Z-Scheme ZnO/ZnAl2O4 Heterojunction with Synergistic Effects for Enhanced Photocatalytic CO2 Reduction
Abstract
:1. Introduction
2. Results and Discussion
2.1. Morphology and Structural Characterization
2.2. Surface Chemical States and Electron Distribution
2.3. Optical and Photoelectrochemical Properties
2.4. Photocatalytic Performance
2.5. Mechanism of Photocatalytic CO2 Reduction
3. Experimental Section
3.1. Materials
3.2. Synthesis of Photocatalysts
3.3. Catalyst Characterization
3.4. Photocatalytic CO2 Reduction Reaction
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahmed, R.; Liu, G.; Yousaf, B.; Abbas, Q.; Ullah, H.; Ali, M.U. Recent advances in carbon-based renewable adsorbent for selective carbon dioxide capture and separation—A review. J. Clean. Prod. 2020, 242, 118409. [Google Scholar] [CrossRef]
- Jeffry, L.; Ong, M.Y.; Nomanbhay, S.; Mofijur, M.; Mubashir, M.; Show, P.L. Greenhouse gases utilization: A review. Fuel 2021, 301, 121017. [Google Scholar] [CrossRef]
- Fan, W.; Leung, M.K.H. Recent Development of Plasmonic Resonance-Based Photocatalysis and Photovoltaics for Solar Utilization. Molecules 2016, 21, 180. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Ren, Z.; Si, W.; Ma, Q.; Huang, W.; Liao, K.; Huang, Z.; Wang, Y.; Li, J.; Xu, P. Research progress on CO2 capture and utilization technology. J. CO2 Util. 2022, 66, 102260. [Google Scholar] [CrossRef]
- Valluri, S.; Claremboux, V.; Kawatra, S. Opportunities and challenges in CO2 utilization. J. Environ. Sci. 2022, 113, 322–344. [Google Scholar] [CrossRef]
- Ra, E.C.; Kim, K.Y.; Kim, E.H.; Lee, H.; An, K.; Lee, J.S. Recycling Carbon Dioxide through Catalytic Hydrogenation: Recent Key Developments and Perspectives. ACS Catal. 2020, 10, 11318–11345. [Google Scholar] [CrossRef]
- Song, Q.-W.; Zhou, Z.-H.; He, L.-N. Efficient, selective and sustainable catalysis of carbon dioxide. Green Chem. 2017, 19, 3707–3728. [Google Scholar] [CrossRef]
- Wang, S.; Wang, L.; Wang, D.; Li, Y. Recent advances of single-atom catalysts in CO2 conversion. Energy Environ. Sci. 2023, 16, 2759–2803. [Google Scholar] [CrossRef]
- Yergaziyeva, G.; Kuspanov, Z.; Mambetova, M.; Khudaibergenov, N.; Makayeva, N.; Daulbayev, C. Advancements in catalytic, photocatalytic, and electrocatalytic CO2 conversion processes: Current trends and future outlook. J. CO2 Util. 2024, 80, 102682. [Google Scholar] [CrossRef]
- Liu, X.; Chen, T.; Xue, Y.; Fan, J.; Shen, S.; Hossain, M.S.A.A.; Amin, M.A.; Pan, L.; Xu, X.; Yamauchi, Y. Nanoarchitectonics of MXene/semiconductor heterojunctions toward artificial photosynthesis via photocatalytic CO2 reduction. Coord. Chem. Rev. 2022, 459, 214440. [Google Scholar] [CrossRef]
- Wang, J.; Guo, R.-T.; Bi, Z.-X.; Chen, X.; Hu, X.; Pan, W.-G. A review on TiO2-x based materials for photocatalytic CO2 reduction. Nanoscale 2022, 14, 11512–11528. [Google Scholar] [CrossRef]
- Zhong, K.; Sun, P.; Xu, H. Advances in Defect Engineering of Metal Oxides for Photocatalytic CO2 Reduction. Small 2024. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Kassymova, M.; Cai, X.; Zang, S.-Q.; Jiang, H.-L. Photocatalytic CO2 reduction over metal-organic framework-based materials. Coord. Chem. Rev. 2020, 412, 213262. [Google Scholar] [CrossRef]
- Rhimi, B.; Zhou, M.; Yan, Z.; Cai, X.; Jiang, Z. Cu-Based Materials for Enhanced C2+ Product Selectivity in Photo-/Electro-Catalytic CO2 Reduction: Challenges and Prospects. Nano-Micro Lett. 2024, 16, 64. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Yu, L.; Kang, P.; Chu, Z.; Li, Y. Modifications and Applications of Metal-Organic-Framework-Based Materials for Photocatalysis. Molecules 2024, 29, 5834. [Google Scholar] [CrossRef]
- Albero, J.; Peng, Y.; Garcia, H. Photocatalytic CO2 Reduction to C2+Products. ACS Catal. 2020, 10, 5734–5749. [Google Scholar] [CrossRef]
- Fang, S.; Rahaman, M.; Bharti, J.; Reisner, E.; Robert, M.; Ozin, G.A.; Hu, Y.H. Photocatalytic CO2 reduction. Nat. Rev. Methods Primers 2023, 3, 61. [Google Scholar] [CrossRef]
- Marszewski, M.; Cao, S.; Yu, J.; Jaroniec, M. Semiconductor-based photocatalytic CO2 conversion. Mater. Horiz. 2015, 2, 261–278. [Google Scholar] [CrossRef]
- Somraksa, W.; Suwanboon, S.; Amornpitoksuk, P.; Randorn, C. Physical and Photocatalytic Properties of CeO2/ZnO/ZnAl2O4 Ternary Nanocomposite Prepared by Co-precipitation Method. Mater. Res. 2020, 23, e20190627. [Google Scholar] [CrossRef]
- Chen, Z.; Zhao, X.; Wei, S. Comparative study on sol-gel combined with a hydrothermal synthesis of ZnAl2O4 and ZnO/ZnAl2O4 nanocomposites and its photoluminescence properties and antibacterial activity. Optik 2021, 242, 167151. [Google Scholar] [CrossRef]
- Song, L.; Liu, G.; Qu, Z. Cation rearrangement at tetrahedral sites in the Cu/ZnAl2O4 spinel enhancing CO2 hydrogenation to methanol. Appl. Catal. B Environ. Energy 2025, 362, 124742. [Google Scholar] [CrossRef]
- Liu, H.; Liu, S.; Liang, Y.; Sun, Y.; Xiong, H. B-modified Pd/ZnAl2O4 Catalyst for Enhancing CO2 Hydrogenation to Methanol. Catal. Lett. 2024, 154, 4805–4813. [Google Scholar] [CrossRef]
- Liu, C.; Xu, J.; Zhiani, R. Synthesis of nanofibrous ZnAl2O4 for hydrogenation of CO2 to formate. Inorg. Chem. Commun. 2022, 139, 109392. [Google Scholar] [CrossRef]
- Yuan, X.; Cheng, X.; Jing, Q.; Niu, J.; Peng, D.; Feng, Z.; Wu, X. ZnO/ZnAl2O4 Nanocomposite with 3D Sphere-like Hierarchical Structure for Photocatalytic Reduction of Aqueous Cr(VI). Materials 2018, 11, 1624. [Google Scholar] [CrossRef]
- Wang, L.; Zhu, B.; Zhang, J.; Ghasemi, J.B.; Mousavi, M.; Yu, J. S-scheme heterojunction photocatalysts for CO2 reduction. Matter 2022, 5, 4187–4211. [Google Scholar] [CrossRef]
- Zhang, W.; Mohamed, A.R.; Ong, W.-J. Z-Scheme Photocatalytic Systems for Carbon Dioxide Reduction: Where Are We Now? Angew. Chem. Int. Ed. 2020, 59, 22894–22915. [Google Scholar] [CrossRef]
- Lin, G.; Sun, L.; Huang, G.; Chen, Q.; Fang, S.; Bi, J.; Wu, L. Direct Z-scheme copper cobaltite/covalent triazine-based framework heterojunction for efficient photocatalytic CO2 reduction under visible light. Sustain. Energy Fuels 2021, 5, 732–739. [Google Scholar] [CrossRef]
- Guo, S.-T.; Tang, Z.-Y.; Du, Y.-W.; Liu, T.; Ouyang, T.; Liu, Z.-Q. Chlorine anion stabilized Cu2O/ZnO photocathode for selective CO2 reduction to CH4. Appl. Catal. B Environ. 2023, 321, 122035. [Google Scholar] [CrossRef]
- Dhiman, P.; Rana, G.; Kumar, A.; Sharma, G.; Vo, D.-V.N.; Naushad, M. ZnO-based heterostructures as photocatalysts for hydrogen generation and depollution: A review. Environ. Chem. Lett. 2022, 20, 1047–1081. [Google Scholar] [CrossRef]
- Theerthagiri, J.; Salla, S.; Senthil, R.A.; Nithyadharseni, P.; Madankumar, A.; Arunachalam, P.; Maiyalagan, T.; Kim, H.-S. A review on ZnO nanostructured materials: Energy, environmental and biological applications. Nanotechnology 2019, 30, 392001. [Google Scholar] [CrossRef]
- Wang, G.; Lv, S.; Shen, Y.; Li, W.; Lin, L.; Li, Z. Advancements in heterojunction, cocatalyst, defect and morphology engineering of semiconductor oxide photocatalysts. J. Mater. 2024, 10, 315–338. [Google Scholar] [CrossRef]
- Goktas, S.; Goktas, A. A comparative study on recent progress in efficient ZnO based nanocomposite and heterojunction photocatalysts: A review. J. Alloys Compd. 2021, 863, 158734. [Google Scholar] [CrossRef]
- Gao, W.; Chi, H.Q.; Xiong, Y.J.; Ye, J.H.; Zou, Z.G.; Zhou, Y. Comprehensive Insight into Construction of Active Sites toward Steering Photocatalytic CO2 Conversion. Adv. Funct. Mater. 2024, 34, 2312056. [Google Scholar] [CrossRef]
- Qorbani, M.; Sabbah, A.; Lai, Y.-R.; Kholimatussadiah, S.; Quadir, S.; Huang, C.-Y.; Shown, I.; Huang, Y.-F.; Hayashi, M.; Chen, K.-H.; et al. Atomistic insights into highly active reconstructed edges of monolayer 2H-WSe2 photocatalyst. Nat. Commun. 2022, 13, 1256. [Google Scholar] [CrossRef] [PubMed]
- Eskandari Azar, B.; Ramazani, A.; Taghavi Fardood, S.; Morsali, A. Green synthesis and characterization of ZnAl2O4@ZnO nanocomposite and its environmental applications in rapid dye degradation. Optik 2020, 208, 164129. [Google Scholar] [CrossRef]
- Moradipour, P.; Dabirian, F.; Moradipour, M. Ternary ZnO/ZnAl2O4/Al2O3 composite nanofiber as photocatalyst for conversion of CO2 and CH4. Ceram. Int. 2020, 46, 5566–5574. [Google Scholar] [CrossRef]
- Shahmirzaee, M.; Shafiee Afarani, M.; Arabi, A.M.; Iran Nejhad, A. In situ crystallization of ZnAl2O4/ZnO nanocomposite on alumina granule for photocatalytic purification of wastewater. Res. Chem. Intermed. 2016, 43, 321–340. [Google Scholar] [CrossRef]
- Suwanboon, S.; Amornpitoksuk, P.; Rattana, T.; Randorn, C. Investigation of g-C3N4/ZnAl2O4 and ZnO/ZnAl2O4 nanocomposites: From synthesis to photocatalytic activity of pollutant dye model. Ceram. Int. 2020, 46, 21958–21977. [Google Scholar] [CrossRef]
- Chen, L.; Yang, X.; He, Z.; Zheng, J.; Zhu, M.; Zeng, Z.; Li, H.; Liu, Y.; Yang, S. Selective Photoconversion of CO2 to C2H4 on Asymmetrical CeO2–Cu2O Interfaces Driven by Oxygen Vacancies. Adv. Funct. Mater. 2025. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhu, T.; Li, J.; Li, C.; Lu, W.; Liu, J.; Zhang, D.; Dong, Y.; Yang, M. Electron-Deficient Coδ+ Induced by Synergistic Co–ZnO–ZnAl2O4 Interface Interactions for Enhanced N-Propylcarbazole Hydrogenation. ACS Catal. 2025, 15, 5490–5502. [Google Scholar] [CrossRef]
- Wang, D.-D.; Xu, M.-Y.; Lin, Z.-X.; Wu, J.-H.; Yang, W.-T.; Li, H.-J.; Su, Z.-M. One-pot synthesis of MIL-68(In)-derived CdIn2S4/In2S3 tubular heterojunction for highly selective CO2 photoreduction. Rare Met. 2025, 44, 3956–3969. [Google Scholar] [CrossRef]
- Deng, H.; Fei, X.; Yang, Y.; Fan, J.; Yu, J.; Cheng, B.; Zhang, L. S-scheme heterojunction based on p-type ZnMn2O4 and n-type ZnO with improved photocatalytic CO2 reduction activity. Chem. Eng. J. 2021, 409, 127377. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Zeng, Z.; Hu, J.; Hou, Y.; Huang, Z. Synergically engineering Cu+ and oxygen vacancies in CuMn2O4 catalysts for enhanced toluene oxidation performance. Mol. Catal. 2022, 517, 112043. [Google Scholar] [CrossRef]
- Ling, W.; Ma, J.; Hong, M.; Sun, R. Enhance photocatalytic CO2 reduction and biomass selective oxidation via sulfur vacancy-enriched S-scheme heterojunction of MoS2@GCN. Chem. Eng. J. 2024, 493, 152729. [Google Scholar] [CrossRef]
- Wang, M.; Zheng, L.; Wang, G.; Cui, J.; Guan, G.L.; Miao, Y.T.; Wu, J.F.; Gao, P.; Yang, F.; Ling, Y.; et al. Spinel Nanostructures for the Hydrogenation of CO2 to Methanol and Hydrocarbon Chemicals. J. Am. Chem. Soc. 2024, 146, 14528–14538. [Google Scholar] [CrossRef]
- Sun, M.; Chen, Y.; Fan, X.; Li, D.; Song, J.; Yu, K.; Zhao, Z. Electronic asymmetry of lattice oxygen sites in ZnO promotes the photocatalytic oxidative coupling of methane. Nat. Commun. 2024, 15, 9900. [Google Scholar] [CrossRef]
- Shan, C.; Su, Z.; Liu, Z.; Xu, R.; Wen, J.; Hu, G.; Tang, T.; Fang, Z.; Jiang, L.; Li, M. One-Step Synthesis of Ag2O/Fe3O4 Magnetic Photocatalyst for Efficient Organic Pollutant Removal via Wide-Spectral-Response Photocatalysis-Fenton Coupling. Molecules 2023, 28, 4155. [Google Scholar] [CrossRef]
- Liang, J.; Chai, Y.; Li, L.; Li, D.; Shen, J.; Zhang, Y.; Wang, X. Germanium and iron double-substituted ZnGa2O4 solid-solution photocatalysts with modulated band structure for boosting photocatalytic CO2 reduction with H2O. Appl. Catal. B Environ. 2020, 265, 118551. [Google Scholar] [CrossRef]
- Wang, C.; Hu, C.; Chen, F.; Li, H.; Zhang, Y.; Ma, T.; Huang, H. Polar Layered Bismuth-Rich Oxyhalide Piezoelectrics Bi4O5X2 (X(sic)Br, I): Efficient Piezocatalytic Pure Water Splitting and Interlayer Anion-Dependent Activity. Adv. Funct. Mater. 2023, 33, 2301144. [Google Scholar] [CrossRef]
- Chen, W.; Kang, T.; Du, F.; Han, P.; Gao, M.; Hu, P.; Teng, F.; Fan, H. A new S-scheme heterojunction of 1D ZnGa2O4/ZnO nanofiber for efficient photocatalytic degradation of TC-HCl. Environ. Res. 2023, 232, 116388. [Google Scholar] [CrossRef]
- Guo, C.; Tang, Y.; Yang, Z.; Zhao, T.; Liu, J.; Zhao, Y.; Wang, F. Reinforcing the Efficiency of Photothermal Catalytic CO2 Methanation through Integration of Ru Nanoparticles with Photothermal MnCo2O4 Nanosheets. ACS Nano 2023, 17, 23761–23771. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.J.; Zhuang, G.L.; Zhang, J.W.; Luo, F.; Cheng, X.; Sun, F.L.; Fu, S.S.; Lu, T.B.; Zhang, Z.M. Co-Dissolved Isostructural Polyoxovanadates to Construct Single-Atom-Site Catalysts for Efficient CO2 Photoreduction. Angew. Chem. Int. Ed. Engl. 2023, 62, e202216592. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Wen, J.; Wang, Y.; Chen, J.; Lu, C.-Z. Vacancies induce the enhancement of CO2 photothermal reduction with water vapor via ZrO2/ZnS composite catalysts. Appl. Surf. Sci. 2025, 686, 162209. [Google Scholar] [CrossRef]
- Su, B.; Wang, S.; Xing, W.; Liu, K.; Hung, S.-F.; Chen, X.; Fang, Y.; Zhang, G.; Zhang, H.; Wang, X. Synergistic Ru Species on Poly(heptazine imide) Enabling Efficient Photocatalytic CO2 reduction with H2O Beyond 800 nm. Angew. Chem. Int. Ed. Engl. 2025. [Google Scholar] [CrossRef]
- Xu, Y.; Ren, Y.; Liu, X.; Li, H.; Lu, Z. NH2-UIO-66 Based Hydrophobic Porous Liquid with High Mass Transfer and Affinity Surface for Enhancing CO2 Photoreduction. Acta Phys. Chim. Sin. 2024, 40, 2403032. [Google Scholar] [CrossRef]
- Lai, K.; Sun, Y.; Li, N.; Gao, Y.; Li, H.; Ge, L.; Ma, T. Photocatalytic CO2-to-CH4 Conversion with Ultrahigh Selectivity of 95.93% on S-Vacancy Modulated Spatial In2S3/In2O3 Heterojunction. Adv. Funct. Mater. 2024, 34, 2409031. [Google Scholar] [CrossRef]
- Singhvi, C.; Sharma, G.; Verma, R.; Paidi, V.K.; Glatzel, P.; Paciok, P.; Patel, V.B.; Mohan, O.; Polshettiwar, V. Tuning the electronic structure and SMSI by integrating trimetallic sites with defective ceria for the CO2 reduction reaction. Proc. Natl. Acad. Sci. USA 2025, 122, e2411406122. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, E.; Tang, J. Insight on Reaction Pathways of Photocatalytic CO2 Conversion. ACS Catal. 2022, 12, 7300–7316. [Google Scholar] [CrossRef]
- Kattel, S.; Yan, B.; Yang, Y.; Chen, J.G.; Liu, P. Optimizing Binding Energies of Key Intermediates for CO2 Hydrogenation to Methanol over Oxide-Supported Copper. J. Am. Chem. Soc. 2016, 138, 12440–12450. [Google Scholar] [CrossRef]
- Oni, B.A.; Sanni, S.E.; Tomomewo, O.S.; Bade, S.O. Cu2O/SiC photocatalytic reduction of carbon dioxide to methanol using visible light on InTaO4. Mater. Sci. Semicond. Process. 2024, 174, 108235. [Google Scholar] [CrossRef]
Samples | SBET (Specific Surface Area) m2/g | VP (Pore Volume) cm3/g | dP (Average Pore Size) nm |
---|---|---|---|
ZnO | 10.71 | 0.03 | 10.38 |
ZnAl2O4 | 71.01 | 0.12 | 6.91 |
ZnO/ZnAl2O4 | 21.32 | 0.19 | 32.02 |
Samples | O Atomic/% | Atomic/% | |||
---|---|---|---|---|---|
Olatt | Oads | Zn | Al | O | |
ZnO | 68.02 | 31.98 | 47.55 | 0.00 | 52.45 |
ZnAl2O4 | 86.80 | 13.20 | 5.87 | 26.52 | 67.61 |
ZnO/ZnAl2O4 | 78.05 | 21.95 | 18.40 | 23.93 | 57.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, M.; Zheng, L.; Cai, C.; Wang, W. Z-Scheme ZnO/ZnAl2O4 Heterojunction with Synergistic Effects for Enhanced Photocatalytic CO2 Reduction. Molecules 2025, 30, 2626. https://doi.org/10.3390/molecules30122626
Pan M, Zheng L, Cai C, Wang W. Z-Scheme ZnO/ZnAl2O4 Heterojunction with Synergistic Effects for Enhanced Photocatalytic CO2 Reduction. Molecules. 2025; 30(12):2626. https://doi.org/10.3390/molecules30122626
Chicago/Turabian StylePan, Minhui, Linlin Zheng, Congyu Cai, and Weiwei Wang. 2025. "Z-Scheme ZnO/ZnAl2O4 Heterojunction with Synergistic Effects for Enhanced Photocatalytic CO2 Reduction" Molecules 30, no. 12: 2626. https://doi.org/10.3390/molecules30122626
APA StylePan, M., Zheng, L., Cai, C., & Wang, W. (2025). Z-Scheme ZnO/ZnAl2O4 Heterojunction with Synergistic Effects for Enhanced Photocatalytic CO2 Reduction. Molecules, 30(12), 2626. https://doi.org/10.3390/molecules30122626