensity and temperature, reflecting [...] Read more.
The optical properties of a heterostructure containing GaSb/GaAs quantum dots (QDs) have been systematically investigated via photoluminescence (PL) measurements to gain insights into carrier dynamics. The QD and wetting layer (WL) emissions exhibit a complementary dependence on the excitation intensity and temperature, reflecting the interplay between carrier localization in the WL and carrier relaxation from the WL to the QDs. Carrier dynamics related to localization, injection, and recombination are further validated by time-resolved photoluminescence (TRPL). These findings highlight the necessity of carefully optimizing GaSb/GaAs QD structures to mitigate the impact of carrier localization, thereby enhancing the ultimate performance of devices utilizing these QDs as active region materials. Full article
Show Figures

Graphical abstract

14 pages, 1928 KiB  
Article
Ultraviolet Photocatalytic Performance of ZnO Nanorods Selectively Deposited with Bi2O3 Quantum Dots
by Baohui Lou, Chi Zhang, Xianhao Wu, Ying Liu, Xiangdong Feng, Feipeng Huang, Bowen Zhao and Zhengwang Zhu
Catalysts 2025, 15(7), 695; https://doi.org/10.3390/catal15070695 - 21 Jul 2025
Viewed by 341
Abstract
A strong interaction between Bi3+ and ZnO was used to successfully sensitize ZnO nanorods with quantum dots (QDs) of Bi2O3 through three different strategies. Although the Bi2O3 QDs had similar particle size distributions, their photocatalytic performance [...] Read more.
A strong interaction between Bi3+ and ZnO was used to successfully sensitize ZnO nanorods with quantum dots (QDs) of Bi2O3 through three different strategies. Although the Bi2O3 QDs had similar particle size distributions, their photocatalytic performance varied significantly, prompting the investigation of factors beyond particle size. The study revealed that the photochemical method selectively deposited Bi2O3 QDs onto electron-rich ZnO sites, providing a favorable pathway for efficient electron–hole separation and transfer. Consequently, abundant h+ and ·OH radicals were generated, which effectively degraded Rhodamine B (RhB). As demonstrated in the RhB degradation experiments, the Bi2O3/ZnO nanorod catalyst achieved an 89.3% degradation rate within 120 min, significantly outperforming catalysts with other morphologies. The photoluminescence (PL) and time-resolved photoluminescence (TRPL) results indicated that the Bi2O3/ZnO heterostructure constructed an effective interface to facilitate the spatial separation of photogenerated charge carriers, which effectively prolonged their lifetime. The electron paramagnetic resonance (EPR) results confirmed that the ·OH radicals played a key role in the degradation process. Full article
(This article belongs to the Special Issue Advanced Catalytic Processes for Wastewater Treatment)
Show Figures

Graphical abstract

15 pages, 1662 KiB  
Article
Peripheral Cycloalkyl Functionalized Tetradentate Platinum(II) Phosphorescent Complex: Synthesis, Optical Tuning, and OLED Applications
by Giheon Park, Seon-jin Lee, Minsoo Kang and Wan Pyo Hong
Materials 2025, 18(13), 2942; https://doi.org/10.3390/ma18132942 - 21 Jun 2025
Viewed by 716
Abstract
A tetradentate Pt(II) complex with a 5/6/6 structural backbone, Pt(PhPiPy-O-PytmCz), was synthesized by incorporating two distinct cycloalkyl groups. These structural modifications significantly enhanced the photoluminescence quantum yield and effectively increased the distance between molecules, thereby mitigating undesirable intermolecular interactions and triplet-state quenching. This [...] Read more.
A tetradentate Pt(II) complex with a 5/6/6 structural backbone, Pt(PhPiPy-O-PytmCz), was synthesized by incorporating two distinct cycloalkyl groups. These structural modifications significantly enhanced the photoluminescence quantum yield and effectively increased the distance between molecules, thereby mitigating undesirable intermolecular interactions and triplet-state quenching. This strategic molecular design resulted in an external quantum efficiency of 11.5% at a wavelength of 539 nm and significantly enhanced operational lifetimes in green phosphorescent organic light-emitting diodes (OLEDs). These findings are expected to inspire the development of new green luminescent materials and innovative strategies in OLED technology. Full article
(This article belongs to the Special Issue Advanced and Smart Materials in Photoelectric Applications)
Show Figures

Figure 1

19 pages, 2334 KiB  
Article
One-Pot Microwave-Assisted Synthesis of Fluorescent Carbon Dots from Tomato Industry Residues with Antioxidant and Antibacterial Activities
by Patrícia D. Barata, Alexandra I. Costa, Sónia Martins, Magda C. Semedo, Bruno G. Antunes and José V. Prata
Biomass 2025, 5(2), 35; https://doi.org/10.3390/biomass5020035 - 10 Jun 2025
Viewed by 1132
Abstract
Tomato waste (TW) was employed as a sustainable source for the synthesis of fluorescent carbon dots (CDs) via a microwave-assisted hydrothermal carbonization (Mw-HTC) method, aiming at its valorization. Several amines were used as nitrogen additives to enhance the fluorescence quantum yield (QY) of [...] Read more.
Tomato waste (TW) was employed as a sustainable source for the synthesis of fluorescent carbon dots (CDs) via a microwave-assisted hydrothermal carbonization (Mw-HTC) method, aiming at its valorization. Several amines were used as nitrogen additives to enhance the fluorescence quantum yield (QY) of CDs, and a set of reaction conditions, including additive/TW mass ratio (0.04–0.32), dwell time (15–60 min), and temperature (200–230 °C) of the HTC process, were scrutinized. The structural analysis of the tomato waste carbon dots (TWCDs) was undertaken by FTIR and 1H NMR techniques, revealing their most relevant features. In solid state, transmission electron microscopy (TEM) analysis showed the presence of nearly spherical nanoparticles with an average lateral size of 8.1 nm. Likewise, the topographical assessment by atomic force microscopy (AFM) also indicated particles’ heights between 3 and 10 nm. Their photophysical properties, revealed by UV–Vis, steady-state, and time-resolved fluorescence spectroscopies, are fully discussed. Higher photoluminescent quantum yields (up to 0.08) were attained when the biomass residues were mixed with organic aliphatic amines during the Mw-HTC process. Emission tunability is a characteristic feature of these CDs, which display an intensity average fluorescence lifetime of 8 ns. The new TWCDs demonstrated good antioxidant properties by the ABTS radical cation method (75% inhibition at TWCDs’ concentration of 5 mg/mL), which proved to be related to the dwell time used in the CDs synthesis. Moreover, the synthesized TWCDs suppressed the growth of Escherichia coli and Staphylococcus aureus at concentrations higher than 2000 μg/mL, encouraging future antibacterial applications. Full article
Show Figures

Figure 1

13 pages, 3977 KiB  
Article
Optical Properties of BaAl2O4 Due to Cerium Doping and Heat Treatment in Different Atmospheres
by Montserrat Nevai Coyotl Ojeda, Benito de Celis Alonso, José Eduardo Espinosa Rosales, Epifanio Cruz-Zaragoza and Martín Rodolfo Palomino Merino
Micromachines 2025, 16(6), 688; https://doi.org/10.3390/mi16060688 - 7 Jun 2025
Viewed by 860
Abstract
The luminescent properties of cerium-doped barium aluminate (BaAl2O4) samples with varying Ce concentrations (0–1.1 mol%) prepared either in an air or nitrogen-reduced atmosphere are presented. This work provides the first detailed comparison of the material’s structural, luminescent, and chromatic [...] Read more.
The luminescent properties of cerium-doped barium aluminate (BaAl2O4) samples with varying Ce concentrations (0–1.1 mol%) prepared either in an air or nitrogen-reduced atmosphere are presented. This work provides the first detailed comparison of the material’s structural, luminescent, and chromatic properties at different doping levels and thermal treatments. X-ray diffraction analysis confirmed the hexagonal crystal structure of barium aluminate. Samples treated in an air atmosphere exhibited crystallite sizes of 58.5 nm for undoped samples and 45.7 nm for doped samples. In contrast, those treated under nitrogen showed smaller crystallite sizes, i.e., 39.8 nm for undoped and 42.3 nm for doped samples, respectively. XPS analysis indicated that the nitrogen-reduced atmosphere minimized Ce oxidation, favoring the presence of Ce3+. The bandgap values of the material were 4.0 eV and 5.6 eV for the air and for the nitrogen atmosphere, respectively. Photoluminescence spectra showed maxima at 357 nm (air) and 386 nm (nitrogen), attributed to 4f-5d transitions of Ce. The samples under air atmosphere showed longer lifetimes values (0.94 ns) compared to those in a nitrogen atmosphere (0.40 ns). These results suggest that thermal treatment in an air atmosphere promoted better structural order and higher photoluminescence efficiency, while treatment in a nitrogen-reduced atmosphere increased defect formation, shortening the lifetime. Chromaticity coordinate analysis showed that the cerium ion dopant influenced the blueish emission color in both samples. Full article
(This article belongs to the Collection Microdevices and Applications Based on Advanced Glassy Materials)
Show Figures

Graphical abstract

14 pages, 2098 KiB  
Article
Surface In Situ Growth of Two-Dimensional/Three-Dimensional Heterojunction Perovskite Film for Achieving High-Performance Flexible Perovskite Solar Cells
by Zhiyu Zhang, Huijing Liu, Jing Liu, Jia Xu, Zhan’ao Tan and Jianxi Yao
Nanomaterials 2025, 15(11), 798; https://doi.org/10.3390/nano15110798 - 26 May 2025
Viewed by 465
Abstract
Organic–inorganic hybrid flexible perovskite solar cells (F-PSCs) have garnered considerable interest owing to their exceptional power conversion efficiency (PCE) and stable operational characteristics. However, F-PSCs continue to exhibit significantly lower PCE than their rigid counterparts. Herein, we employed 3-chloro-4-methoxybenzylamine hydrochloride (CMBACl) treatment to [...] Read more.
Organic–inorganic hybrid flexible perovskite solar cells (F-PSCs) have garnered considerable interest owing to their exceptional power conversion efficiency (PCE) and stable operational characteristics. However, F-PSCs continue to exhibit significantly lower PCE than their rigid counterparts. Herein, we employed 3-chloro-4-methoxybenzylamine hydrochloride (CMBACl) treatment to grow in situ two-dimensional (2D) perovskite layers on three-dimensional (3D) perovskite films. Through comprehensive physicochemical characterization, including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and photoluminescence (PL) mapping, we demonstrated that CMBACl treatment enabled the in situ growth of two-dimensional (2D) perovskite layers on three-dimensional (3D) perovskite films via chemical interactions between CMBA+ cations and undercoordinated Pb2+ sites. The organic cation (CMBA+) bound to uncoordinated Pb2+ ions and residual PbI2, while the chlorine anion (Cl) filled iodine vacancies in the perovskite lattice, thereby forming a high-quality 2D/3D heterojunction structure. The CMBACl treatment effectively passivated surface defects in the perovskite films, prolonged charge carrier lifetimes, and enhanced the operational stability of the photovoltaic devices. Additionally, the hybrid 2D/3D architecture also improved energy band matching, thereby boosting charge transfer performance. The optimized flexible devices demonstrated a PCE of 23.15%, while retaining over 82% of their initial efficiency after enduring 5000 bending cycles under a 5 mm curvature radius (R = 5 mm). The unpackaged devices retained 94% of their initial efficiency after 1000 h under ambient conditions with a relative humidity (RH) of 45 ± 5%. This strategy offers practical guidelines for selecting interface passivation materials to enhance the efficiency and stability of F-PSCs. Full article
(This article belongs to the Section Solar Energy and Solar Cells)
Show Figures

Figure 1

11 pages, 7161 KiB  
Article
Enhancing Optoelectronic Properties of Multicrystalline Silicon Using Dual Treatments for Solar Cell Applications
by Karim Choubani, Yasmin Zouari, Ameny El Haj, Achref Mannai, Mohammed A. Almeshaal, Wissem Dimassi and Mohamed Ben Rabha
Inorganics 2025, 13(5), 142; https://doi.org/10.3390/inorganics13050142 - 30 Apr 2025
Viewed by 480
Abstract
Surface texturing is vital for enhancing light absorption and optimizing the optoelectronic properties of multicrystalline silicon (mc-Si) samples. Texturing significantly improves light absorption by minimizing reflectance and extending the effective path length of incident light. Furthermore, porous silicon treatment on textured mc-Si surfaces [...] Read more.
Surface texturing is vital for enhancing light absorption and optimizing the optoelectronic properties of multicrystalline silicon (mc-Si) samples. Texturing significantly improves light absorption by minimizing reflectance and extending the effective path length of incident light. Furthermore, porous silicon treatment on textured mc-Si surfaces offers additional advantages, including enhanced carrier generation, reduced surface recombination, and improved light emission. In this study, a dual treatment combining porous silicon and texturing was employed as an effective approach to enhance the optical and optoelectronic properties of mc-Si. Both porous silicon and texturing were achieved through a chemical etching process. After these surface modifications, the morphology and structure of mc-Si were examined using Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM), UV-Vis-IR spectroscopy, photoluminescence (PL), WCT-120 photo-conductance lifetime measurements, and Two-Internal Quantum Efficiency (IQE) analysis. The results reveal a substantial improvement in the material’s properties. The total reflectivity dropped from 35% to approximately 5%, while the effective minority carrier lifetime increased from 2 µs for bare mc-Si to 36 µs after treatment. Additionally, the two-dimensional IQE value rose from 35% for the untreated sample to 66% after treatment, representing an enhancement of around 31%. These findings highlight the potential of surface engineering techniques in optimizing mc-Si for photovoltaic applications. Full article
Show Figures

Figure 1

13 pages, 5562 KiB  
Article
ZrBr4-Mediated Phase Engineering in CsPbBr3 for Enhanced Operational Stability of White-Light-Emitting Diodes
by Muhammad Amin Padhiar, Yongqiang Ji, Jing Wang, Noor Zamin Khan, Mengji Xiong and Shuxin Wang
Nanomaterials 2025, 15(9), 674; https://doi.org/10.3390/nano15090674 - 28 Apr 2025
Viewed by 462
Abstract
The persistent operational instability of all-inorganic cesium lead halide (CsPbX3) perovskite nanocrystals (NCs) has hindered their integration into white-light-emitting diodes (WLEDs). This study introduces a transformative approach by engineering a phase transition from CsPbBr3 NCs to zirconium bromide (ZrBr4 [...] Read more.
The persistent operational instability of all-inorganic cesium lead halide (CsPbX3) perovskite nanocrystals (NCs) has hindered their integration into white-light-emitting diodes (WLEDs). This study introduces a transformative approach by engineering a phase transition from CsPbBr3 NCs to zirconium bromide (ZrBr4)-stabilized hexagonal nanocomposites (HNs) through a modified hot-injection synthesis. Structural analyses revealed that the ZrBr4-mediated phase transformation induced a structurally ordered lattice with minimized defects, significantly enhancing charge carrier confinement and radiative recombination efficiency. The resulting HNs achieved an exceptional photoluminescence quantum yield (PLQY) of 92%, prolonged emission lifetimes, and suppressed nonradiative decay, attributed to effective surface passivation. The WLEDs with HNs enabled a breakthrough luminous efficiency of 158 lm/W and a record color rendering index (CRI) of 98, outperforming conventional CsPbX3-based devices. The WLEDs exhibited robust thermal stability, retaining over 80% of initial emission intensity at 100 °C, and demonstrated exceptional operational stability with negligible PL degradation during 50 h of continuous operation at 100 mA. Commission Internationale de l’Éclairage (CIE) coordinates of (0.35, 0.32) validated pure white-light emission with high chromatic fidelity. This work establishes ZrBr4-mediated HNs as a paradigm-shifting material platform, addressing critical stability and efficiency challenges in perovskite optoelectronics and paving the way for next-generation, high-performance lighting solutions. Full article
(This article belongs to the Special Issue Recent Advances in Halide Perovskite Nanomaterials)
Show Figures

Figure 1

14 pages, 17614 KiB  
Article
Unraveling Charge Transfer Mechanisms in Graphene–Quantum Dot Hybrids for High-Sensitivity Biosensing
by Shinto Mundackal Francis, Hugo Sanabria and Ramakrishna Podila
Biosensors 2025, 15(5), 269; https://doi.org/10.3390/bios15050269 - 24 Apr 2025
Viewed by 1102
Abstract
Colloidal quantum dots (QDs) and graphene hybrids have emerged as promising platforms for optoelectronic and biosensing applications due to their unique photophysical and electronic properties. This study investigates the fundamental mechanism underlying the photoluminescence (PL) quenching and recovery in graphene–QD hybrid systems using [...] Read more.
Colloidal quantum dots (QDs) and graphene hybrids have emerged as promising platforms for optoelectronic and biosensing applications due to their unique photophysical and electronic properties. This study investigates the fundamental mechanism underlying the photoluminescence (PL) quenching and recovery in graphene–QD hybrid systems using single-layer graphene field-effect transistors (SLG-FETs) and time-resolved photoluminescence (TRPL) spectroscopy. We demonstrate that PL quenching and its recovery are primarily driven by charge transfer, as evidenced by an unchanged fluorescence lifetime upon quenching. Density functional theory calculations reveal a significant charge redistribution at the graphene–QD interface, corroborating experimental observations. We also provide a simple analytical quantum mechanical model to differentiate charge transfer-induced PL quenching from resonance energy transfer. Furthermore, we leverage the charge transfer mechanism for ultrasensitive biosensing to detect biomarkers such as immunoglobulin G (IgG) at femtomolar concentrations. The sensor’s electrical response, characterized by systematic shifts in the Dirac point of SLG-FETs, confirms the role of analyte-induced charge modulation in PL recovery. Our findings provide a fundamental framework for designing next-generation graphene-based biosensors with exceptional sensitivity and specificity. Full article
(This article belongs to the Section Nano- and Micro-Technologies in Biosensors)
Show Figures

Graphical abstract

20 pages, 2160 KiB  
Article
Conformational Locking of the Geometry in Photoluminescent Cyclometalated N^C^N Ni(II) Complexes
by Maryam Niazi, Iván Maisuls, Lukas A. Mai, Sascha A. Schäfer, Alex Oster, Lukas Santiago Diaz, Dirk M. Guldi, Nikos L. Doltsinis, Cristian A. Strassert and Axel Klein
Molecules 2025, 30(9), 1901; https://doi.org/10.3390/molecules30091901 - 24 Apr 2025
Viewed by 616
Abstract
In our research aimed at replacing precious transition metals like platinum with abundant base metals such as nickel for efficient triplet emitters, we synthesized and studied Ni(II) complexes [Ni(LNHR)Cl]. These complexes containing the N^C^N cyclometalating dipyridyl-phenide ligand, equipped with pending H-bonding [...] Read more.
In our research aimed at replacing precious transition metals like platinum with abundant base metals such as nickel for efficient triplet emitters, we synthesized and studied Ni(II) complexes [Ni(LNHR)Cl]. These complexes containing the N^C^N cyclometalating dipyridyl-phenide ligand, equipped with pending H-bonding amine groups (NH(C₆H₅) (LNHPh) and NH(C₆H₅CH₂), ClLNHBn). Molecular structures determined from experimental X-ray diffractometry and density functional theory (DFT) calculations in the ground state showed marked deviation of the Cl coligand (ancillary ligand) from the ideal planar coordination, with τ4 values of 0.35 and 0.33, respectively, along with hydrogen bonding interactions of the ligand NH function with the Cl coligand. The complexes exhibit long-wavelength absorption bands at approximately 425 nm in solution, with the experimental spectra being accurately reproduced through time-dependent density functional theory (TD-DFT) calculations. Vibrationally structured emission profiles and steady-state photoluminescence quantum yields of 30% for [Ni(LNHPh)Cl] and 40% for [Ni(LNHBn)Cl] (along with dual excited state lifetimes in the ns and in the ms range) were found in frozen 2-methyl-tetrahydrofuran (2MeTHF) glassy matrices at 77 K. Furthermore, within a poly(methyl methacrylate) matrix, the complexes showed emission bands centered at around 550 nm within a temperature range from 6 K to 300 K with lifetimes similar to 77 K. Based on TD-DFT potential scans along the metal–ligand (Ni–N) coordinate, we found that in a rigid environment that restricts the geometry to the Franck-Condon region, either the triplet T5 or the singlet S4 state could contribute to the photoluminescence. Full article
Show Figures

Graphical abstract

18 pages, 4833 KiB  
Article
Achieving Ultralong Room-Temperature Phosphorescence in Two-Dimensional Metal-Halide Perovskites by Tuning Alkyl Chain Length
by Suqin Wang, Hui Zhu, Ming Sheng, Bo Shao, Yu He, Zhuang Liu, Min Li and Guangtao Zhou
Inorganics 2025, 13(4), 108; https://doi.org/10.3390/inorganics13040108 - 1 Apr 2025
Cited by 1 | Viewed by 507
Abstract
Two-dimensional (2D) metal-halide perovskites with highly efficient room-temperature phosphorescence (RTP) are rare due to their complex structures and intricate intermolecular interactions. In this study, by varying the alkyl chain length in organic amines, we synthesized two 2D metal-halide perovskites, namely 4-POMACC and 4-POEACC, [...] Read more.
Two-dimensional (2D) metal-halide perovskites with highly efficient room-temperature phosphorescence (RTP) are rare due to their complex structures and intricate intermolecular interactions. In this study, by varying the alkyl chain length in organic amines, we synthesized two 2D metal-halide perovskites, namely 4-POMACC and 4-POEACC, both of which exhibit significant RTP emission. Notably, 4-POMACC demonstrates a stronger green RTP emission with a significantly longer lifetime (254 ms) and a higher photoluminescence quantum yield (9.5%) compared to 4-POEACC. A thorough investigation of structural and optical properties reveals that shorter alkyl chains can enhance the optical performance due to reduced molecular vibrations and more effective exciton recombination. Computational calculations further show that the smaller energy gap between S1 and Tn in 4-POMA facilitates intersystem crossing, thereby improving RTP performance. Based on their remarkable phosphorescence properties, we demonstrated their applications in information encryption. This work offers a novel design strategy that could inspire the development of next-generation RTP materials. Full article
(This article belongs to the Special Issue Advanced Inorganic Semiconductor Materials, 2nd Edition)
Show Figures

Figure 1

15 pages, 10576 KiB  
Article
Dy3+ and Mn4+ Ions Co-Doped Stannate Phosphors for Applications in Dual-Mode Optical Thermometry
by Zaifa Yang, Zhide Wang, Yi Su, Wenyue Zhang and Yu Zheng
Molecules 2025, 30(7), 1569; https://doi.org/10.3390/molecules30071569 - 31 Mar 2025
Cited by 1 | Viewed by 379
Abstract
In order to break through the limitations of the application of traditional temperature measurement technology, non-contact optical temperature sensing material with good sensitivity is one of the current research hotspots. Herein, a series of Dy3+ and Mn4+ co-doping Mg3Ga [...] Read more.
In order to break through the limitations of the application of traditional temperature measurement technology, non-contact optical temperature sensing material with good sensitivity is one of the current research hotspots. Herein, a series of Dy3+ and Mn4+ co-doping Mg3Ga2SnO8 fluorescent materials were prepared successfully, and the crystal structure, phase purity, and morphology of the synthesized phosphors were comprehensively investigated, as well as their photoluminescence properties, energy transfer, and high-temperature thermal stability. The two pairs of independent thermally coupled energy levels of Dy3+ ions and Mn4+ ions in Mg3Ga2SnO8 are utilized to realize the dual-mode optical temperature detection with excellent performance. On the one hand, based on the different ionic energy level transitions of 4F9/26H13/2 and 2Eg4A2g responding differently to temperature, two emission bands of 577 nm and 668 nm were chosen to construct the fluorescence intensity ratio thermometry, and the maximum sensitivity of 1.82 %K−1 was achieved at 473 K. On the other hand, based on the strong temperature dependence of the lifetime of Mn4+ in Mg3Ga2SnO8:0.06Dy3+,0.009Mn4+, fluorescence lifetime thermometry was constructed and a maximum sensitivity of 2.75 %K−1 was achieved at 473 K. Finally, the Mg3Ga2SnO8: 0.06Dy3+,0.009Mn4+ sample realizes dual-mode optical temperature measurement with high sensitivity and a wide temperature detection range, indicating that the sample has promising applications in optical temperature measurement. Full article
(This article belongs to the Special Issue Organic and Inorganic Luminescent Materials, 2nd Edition)
Show Figures

Graphical abstract

10 pages, 2184 KiB  
Article
CsPbI3 Perovskite Nanorods: Enhancing Fluorescence Efficiency and Environmental Stability via Trioctylphosphine Ligand Coordination
by Chengqi Liu, Zahir Abdalla, Xiaoqian Wang, Manrui Liu, Yanhui Jiao, Zisheng Tang, Qi Zhang and Yong Liu
Materials 2025, 18(7), 1518; https://doi.org/10.3390/ma18071518 - 28 Mar 2025
Cited by 1 | Viewed by 518
Abstract
Metal halide perovskite nanorods hold great promise for optoelectronic applications. However, they tend to undergo phase transitions due to the instability of the crystal phase under environmental conditions, leading to a rapid decline in the fluorescence efficiency. Here, we report a method in [...] Read more.
Metal halide perovskite nanorods hold great promise for optoelectronic applications. However, they tend to undergo phase transitions due to the instability of the crystal phase under environmental conditions, leading to a rapid decline in the fluorescence efficiency. Here, we report a method in which trioctylphosphine (TOP) directly serves as both the surface ligand and solvent to synthesize highly stable α-CsPbI3 nanorods (NRs). This approach produces monodisperse α-phase NRs with controlled sizes (1 μm and 150 nm in length, and an aspect ratio of 10:1), as confirmed by high-resolution transmission electron microscopy (TEM) and X-ray diffraction. The optimized NRs exhibit a high photoluminescence quantum yield of around 80%, as well as excellent environmental stability; after 15 days of storage, the photoluminescence quantum yield (PLQY) retention is 90%. Transient absorption spectroscopy shows that the carrier lifetime is extended to 23.95 ns and 27.86 ns, attributed to the dual role of TOP in defect passivation and hydrolysis suppression. This work provides a scalable paradigm for stabilizing metastable perovskite nanostructures through rational ligand selection, paving the way for durable perovskite-based optoelectronics. Full article
(This article belongs to the Special Issue Advanced Materials in Photoelectrics and Photonics)
Show Figures

Figure 1

19 pages, 3997 KiB  
Article
The Triplet–Triplet Annihilation Efficiency of Some 9,10-Substituted Diphenyl Anthracene Variants—A Decisive Analysis from Kinetic Rate Constants
by Mikael Lindgren, Victoria M. Bjelland, Thor-Bernt Melø, Callum McCracken, Satoshi Seo and Harue Nakashima
Optics 2025, 6(1), 8; https://doi.org/10.3390/opt6010008 - 12 Mar 2025
Viewed by 1175
Abstract
Triplet–triplet transfer photochemical reactions are essential in many biological, chemical, and photonic applications. Here, the Pd-octaethylporphyrin sensitizer along with triplet–triplet annihilator (TTA) active 9,10-diphenylantracenes (DPA) and the related substituted variants in low concentrations were examined. A full experimental approach is presented for finding [...] Read more.
Triplet–triplet transfer photochemical reactions are essential in many biological, chemical, and photonic applications. Here, the Pd-octaethylporphyrin sensitizer along with triplet–triplet annihilator (TTA) active 9,10-diphenylantracenes (DPA) and the related substituted variants in low concentrations were examined. A full experimental approach is presented for finding the necessary rate parameters with statistical standard deviation parameters. This was achieved by solving the pertinent non-analytical kinetic differential equation and fitting it to the experimental time-resolved photoluminescence of both slow fluorescence and sensitizer phosphorescence. The efficiency of the triplet–triplet energy transfer rate was found to be around 90% in THF but only around 75% in toluene. This appears to follow from the shorter lifetime of the sensitizer triplet in toluene. Moreover, the TTA transfer rate was on average more than 40% in THF toluene whereas a considerably lower value around 20–30% was found for toluene. This originated in an order of magnitude higher solvent quenching rate using toluene, based on the analysis of the delayed fluorescence decay traces. These are also higher than the statistically expected 1/9 TTA efficiency but in accordance with recent results in the literature, that attributed these high values to an inverse intersystem crossing process. In addition, quantum chemical calculations were carried out to reveal the pertinent excited triplet molecular orbitals of the lowest triplet excited state for a series of substituted DPAs, in comparison with the singlet ground state. Conclusively, these states distribute mainly in an anthracene ring in all compounds being in the range 1.64–1.65 eV above the ground state. The TTA efficiency was found to vary depending on the DPA annihilator substitution scheme and found to be smaller in THF. This is likely because the molecular framework over which the T1 excited molecular orbitals distribute is less sensitive for a longer lifetime of the annihilator triplet state. Full article
Show Figures

Figure 1

Back to TopTop