Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (513)

Search Parameters:
Keywords = photogenerated charge

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 5152 KiB  
Article
Grain Boundary Regulation in Aggregated States of MnOx Nanofibres and the Photoelectric Properties of Their Nanocomposites Across a Broadband Light Spectrum
by Xingfa Ma, Xintao Zhang, Mingjun Gao, Ruifen Hu, You Wang and Guang Li
Coatings 2025, 15(8), 920; https://doi.org/10.3390/coatings15080920 - 6 Aug 2025
Abstract
Improving charge transport in the aggregated state of nanocomposites is challenging due to the large number of defects present at grain boundaries. To enhance the charge transfer and photogenerated carrier extraction of MnOx nanofibers, a MnOx/GO (graphene oxide) nanocomposite was [...] Read more.
Improving charge transport in the aggregated state of nanocomposites is challenging due to the large number of defects present at grain boundaries. To enhance the charge transfer and photogenerated carrier extraction of MnOx nanofibers, a MnOx/GO (graphene oxide) nanocomposite was prepared. The effects of GO content and bias on the optoelectronic properties were studied. Representative light sources at 405, 650, 780, 808, 980, and 1064 nm were used to examine the photoelectric signals. The results indicate that the MnOx/GO nanocomposites have photocurrent switching behaviours from the visible region to the NIR (near-infrared) when the amount of GO added is optimised. It was also found that even with zero bias and storage of the nanocomposite sample at room temperature for over 8 years, a good photoelectric signal could still be extracted. This demonstrates that the MnOx/GO nanocomposites present a strong built-in electric field that drives the directional motion of photogenerated carriers, avoids the photogenerated carrier recombination, and reflect a good photophysical stability. The strength of the built-in electric field is strongly affected by the component ratios of the resulting nanocomposite. The formation of the built-in electric field results from interfacial charge transfer in the nanocomposite. Modulating the charge behaviour of nanocomposites can significantly improve the physicochemical properties of materials when excited by light with different wavelengths and can be used in multidisciplinary applications. Since the recombination of photogenerated electron–hole pairs is the key bottleneck in multidisciplinary fields, this study provides a simple, low-cost method of tailoring defects at grain boundaries in the aggregated state of nanocomposites. These results can be used as a reference for multidisciplinary fields with low energy consumption. Full article
Show Figures

Figure 1

18 pages, 4136 KiB  
Article
Interfacial Electric Fields and Chemical Bonds in Ti3C2O-Crafted AgI/MoS2 Direct Z-Scheme Heterojunction Synergistically Expedite Photocatalytic Performance
by Suxing Jiao, Tianyou Chen, Yiran Ying, Yincheng Liu and Jing Wu
Catalysts 2025, 15(8), 740; https://doi.org/10.3390/catal15080740 - 3 Aug 2025
Viewed by 218
Abstract
The photocatalytic performance of heterojunctions is often restricted by inferior contact interface and low charge transfer efficiency. In this work, Ti3C2O MXene was crafted with AgI/MoS2 to produce a Z-scheme heterojunction (AgI/MoS2/Ti3C2O). [...] Read more.
The photocatalytic performance of heterojunctions is often restricted by inferior contact interface and low charge transfer efficiency. In this work, Ti3C2O MXene was crafted with AgI/MoS2 to produce a Z-scheme heterojunction (AgI/MoS2/Ti3C2O). Interfacial electric fields and chemical bonds were proven to exist in the heterojunction. The interfacial electric fields supplied a powerful driving force, and the interfacial Ti-O-Mo bonds served as an atomic-level channel for synergistically expediting the vectorial transfer of photogenerated carriers. As a result, AgI/MoS2/Ti3C2O exhibited significantly improved photocatalytic activity, demonstrating a high H2O2 production rate of 700 μmol·g−1·h−1 and a rapid degradation of organic pollutants. Full article
Show Figures

Graphical abstract

7 pages, 784 KiB  
Communication
Mechanoluminescent-Boosted NiS@g-C3N4/Sr2MgSi2O7:Eu,Dy Heterostructure: An All-Weather Photocatalyst for Water Purification
by Yuchen Huang, Jiamin Wu, Honglei Li, Dehao Liu, Qingzhe Zhang and Kai Li
Processes 2025, 13(8), 2416; https://doi.org/10.3390/pr13082416 - 30 Jul 2025
Viewed by 267
Abstract
The vast majority of photocatalysts find it difficult to consistently and stably exhibit high performance due to the variability of sunlight intensity within a day, as well as the high energy consumption of artificial light sources. In this study, mechanoluminescent Sr2MgSi [...] Read more.
The vast majority of photocatalysts find it difficult to consistently and stably exhibit high performance due to the variability of sunlight intensity within a day, as well as the high energy consumption of artificial light sources. In this study, mechanoluminescent Sr2MgSi2O7:Eu,Dy phosphors is combined with NiS@g-C3N4 composite to construct a ternary heterogeneous photocatalytic system, denoted as NCS. In addition to the enhanced separation efficiency of photogenerated charge carriers by the formation of a heterojunction, the introduction of Sr2MgSi2O7:Eu,Dy provides an ultra-driving force for the photocatalytic reactions owing to its mechanoluminescence-induced excitation. Results show that the degradation rate of RhB increased significantly in comparison with pristine g-C3N4 and NiS@g-C3N4, indicating the obvious advantages of the ternary system for charge separation and migration. Moreover, the additional photocatalytic activity of NCS under ultrasound stimulation makes it a promising all-weather photocatalyst even in dark environments. This novel strategy opens up new horizons for the synergistic combination of light-driven and ultrasound-driven heterogeneous photocatalytic systems, and it also has important reference significance for the design and application of high-performance photocatalysts. Full article
(This article belongs to the Special Issue Green Photocatalysis for a Sustainable Future)
Show Figures

Figure 1

14 pages, 1928 KiB  
Article
Ultraviolet Photocatalytic Performance of ZnO Nanorods Selectively Deposited with Bi2O3 Quantum Dots
by Baohui Lou, Chi Zhang, Xianhao Wu, Ying Liu, Xiangdong Feng, Feipeng Huang, Bowen Zhao and Zhengwang Zhu
Catalysts 2025, 15(7), 695; https://doi.org/10.3390/catal15070695 - 21 Jul 2025
Viewed by 341
Abstract
A strong interaction between Bi3+ and ZnO was used to successfully sensitize ZnO nanorods with quantum dots (QDs) of Bi2O3 through three different strategies. Although the Bi2O3 QDs had similar particle size distributions, their photocatalytic performance [...] Read more.
A strong interaction between Bi3+ and ZnO was used to successfully sensitize ZnO nanorods with quantum dots (QDs) of Bi2O3 through three different strategies. Although the Bi2O3 QDs had similar particle size distributions, their photocatalytic performance varied significantly, prompting the investigation of factors beyond particle size. The study revealed that the photochemical method selectively deposited Bi2O3 QDs onto electron-rich ZnO sites, providing a favorable pathway for efficient electron–hole separation and transfer. Consequently, abundant h+ and ·OH radicals were generated, which effectively degraded Rhodamine B (RhB). As demonstrated in the RhB degradation experiments, the Bi2O3/ZnO nanorod catalyst achieved an 89.3% degradation rate within 120 min, significantly outperforming catalysts with other morphologies. The photoluminescence (PL) and time-resolved photoluminescence (TRPL) results indicated that the Bi2O3/ZnO heterostructure constructed an effective interface to facilitate the spatial separation of photogenerated charge carriers, which effectively prolonged their lifetime. The electron paramagnetic resonance (EPR) results confirmed that the ·OH radicals played a key role in the degradation process. Full article
(This article belongs to the Special Issue Advanced Catalytic Processes for Wastewater Treatment)
Show Figures

Graphical abstract

13 pages, 2686 KiB  
Article
Synergistic Energy Level Alignment and Light-Trapping Engineering for Optimized Perovskite Solar Cells
by Li Liu, Wenfeng Liu, Qiyu Liu, Yongheng Chen, Xing Yang, Yong Zhang and Zao Yi
Coatings 2025, 15(7), 856; https://doi.org/10.3390/coatings15070856 - 20 Jul 2025
Viewed by 364
Abstract
Perovskite solar cells (PSCs) leverage the exceptional photoelectric properties of perovskite materials, yet interfacial energy level mismatches limit carrier extraction efficiency. In this work, energy level alignment was exploited to reduce the charge transport barrier, which can be conducive to the transmission of [...] Read more.
Perovskite solar cells (PSCs) leverage the exceptional photoelectric properties of perovskite materials, yet interfacial energy level mismatches limit carrier extraction efficiency. In this work, energy level alignment was exploited to reduce the charge transport barrier, which can be conducive to the transmission of photo-generated carriers and reduce the probability of electron–hole recombination. We designed a dual-transition perovskite solar cell (PSC) with the structure of FTO/TiO2/Nb2O5/CH3NH3PbI3/MoO3/Spiro-OMeTAD/Au by finite element analysis methods. Compared with the pristine device (FTO/TiO2/CH3NH3PbI3/Spiro-OMeTAD/Au), the open-circuit voltage of the optimized cell increases from 0.98 V to 1.06 V. Furthermore, the design of a circular platform light-trapping structure makes up for the light loss caused by the transition at the interface. The short-circuit current density of the optimized device increases from 19.81 mA/cm2 to 20.36 mA/cm2, and the champion device’s power conversion efficiency (PCE) reaches 17.83%, which is an 18.47% improvement over the planar device. This model provides new insight for the optimization of perovskite devices. Full article
Show Figures

Figure 1

11 pages, 1808 KiB  
Article
CdZnS Nanowire Decorated with Graphene for Efficient Photocatalytic Hydrogen Evolution
by Zemeng Wang, Yunsheng Shen, Qingsheng Liu, Tao Deng, Kangqiang Lu and Zhaoguo Hong
Molecules 2025, 30(14), 3042; https://doi.org/10.3390/molecules30143042 - 20 Jul 2025
Viewed by 294
Abstract
Harnessing abundant and renewable solar energy for photocatalytic hydrogen production is a highly promising approach to sustainable energy generation. To realize the practical implementation of such systems, the development of photocatalysts that simultaneously exhibit high activity, cost-effectiveness, and long-term stability is critically important. [...] Read more.
Harnessing abundant and renewable solar energy for photocatalytic hydrogen production is a highly promising approach to sustainable energy generation. To realize the practical implementation of such systems, the development of photocatalysts that simultaneously exhibit high activity, cost-effectiveness, and long-term stability is critically important. In this study, a Cd0.8Zn0.2S nanowire photocatalytic system decorated with graphene (GR) was prepared by a simple hydrothermal method. The introduction of graphene increased the reaction active area of Cd0.8Zn0.2S, promoted the separation of photogenerated charge carriers in the semiconductor, and improved the photocatalytic performance of the Cd0.8Zn0.2S semiconductor. The results showed that Cd0.8Zn0.2S loaded with 5% graphene exhibited the best photocatalytic activity, with a hydrogen production rate of 1063.4 µmol·g−1·h−1. Characterization data revealed that the graphene cocatalyst significantly enhances electron transfer kinetics in Cd0.8Zn0.2S, thereby improving the separation efficiency of photogenerated charge carriers. This study demonstrates a rational strategy for designing high-performance, low-cost composite photocatalysts using earth-abundant cocatalysts, advancing sustainable hydrogen production. Full article
(This article belongs to the Section Photochemistry)
Show Figures

Figure 1

14 pages, 7478 KiB  
Article
Constructing a Ta3N5/Tubular Graphitic Carbon Nitride Van Der Waals Heterojunction for Enhanced Photocatalytic Hydrogen Production
by Junbo Yu, Guiming Ba, Fuhong Bi, Huilin Hu, Jinhua Ye and Defa Wang
Catalysts 2025, 15(7), 691; https://doi.org/10.3390/catal15070691 - 20 Jul 2025
Viewed by 408
Abstract
Constructing a heterojunction is considered one of the most effective strategies for enhancing photocatalytic activity. Herein, we employ Ta3N5 and tubular graphitic carbon nitride (TCN) to construct a Ta3N5/TCN van der Waals heterojunction via electrostatic self-assembly [...] Read more.
Constructing a heterojunction is considered one of the most effective strategies for enhancing photocatalytic activity. Herein, we employ Ta3N5 and tubular graphitic carbon nitride (TCN) to construct a Ta3N5/TCN van der Waals heterojunction via electrostatic self-assembly for enhanced photocatalytic H2 production. SEM and TEM results show that Ta3N5 particles (~300 nm in size) are successfully anchored onto the surface of TCN. The light absorption capability of the Ta3N5/TCN heterojunction is between those of Ta3N5 and TCN. The strong interaction between Ta3N5 and TCN with different energy structures (Fermi levels) by van der Waals force renders the formation of an interfacial electric field to drive the separation and transfer of photogenerated charge carriers in the Ta3N5/TCN heterojunction, as evidenced by the photoluminescence (PL) and photoelectrochemical (PEC) characterization results. Consequently, the optimal Ta3N5/TCN heterojunction exhibits a remarkable H2 production rate of 12.73 mmol g−1 h−1 under visible light irradiation, which is 3.3 and 16.8 times those of TCN and Ta3N5, respectively. Meanwhile, the cyclic experiment demonstrates excellent stability of the Ta3N5/TCN heterojunction upon photocatalytic reaction. Notably, the photocatalytic performance of 15-TaN/TCN outperforms the most previously reported CN-based and Ta3N5-based heterojunctions for H2 production. This work provides a new avenue for the rational design of CN-based van der Waals heterojunction photocatalysts with enhanced photocatalytic activity. Full article
Show Figures

Figure 1

10 pages, 3012 KiB  
Article
A Perovskite-Based Photoelectric Synaptic Transistor with Dynamic Nonlinear Response
by Jiahui Liu, Zunxian Yang, Yujie Zheng and Wenkun Su
Photonics 2025, 12(7), 734; https://doi.org/10.3390/photonics12070734 - 18 Jul 2025
Viewed by 230
Abstract
Nonlinear characteristics are essential for neuromorphic devices to process high-dimensional and unstructured data. However, enabling a device to realize a nonlinear response under the same stimulation condition is challenging as this involves two opposing processes: simultaneous charge accumulation and recombination. In this study, [...] Read more.
Nonlinear characteristics are essential for neuromorphic devices to process high-dimensional and unstructured data. However, enabling a device to realize a nonlinear response under the same stimulation condition is challenging as this involves two opposing processes: simultaneous charge accumulation and recombination. In this study, a hybrid transistor based on a mixed-halide perovskite was fabricated to achieve dynamic nonlinear changes in synaptic plasticity. The utilization of a light-induced mixed-bandgap structure within the mixed perovskite film has been demonstrated to increase the recombination paths of photogenerated carriers of the hybrid film, thereby promoting the formation of nonlinear signals in the device. The constructed heterojunction optoelectronic synaptic transistor, formed by combining a mixed-halide perovskite with a p-type semiconductor, generates dynamic nonlinear decay responses under 400 nm light pulses with an intensity as low as 0.02 mW/cm2. Furthermore, it has been demonstrated that nonlinear photocurrent growth can be achieved under 650 nm light pulses. It is important to note that this novel nonlinear response is characterized by its dynamism. These improvements provide a novel method for expanding the modulation capability of optoelectronic synaptic devices for synaptic plasticity. Full article
(This article belongs to the Special Issue Polaritons Nanophotonics: Physics, Materials and Applications)
Show Figures

Figure 1

21 pages, 4142 KiB  
Review
Nanomaterial-Enabled Enhancements in Thylakoid-Based Biofuel Cells
by Amit Sarode and Gymama Slaughter
Nanomaterials 2025, 15(14), 1092; https://doi.org/10.3390/nano15141092 - 14 Jul 2025
Viewed by 393
Abstract
Thylakoid-based photosynthetic biofuel cells (TBFCs) harness the inherent light-driven electron transfer pathways of photosynthesis to enable sustainable solar-to-electrical energy conversion. While TBFCs offer a unique route toward biohybrid energy systems, their practical deployment is hindered by sluggish electron transfer kinetics, unstable redox mediators, [...] Read more.
Thylakoid-based photosynthetic biofuel cells (TBFCs) harness the inherent light-driven electron transfer pathways of photosynthesis to enable sustainable solar-to-electrical energy conversion. While TBFCs offer a unique route toward biohybrid energy systems, their practical deployment is hindered by sluggish electron transfer kinetics, unstable redox mediators, and inefficient interfacing between biological and electrode components. This review critically examines recent advances in TBFCs, with a focus on three key surface engineering strategies: (i) incorporation of nanostructured materials to enhance electrode conductivity and surface area; (ii) application of redox mediators to facilitate charge transfer between photosynthetic proteins and electrodes; and (iii) functional exploitation of individual thylakoid components, including Photosystem I (PSI) and Photosystem II (PSII), to augment photogenerated current output. By systematically evaluating current advancements, this review highlights the synergistic role of materials and biological components in advancing TBFC technology and offers insights into next generation biohybrid solar energy systems with enhanced efficiency and scalability. Full article
(This article belongs to the Special Issue Advanced Nanotechnology in Fuel Cells)
Show Figures

Graphical abstract

15 pages, 11349 KiB  
Article
Three-Dimensional Bi-Enriched Bi2O3/Bi2MoO6 Z-Scheme Heterojunction: Augmented Photocatalytic Phenol Degradation
by Congyu Cai, Shuwen Wang, Pingping Wan, Haoying Cai, Minhui Pan and Weiwei Wang
Inorganics 2025, 13(7), 227; https://doi.org/10.3390/inorganics13070227 - 6 Jul 2025
Viewed by 463
Abstract
A three-dimensional Bi-enriched Bi2O3/Bi2MoO6 Z-scheme heterojunction photocatalyst was successfully synthesized via a facile one-step hydrothermal method for efficient phenol degradation under visible light. Structural and morphological characterizations (SEM, TEM, and XRD) confirmed the formation of a [...] Read more.
A three-dimensional Bi-enriched Bi2O3/Bi2MoO6 Z-scheme heterojunction photocatalyst was successfully synthesized via a facile one-step hydrothermal method for efficient phenol degradation under visible light. Structural and morphological characterizations (SEM, TEM, and XRD) confirmed the formation of a nanoflower-like architecture with a high specific surface area of 81.27 m2/g. Optical and electrochemical analyses revealed efficient charge separation and extended visible-light response. Under visible-light irradiation (λ > 420 nm), this heterojunction (Bi2O3:Bi2MoO6 = 3:7) demonstrated exceptional performance, degrading 97.06% of phenol (30 mg/L) within 60 min. XPS analysis confirmed the Z-scheme charge transfer mechanism: Photogenerated electrons in the conduction band of Bi2O3 (−0.59 eV) facilitated the generation of ·O2 radicals, while holes in the valence band of Bi2MoO6 (2.44 eV) predominantly produced ·OH radicals. This synergistic effect resulted in highly efficient mineralization and degradation of phenol. Full article
Show Figures

Graphical abstract

12 pages, 3952 KiB  
Article
Rationally Designed 2D CZIS/2D Ti3CNTx Heterojunctions for Photocatalytic Hydrogen Evolution Reaction
by Peize Li, Zhiying Wang and Xiaofei Yang
Catalysts 2025, 15(7), 632; https://doi.org/10.3390/catal15070632 - 27 Jun 2025
Viewed by 479
Abstract
Highly efficient photocatalysts for solar energy conversion require effective charge carrier separation and rapid interfacial transport kinetics to maximize electron availability. Two-dimensional Ti3CNTx, a novel conductive material in the MXene family with exceptional electrical conductivity, has emerged as an [...] Read more.
Highly efficient photocatalysts for solar energy conversion require effective charge carrier separation and rapid interfacial transport kinetics to maximize electron availability. Two-dimensional Ti3CNTx, a novel conductive material in the MXene family with exceptional electrical conductivity, has emerged as an ideal electron transfer mediator due to its large specific surface area and abundant active terminal groups. In this work, we strategically integrated the 2D multi-metal sulfide Cu-Zn-In-S (CZIS) with 2D Ti3CNTx nanosheets through physical mixture, constructing a heterostructured 2D/2D CZIS/Ti3CNTx composite photocatalyst for the hydrogen evolution reaction. The unique architecture significantly accelerates electron migration from CZIS to Ti3CNTx, while synergistically promoting the spatial separation and directional transfer of photogenerated electron–hole pairs (e/h+). When the hydrogen evolution reaction is carried out under identical conditions, the hydrogen yield rate is 4.3 mmol g−1 h−1 with pristine CZIS but is improved dramatically to 14.3 mmol g−1 h−1 when the composite containing an adequate amount of 2D Ti3CNTx is used. This study offers new insight into the rational design and controllable synthesis of Ti3CNTx-based composite photocatalytic systems for efficient photocatalytic hydrogen production. Full article
Show Figures

Graphical abstract

22 pages, 2603 KiB  
Review
Core–Shell Engineering of One-Dimensional Cadmium Sulfide for Solar Energy Conversion
by Rama Krishna Chava and Misook Kang
Nanomaterials 2025, 15(13), 1000; https://doi.org/10.3390/nano15131000 - 27 Jun 2025
Viewed by 394
Abstract
Fabricating efficient photocatalysts that can be used in solar-to-fuel conversion and to enhance the photochemical reaction rate is essential to the current energy crisis and climate changes due to the excessive usage of nonrenewable fossil fuels. To attain high photo-to-chemical conversion efficiency, it [...] Read more.
Fabricating efficient photocatalysts that can be used in solar-to-fuel conversion and to enhance the photochemical reaction rate is essential to the current energy crisis and climate changes due to the excessive usage of nonrenewable fossil fuels. To attain high photo-to-chemical conversion efficiency, it is important to fabricate cost-effective and durable catalysts with high activity. One-dimensional cadmium sulfides (1D CdS), with higher surface area, charge carrier separation along the linear direction, and visible light harvesting properties, are promising candidates for converting solar energy to H2, reducing CO2 to commodity chemicals, and remediating environmental pollutants. The main disadvantage of CdS is photocorrosion due to the leaching of S2− ions during the photochemical reactions, and further charge recombination rate leads to low quantum efficiency. Therefore, the implementation of core–shell heterostructured morphology, i.e., the growth of the shell on the surface of the 1D CdS, which offers unique features such as protection of CdS from photocorrosion, a tunable interface between the core CdS and shell, and photogenerated charge carrier separation via heterojunctions, provides additional active sites and enhanced visible light harvesting. Therefore, the viability of the core–shell synthesis strategy and synergetic effects offer a new way of designing photocatalysts with enhanced stability and improved charge separation in solar energy conversion systems. This review highlights some critical aspects of synthesizing 1D CdS core–shell heterostructures, underlying reaction mechanisms, and their performance in photoredox reactions. Finally, some challenges and considerations in the fabrication of 1D CdS-based core–shell nanostructures that can overcome the current barriers in industrial applications are discussed. Full article
Show Figures

Figure 1

43 pages, 9107 KiB  
Review
A Review on Pre-, In-Process, and Post-Synthetic Strategies to Break the Surface Area Barrier in g-C3N4 for Energy Conversion and Environmental Remediation
by Mingming Gao, Minghao Zhao, Qianqian Yang, Lan Bao, Liwei Chen, Wei Liu and Jing Feng
Nanomaterials 2025, 15(13), 956; https://doi.org/10.3390/nano15130956 - 20 Jun 2025
Viewed by 420
Abstract
Nanomaterials with large specific surface area (SSA) have emerged as pivotal platforms for energy storage and environmental remediation, primarily due to their enhanced active site exposure, improved mass transport capabilities, and superior interfacial reactivity. Among them, polymeric carbon nitride (g-C3N4 [...] Read more.
Nanomaterials with large specific surface area (SSA) have emerged as pivotal platforms for energy storage and environmental remediation, primarily due to their enhanced active site exposure, improved mass transport capabilities, and superior interfacial reactivity. Among them, polymeric carbon nitride (g-C3N4) has garnered significant attention in energy and environmental applications owing to its visible-light-responsive bandgap (~2.7 eV), exceptional thermal/chemical stability, and earth-abundant composition. However, the practical performance of g-C3N4 is fundamentally constrained by intrinsic limitations, including its inherently low SSA (<20 m2/g via conventional thermal polymerization), rapid recombination of photogenerated carriers, and inefficient charge transfer kinetics. Notably, the theoretical SSA of g-C3N4 reaches 2500 m2/g, yet achieving this value remains challenging due to strong interlayer van der Waals interactions and structural collapse during synthesis. Recent advances demonstrate that state-of-the-art strategies can elevate its SSA to 50–200 m2/g. To break this surface area barrier, advanced strategies achieve SSA enhancement through three primary pathways: pre-treatment (molecular and supramolecular precursor design), in process (templating and controlled polycondensation), and post-processing (chemical exfoliation and defect engineering). This review systematically examines controllable synthesis methodologies for high-SSA g-C3N4, analyzing how SSA amplification intrinsically modulates band structures, extends carrier lifetimes, and boosts catalytic efficiencies. Future research should prioritize synergistic multi-stage engineering to approach the theoretical SSA limit (2500 m2/g) while preserving robust optoelectronic properties. Full article
Show Figures

Graphical abstract

14 pages, 3835 KiB  
Article
Z-Scheme ZnO/ZnAl2O4 Heterojunction with Synergistic Effects for Enhanced Photocatalytic CO2 Reduction
by Minhui Pan, Linlin Zheng, Congyu Cai and Weiwei Wang
Molecules 2025, 30(12), 2626; https://doi.org/10.3390/molecules30122626 - 17 Jun 2025
Viewed by 392
Abstract
The photocatalytic reduction of CO2 into valuable hydrocarbons presents significant potential. In this research, a ZnO/ZnAl2O4 composite photocatalyst was synthesized using the hydrothermal method, resulting in a marked enhancement in CO yield—approximately three times greater than that achieved with [...] Read more.
The photocatalytic reduction of CO2 into valuable hydrocarbons presents significant potential. In this research, a ZnO/ZnAl2O4 composite photocatalyst was synthesized using the hydrothermal method, resulting in a marked enhancement in CO yield—approximately three times greater than that achieved with pure ZnAl2O4 nanoparticles. The formation of a Z-scheme heterojunction between ZnO and ZnAl2O4 was observed, characterized by low interfacial charge transfer resistance, an abundance of reaction sites, and optimized charge transport pathways. Within this composite, ZnO contributes additional vacancies, thereby increasing active sites and enhancing the separation and migration of photogenerated carriers. In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) analysis indicates that ZnAl2O4 facilitates the formation of key intermediates, such as *COOH and HCO3, thus promoting the conversion of CO2 to CO. This study offers valuable insights into the design of heterogeneous catalysts with diverse active components to enhance the performance of CO2 photocatalytic reduction through synergistic effects. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Graphical abstract

15 pages, 19836 KiB  
Article
Construction of A NiS/g-C3N4 Co-Catalyst-Based S-Scheme Heterojunction and Its Performance in Photocatalytic CO2 Reduction
by Qianyu Zhao and Hengbo Yin
Catalysts 2025, 15(6), 599; https://doi.org/10.3390/catal15060599 - 17 Jun 2025
Viewed by 459
Abstract
NiS nanoparticles were chemically deposited on the surface of g-C3N4, in situ, followed by high-temperature calcination to prepare x-NiS/g-C3N4 co-catalyst-based S-scheme heterojunction photocatalysts. Due to the intrinsic charge accumulation preference on specific crystal planes of g-C [...] Read more.
NiS nanoparticles were chemically deposited on the surface of g-C3N4, in situ, followed by high-temperature calcination to prepare x-NiS/g-C3N4 co-catalyst-based S-scheme heterojunction photocatalysts. Due to the intrinsic charge accumulation preference on specific crystal planes of g-C3N4, NiS nanoparticles selectively deposited on its surface and formed a strong interfacial contact, thereby constructing an S-scheme heterojunction with co-catalytic functionality. This structure effectively suppressesd the recombination of electron–hole pairs in the valence band, significantly enhancing the separation efficiency of photogenerated charge carriers, and thereby improving performance in photocatalytic CO2 reduction. Compared with pure g-C3N4, the x-NiS/g-C3N4 photocatalysts exhibit superior CO2 reduction activity. Among them, the sample with 1.0% NiS loading showed the best performance, achieving CO and CH4 production rates of 27.34 μmol/g and 13.87 μmol/g, respectively, within 4 h. Full article
(This article belongs to the Special Issue Catalytic Carbon Emission Reduction and Conversion in the Environment)
Show Figures

Figure 1

Back to TopTop