Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (483)

Search Parameters:
Keywords = photo-thermal conversion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2722 KiB  
Article
Uniform Cu-Based Metal–Organic Framework Micrometer Cubes with Synergistically Enhanced Photodynamic/Photothermal Properties for Rapid Eradication of Multidrug-Resistant Bacteria
by Xiaomei Wang, Ting Zou, Weiqi Wang, Keqiang Xu and Handong Zhang
Pharmaceutics 2025, 17(8), 1018; https://doi.org/10.3390/pharmaceutics17081018 - 6 Aug 2025
Abstract
Background/Objectives: The rapid emergence of multidrug-resistant bacterial infections demands innovative non-antibiotic therapeutic strategies. Dual-modal photoresponse therapy integrating photodynamic (PDT) and photothermal (PTT) effects offers a promising rapid antibacterial approach, yet designing single-material systems with synergistic enhancement remains challenging. This study aims to [...] Read more.
Background/Objectives: The rapid emergence of multidrug-resistant bacterial infections demands innovative non-antibiotic therapeutic strategies. Dual-modal photoresponse therapy integrating photodynamic (PDT) and photothermal (PTT) effects offers a promising rapid antibacterial approach, yet designing single-material systems with synergistic enhancement remains challenging. This study aims to develop uniform Cu-based metal–organic framework micrometer cubes (Cu-BN) for efficient PDT/PTT synergy. Methods: Cu-BN cubes were synthesized via a one-step hydrothermal method using Cu(NO3)2 and 2-amino-p-benzoic acid. The material’s dual-mode responsiveness to visible light (420 nm) and near-infrared light (808 nm) was characterized through UV–Vis spectroscopy, photothermal profiling, and reactive oxygen species (ROS) generation assays. Antibacterial efficacy against multidrug-resistant Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) was quantified via colony counting under dual-light irradiation. Results: Under synergistic 420 + 808 nm irradiation for 15 min, Cu-BN (200 μg/mL) achieved rapid eradication of multidrug-resistant E. coli (99.94%) and S. aureus (99.83%). The material reached 58.6 °C under dual-light exposure, significantly exceeding single-light performance. Photodynamic analysis confirmed a 78.7% singlet oxygen (1O2) conversion rate. This enhancement stems from PTT-induced membrane permeabilization accelerating ROS diffusion, while PDT-generated ROS sensitized bacteria to thermal damage. Conclusions: This integrated design enables spatiotemporal PDT/PTT synergy within a single Cu-BN system, establishing a new paradigm for rapid-acting, broad-spectrum non-antibiotic antimicrobials. The work provides critical insights for developing light-responsive biomaterials against drug-resistant infections. Full article
Show Figures

Figure 1

24 pages, 8010 KiB  
Article
Mono-(Ni, Au) and Bimetallic (Ni-Au) Nanoparticles-Loaded ZnAlO Mixed Oxides as Sunlight-Driven Photocatalysts for Environmental Remediation
by Monica Pavel, Liubovi Cretu, Catalin Negrila, Daniela C. Culita, Anca Vasile, Razvan State, Ioan Balint and Florica Papa
Molecules 2025, 30(15), 3249; https://doi.org/10.3390/molecules30153249 - 2 Aug 2025
Viewed by 204
Abstract
A facile and versatile strategy to obtain NPs@ZnAlO nanocomposite materials, comprising controlled-size nanoparticles (NPs) within a ZnAlO matrix is reported. The mono-(Au, Ni) and bimetallic (Ni-Au) NPs serving as an active phase were prepared by the polyol-alkaline method, while the ZnAlO support was [...] Read more.
A facile and versatile strategy to obtain NPs@ZnAlO nanocomposite materials, comprising controlled-size nanoparticles (NPs) within a ZnAlO matrix is reported. The mono-(Au, Ni) and bimetallic (Ni-Au) NPs serving as an active phase were prepared by the polyol-alkaline method, while the ZnAlO support was obtained via the thermal decomposition of its corresponding layered double hydroxide (LDH) precursors. X-ray diffraction (XRD) patterns confirmed the successful fabrication of the nanocomposites, including the synthesis of the metallic NPs, the formation of LDH-like structure, and the subsequent transformation to ZnO phase upon LDH calcination. The obtained nanostructures confirmed the nanoplate-like morphology inherited from the original LDH precursors, which tended to aggregate after the addition of gold NPs. According to the UV-Vis spectroscopy, loading NPs onto the ZnAlO support enhanced the light absorption and reduced the band gap energy. ATR-DRIFT spectroscopy, H2-TPR measurements, and XPS analysis provided information about the functional groups, surface composition, and reducibility of the materials. The catalytic performance of the developed nanostructures was evaluated by the photodegradation of bisphenol A (BPA), under simulated solar irradiation. The conversion of BPA over the bimetallic Ni-Au@ZnAlO reached up to 95% after 180 min of irradiation, exceeding the monometallic Ni@ZnAlO and Au@ZnAlO catalysts. Its enhanced activity was correlated with good dispersion of the bimetals, narrower band gap, and efficient charge carrier separation of the photo-induced e/h+ pairs. Full article
Show Figures

Graphical abstract

16 pages, 3508 KiB  
Article
Stability of Carbon Quantum Dots for Potential Photothermal and Diagnostic Applications
by María Fernanda Amezaga Gonzalez, Abdiel Ramirez-Reyes, Monica Elvira Mendoza-Duarte, Alejandro Vega-Rios, Daniel Martinez-Ozuna, Claudia A. Rodriguez-Gonzalez, Santos-Adriana Martel-Estrada and Imelda Olivas-Armendariz
C 2025, 11(3), 56; https://doi.org/10.3390/c11030056 - 29 Jul 2025
Viewed by 306
Abstract
Theranostic agents enable the simultaneous diagnosis and treatment of diseases, and they are particularly useful in fluorescent imaging and cancer therapies. In this study, carbon quantum dots were synthesized via a microwave-assisted method using citric acid and bovine serum albumin (BSA) as precursors. [...] Read more.
Theranostic agents enable the simultaneous diagnosis and treatment of diseases, and they are particularly useful in fluorescent imaging and cancer therapies. In this study, carbon quantum dots were synthesized via a microwave-assisted method using citric acid and bovine serum albumin (BSA) as precursors. The resulting CQDs exhibited spherical morphology, an average size of 4 nm, and an amorphous graphitic structure. FT-IR characterization revealed the presence of amide bonds and oxygenated functional groups. At the same time, optical analysis showed excitation at 320 nm and emission between 360 and 400 nm, with fluorescent stability maintained for one month. Furthermore, the CQDs demonstrated good thermal stability and photothermal efficiency, reaching temperatures above 41 °C within 15 min under NIR irradiation, with a mass loss of less than 1%. Their stability was evaluated in media with different pH levels, simulating physiological and tumor environments. While their behavior was affected under acidic conditions, their excellent photothermal conversion capacity and overall stability in triple-distilled water positioned them as promising candidates for theranostic applications in cancer, effectively combining diagnostic imaging and thermal therapy. Full article
(This article belongs to the Special Issue Carbon Nanohybrids for Biomedical Applications (2nd Edition))
Show Figures

Graphical abstract

14 pages, 4274 KiB  
Article
The Role of Freezing Temperature in Modulating Chitosan Gel Structure and Evaporation Performance for Seawater Desalination
by Jiaonan Cai, Yong Bai and Fang Li
Separations 2025, 12(8), 193; https://doi.org/10.3390/separations12080193 - 24 Jul 2025
Viewed by 295
Abstract
Interfacial solar evaporation has emerged as a promising strategy for freshwater production, where 3D evaporators offer distinct advantages in heat management and salt rejection. Freeze–thaw cycling is a widely adopted fabrication method for 3D hydrogel evaporators, yet the impact of preparation conditions (e.g., [...] Read more.
Interfacial solar evaporation has emerged as a promising strategy for freshwater production, where 3D evaporators offer distinct advantages in heat management and salt rejection. Freeze–thaw cycling is a widely adopted fabrication method for 3D hydrogel evaporators, yet the impact of preparation conditions (e.g., freezing temperature) on their evaporation performance remains poorly understood, hindering rational optimization of fabrication protocols. Herein, we report the fabrication of chitosan-based hydrogel evaporators via freeze–thaw cycles at different freezing temperatures (−20 °C, −40 °C, and −80 °C), leveraging its low cost and environmental friendliness. Characterizations of crosslinking density and microstructure reveal a direct correlation between freezing temperature and network porosity, which significantly influences evaporation rate, photothermal conversion efficiency, and anti-salt performance. It is noteworthy that the chitosan hydrogel prepared at −80 °C demonstrates an excellent evaporation rate in high-salinity environments and exhibits superior salt resistance during continuous evaporation testing. Long-term cyclic experiments indicate that there was an average evaporation rate of 3.76 kg m−2 h−1 over 10 cycles, with only a 2.5% decrease observed in the 10th cycle. This work not only elucidates the structure–property relationship of freeze–thaw fabricated hydrogels but also provides a strategic guideline for tailoring evaporator architectures to different salinity conditions, bridging the gap between material design and practical seawater desalination. Full article
Show Figures

Figure 1

14 pages, 3147 KiB  
Article
Regulation of MXene Membranes with β-Lactoglobulin Nanofiber-Templated CuS Nanoparticles for Photothermal Antibacterial Effect
by Zhuang Liu, Chenxi Du, Xin Zhou and Gang Wei
Polymers 2025, 17(14), 1960; https://doi.org/10.3390/polym17141960 - 17 Jul 2025
Viewed by 285
Abstract
Developing advanced antimicrobial agents is critically imperative to address antibiotic-resistant infection crises. MXenes have emerged as a potential nanomedicine for antibacterial applications, but they suffer from suboptimal photothermal conversion efficiency and inherent cytotoxicity. Herein, we report the synthesis of MXene (Ti3C [...] Read more.
Developing advanced antimicrobial agents is critically imperative to address antibiotic-resistant infection crises. MXenes have emerged as a potential nanomedicine for antibacterial applications, but they suffer from suboptimal photothermal conversion efficiency and inherent cytotoxicity. Herein, we report the synthesis of MXene (Ti3C2)-based nanohybrids and hybrid membranes through firstly interfacial conjugation of self-assembled β-lactoglobulin nanofibers (β-LGNFs)-inspired copper sulfide nanoparticles (CuS NPs) onto MXene nanosheets, and subsequent vacuum filtration of the created β-LGNF-CuS/MXene nanohybrids. The constructed β-LGNF-CuS/MXene nanohybrids exhibit excellent photothermal conversion performances and satisfactory biocompatibility and minimal cytotoxicity toward mammalian cells, ascribing to the introduction of highly biocompatible β-LGNFs into the hybrid system. In addition, the fabricated β-LGNF-CuS/MXene hybrid membranes demonstrate high efficiency in antibacterial application through the synergistic photothermal and material-related antibacterial effects of both MXene and CuS NPs. Therefore, the ideas and findings shown in this study are useful for inspiring researchers to design and fabricate functional and biocompatible 2D material-based hybrid membranes for antimicrobial applications. Full article
Show Figures

Figure 1

15 pages, 2902 KiB  
Article
Synergistic Integration of MXene Photothermal Conversion and TiO2 Radiative Cooling in Bifunctional PLA Fabrics for Adaptive Personal Thermal Management
by Tianci Han and Yunjie Yin
Solids 2025, 6(3), 37; https://doi.org/10.3390/solids6030037 - 12 Jul 2025
Viewed by 306
Abstract
Polylactic acid (PLA) fabrics exhibit significant sunlight reflectivity and high emissivity within the atmospheric window, making them suitable as the foundational material for this study. This research involves the modification of one side of the fabric with hydrophilic agents and titanium dioxide (TiO [...] Read more.
Polylactic acid (PLA) fabrics exhibit significant sunlight reflectivity and high emissivity within the atmospheric window, making them suitable as the foundational material for this study. This research involves the modification of one side of the fabric with hydrophilic agents and titanium dioxide (TiO2), while the opposite side is treated with MXene and subsequently coated with polydimethylsiloxane (PDMS) to inhibit oxidation of the MXene. Through these surface modifications, a thermal management fabric based on PLA was successfully developed, capable of passively regulating temperature in response to environmental conditions and user requirements. The study discusses the optimal concentrations of TiO2 and MXene for the fabric, and characterizes and evaluates the functional surface of the PLA. Surface morphology analyses and tests indicate that the resulting functional PLA fabrics possess excellent ultraviolet (UV) resistance, favorable air permeability, high sunlight reflectivity on the TiO2-treated side, and superior photothermal conversion capabilities on the MXene-treated side. Furthermore, photothermal effect tests conducted under a light intensity of 1000 W/m2 reveal that the MXene-treated fabric exhibits a heating effect of approximately 25 °C, while the TiO2-treated side demonstrates a cooling effect exceeding 5 °C. This study developed PLA functional fabrics with heating and cooling capabilities. Full article
Show Figures

Graphical abstract

15 pages, 2102 KiB  
Article
MXene-Based Flexible Paper Chip for Glucose Detection in Sweat in Low-Temperature Environments
by Yandong Yang, Yajun Zhu, Yifei Wu, Fan Chang, Xu Zhu, Xinyue Zhang, Ning Ma, Yushu Wang and Alaa S. Abd-El-Aziz
Sensors 2025, 25(14), 4273; https://doi.org/10.3390/s25144273 - 9 Jul 2025
Viewed by 416
Abstract
In enzymatic reaction glucose detection chips, the enzyme can easily dislodge from the electrode, which harms both the chip and test stability. Additionally, enzyme activity significantly decreases at low temperatures. Consequently, immobilizing the enzyme at the appropriate substrate and ambient temperature is a [...] Read more.
In enzymatic reaction glucose detection chips, the enzyme can easily dislodge from the electrode, which harms both the chip and test stability. Additionally, enzyme activity significantly decreases at low temperatures. Consequently, immobilizing the enzyme at the appropriate substrate and ambient temperature is a critical step for improving the chip. To address this issue, an electrochemical detection chip was modified using the nanomaterial MXene, known for its large specific surface area, excellent adsorption, good dispersion, and high conductivity. Meanwhile, AgNO3 solution was added to the Ti3C2Tx MXene nanosheet solution, and the AgNP@MXene material was prepared by heating in a water bath. This process further enhances photothermal conversion efficiency due to the localized surface plasmon resonance effect of silver nanoparticles and MXene. This MXene-based photothermally enhanced paper chip exhibits outstanding photothermal conversion performance and sensitive photoelectrochemical responsiveness, along with good cycling stability. Moreover, improved glucose detection sensitivity at low winter temperatures has been achieved, and the ambient temperature range of the paper chip has been expanded to 25–37 °C. Full article
(This article belongs to the Special Issue The Advanced Flexible Electronic Devices: 2nd Edition)
Show Figures

Figure 1

26 pages, 3149 KiB  
Review
Research Progress and Future Perspectives on Photonic and Optoelectronic Devices Based on p-Type Boron-Doped Diamond/n-Type Titanium Dioxide Heterojunctions: A Mini Review
by Shunhao Ge, Dandan Sang, Changxing Li, Yarong Shi, Qinglin Wang and Dao Xiao
Nanomaterials 2025, 15(13), 1003; https://doi.org/10.3390/nano15131003 - 29 Jun 2025
Cited by 1 | Viewed by 521
Abstract
Titanium dioxide (TiO2) is a wide-bandgap semiconductor material with broad application potential, known for its excellent photocatalytic performance, high chemical stability, low cost, and non-toxicity. These properties make it highly attractive for applications in photovoltaic energy, environmental remediation, and optoelectronic devices. [...] Read more.
Titanium dioxide (TiO2) is a wide-bandgap semiconductor material with broad application potential, known for its excellent photocatalytic performance, high chemical stability, low cost, and non-toxicity. These properties make it highly attractive for applications in photovoltaic energy, environmental remediation, and optoelectronic devices. For instance, TiO2 is widely used as a photocatalyst for hydrogen production via water splitting and for degrading organic pollutants, thanks to its efficient photo-generated electron–hole separation. Additionally, TiO2 exhibits remarkable performance in dye-sensitized solar cells and photodetectors, providing critical support for advancements in green energy and photoelectric conversion technologies. Boron-doped diamond (BDD) is renowned for its exceptional electrical conductivity, high hardness, wide electrochemical window, and outstanding chemical inertness. These unique characteristics enable its extensive use in fields such as electrochemical analysis, electrocatalysis, sensors, and biomedicine. For example, BDD electrodes exhibit high sensitivity and stability in detecting trace chemicals and pollutants, while also demonstrating excellent performance in electrocatalytic water splitting and industrial wastewater treatment. Its chemical stability and biocompatibility make it an ideal material for biosensors and implantable devices. Research indicates that the combination of TiO2 nanostructures and BDD into heterostructures can exhibit unexpected optical and electrical performance and transport behavior, opening up new possibilities for photoluminescence and rectifier diode devices. However, applications based on this heterostructure still face challenges, particularly in terms of photodetector, photoelectric emitter, optical modulator, and optical fiber devices under high-temperature conditions. This article explores the potential and prospects of their combined heterostructures in the field of optoelectronic devices such as photodetector, light emitting diode (LED), memory, field effect transistor (FET) and sensing. TiO2/BDD heterojunction can enhance photoresponsivity and extend the spectral detection range which enables stability in high-temperature and harsh environments due to BDD’s thermal conductivity. This article proposes future research directions and prospects to facilitate the development of TiO2 nanostructured materials and BDD-based heterostructures, providing a foundation for enhancing photoresponsivity and extending the spectral detection range enables stability in high-temperature and high-frequency optoelectronic devices field. Further research and exploration of optoelectronic devices based on TiO2-BDD heterostructures hold significant importance, offering new breakthroughs and innovations for the future development of optoelectronic technology. Full article
(This article belongs to the Special Issue Nanoscale Photonics and Optoelectronics)
Show Figures

Graphical abstract

24 pages, 5782 KiB  
Article
Gamma Irradiation-Induced Synthesis of Nano Au-PNiPAAm/PVA Bi-Layered Photo-Thermo-Responsive Hydrogel Actuators with a Switchable Bending Motion
by Nikolina Radojković, Jelena Spasojević, Ivana Vukoje, Zorica Kačarević-Popović, Una Stamenović, Vesna Vodnik, Goran Roglić and Aleksandra Radosavljević
Polymers 2025, 17(13), 1774; https://doi.org/10.3390/polym17131774 - 26 Jun 2025
Viewed by 422
Abstract
In this study, we present bi-layered hydrogel systems that incorporate different sizes and shapes of gold nanoparticles (nanospheres and nanorods) for potential use in areas such as photoactuators, soft robotics, artificial muscles, drug delivery and tissue engineering. The synthesized nano Au-PNiPAAm/PVA bi-layered hydrogel [...] Read more.
In this study, we present bi-layered hydrogel systems that incorporate different sizes and shapes of gold nanoparticles (nanospheres and nanorods) for potential use in areas such as photoactuators, soft robotics, artificial muscles, drug delivery and tissue engineering. The synthesized nano Au-PNiPAAm/PVA bi-layered hydrogel nanocomposites provide the unique ability to exhibit controlled motion upon light exposure, indicating that the above systems possess the capability of photo–thermal energy conversion. The chosen synthesis approach is a combination of chemical production of gold nanoparticles (AuNPs) followed by gamma radiation formation of crosslinked polymer networks around them, as the final step, which also allows for sterilization in a single technological step. According to the TEM analysis, the gold nanospheres (AuNSs) with mean diameters of around 17 and 30 nm, as well as nanorods (AuNRs) with an aspect ratio of around 4.5, were synthesized and used as nanofillers in the formation of nanocomposites. Their stability within the polymer matrix was confirmed by UV–Vis spectral studies, by the presence of local surface plasmon resonance (LSPR) bands, typical for nanoparticles of various shapes and sizes. Morphological studies (FE-SEM) of hydrogels revealed the formation of a porous structure with PNiPAAm hydrogel as an active layer and PVA hydrogel as a passive layer, as well as a stable interfacial layer with a thickness of around 80 μm. The synthesized bi-layered photoactuators showed a photo–thermal response upon exposure to irradiation of green lasers and lamps that simulate sunlight, resulting in bending motion. This bending response reveals the huge potential of the obtained materials as soft actuators, which are more flexible than rigid systems, making them effective for specific applications where controlled movement and flexibility are essential. Full article
(This article belongs to the Special Issue Polymer Hydrogels: Synthesis, Properties and Applications)
Show Figures

Figure 1

11 pages, 1648 KiB  
Article
Solar-Driven Interfacial Evaporation Using Bumpy Gold Nanoshell Films with Controlled Shell Thickness
by Yoon-Hee Kim, Hye-Seong Cho, Kwanghee Yoo, Cho-Hee Yang, Sung-Kyu Lee, Homan Kang and Bong-Hyun Jun
Int. J. Mol. Sci. 2025, 26(13), 6160; https://doi.org/10.3390/ijms26136160 - 26 Jun 2025
Viewed by 276
Abstract
Metal nanostructure-assisted solar-driven interfacial evaporation systems have emerged as a promising solution to achieve sustainable water production. Herein, we fabricated photothermal films of a bumpy gold nanoshell with controlled shell thicknesses (11.7 nm and 16.6 nm) and gap structures to enhance their photothermal [...] Read more.
Metal nanostructure-assisted solar-driven interfacial evaporation systems have emerged as a promising solution to achieve sustainable water production. Herein, we fabricated photothermal films of a bumpy gold nanoshell with controlled shell thicknesses (11.7 nm and 16.6 nm) and gap structures to enhance their photothermal conversion efficiency. FDTD simulation of bumpy nanoshell modeling revealed that thinner nanoshells exhibited higher absorption efficiency across the visible–NIR spectrum. Photothermal films prepared by a three-phase self-assembly method exhibited superior photothermal conversion, with films using thinner nanoshells (11.7 nm) achieving higher surface temperatures and faster water evaporation under both laser and sunlight irradiation. Furthermore, evaporation performance was evaluated using different support layers. Films on PVDF membranes with optimized hydrophilicity and minimized heat convection achieved the highest evaporation rate of 1.067 kg m−2 h−1 under sunlight exposure (937.1 W/m2), outperforming cellulose and PTFE supports. This work highlights the critical role of nanostructure design and support layer engineering in enhancing photothermal conversion efficiency, offering a strategy for the development of efficient solar-driven desalination systems. Full article
Show Figures

Figure 1

12 pages, 2064 KiB  
Article
All-Day Freshwater Harvesting Using Solar Auto-Tracking Assisted Selective Solar Absorption and Radiative Cooling
by Jing Luo, Haining Ji, Runteng Luo, Xiangkai Zheng and Tianjian Xiao
Materials 2025, 18(13), 2967; https://doi.org/10.3390/ma18132967 - 23 Jun 2025
Viewed by 387
Abstract
The shortage of freshwater resources has become the core bottleneck of global sustainable development. Traditional freshwater harvesting technologies are restricted by geographical conditions and environmental limitations, making them increasingly difficult to satisfy the growing water demand. In this study, based on the synergistic [...] Read more.
The shortage of freshwater resources has become the core bottleneck of global sustainable development. Traditional freshwater harvesting technologies are restricted by geographical conditions and environmental limitations, making them increasingly difficult to satisfy the growing water demand. In this study, based on the synergistic coupling mechanism of photothermal conversion and radiative cooling, a solar auto-tracking assisted selective solar absorber and radiative cooling all-weather freshwater harvesting device was innovatively developed. The prepared selective solar absorber achieved a high absorptivity of 0.91 in the solar spectrum (0.3–2.5 μm) and maintained a low emissivity of 0.12 in the mid-infrared range (2.5–20 μm), significantly enhancing the photothermal conversion efficiency. The radiative cooling film demonstrated an average cooling effect of 7.62 °C during typical daytime hours (12:00–13:00) and 7.03 °C at night (22:00–23:00), providing a stable low-temperature environment for water vapor condensation. The experimental results showed that the experimental group equipped with the solar auto-tracking system collected 0.79 kg m−2 of freshwater in 24 h, representing a 23.4% increase compared to the control group without the solar auto-tracking system. By combining theoretical analysis with experimental validation, this study presents technical and economic advantages for emergency water and island freshwater supply, offering an innovative solution to mitigate the global freshwater crisis. Full article
(This article belongs to the Special Issue Advanced Materials for Solar Energy Utilization)
Show Figures

Graphical abstract

13 pages, 1947 KiB  
Article
Photothermal Performance of 2D Material-Based Nanoparticles for Biomedical Applications
by Amir Eghbali, Nikolay V. Pak, Aleksey V. Arsenin, Valentyn Volkov and Andrey A. Vyshnevyy
Nanomaterials 2025, 15(12), 942; https://doi.org/10.3390/nano15120942 - 18 Jun 2025
Viewed by 475
Abstract
Photothermal therapy (PTT) is one of the rapidly developing methods for cancer treatment based on the strong light-to-heat conversion by nanoparticles. Over the past decade, the palette of photonic materials has expanded drastically, and nanoparticle fabrication techniques can now preserve the optical response [...] Read more.
Photothermal therapy (PTT) is one of the rapidly developing methods for cancer treatment based on the strong light-to-heat conversion by nanoparticles. Over the past decade, the palette of photonic materials has expanded drastically, and nanoparticle fabrication techniques can now preserve the optical response of a bulk material in produced nanoparticles. This progress potentially holds opportunities for the efficiency enhancement of PTT, which have not fully explored yet. Here we study the photothermal performance of spherical nanoparticles (SNs) composed of novel two-dimensional (2D) and conventional materials with existing or potential applications in photothermal therapy such as MoS2, PdSe2, Ti3C2, TaS2, and TiN. Using the Mie theory, we theoretically analyze the optical response of SNs across various radii of 5–100 nm in the near-infrared (NIR) region with a particular focus on the therapeutic NIR-II range (1000–1700 nm) and radii below 50 nm. Our calculations reveal distinct photothermal behaviors: Large (radius > 50 nm) nanoparticles made of van der Waals semiconductors and PdSe2 perform exceptionally well in the NIR-I range (750–950 nm) due to excitonic optical responses, while Ti3C2 nanoparticles achieve broad effectiveness across both NIR zones due to their dual dielectric/plasmonic properties. Small TiN SNs excel in the NIR-I zone due to the plasmonic response of TiN at shorter wavelengths. Notably, the van der Waals metal TaS2 emerges as the most promising photothermal transduction agent in the NIR-II region, particularly for smaller nanoparticles, due to its plasmonic resonance. Our insights lay a foundation for designing efficient photothermal transduction agents, with significant implications for cancer therapy and other biomedical applications. Full article
(This article belongs to the Special Issue Nanostructured Materials and Coatings for Biomedical Applications)
Show Figures

Figure 1

22 pages, 9227 KiB  
Review
Review: The Application of MXene in Thermal Energy Storage Materials for Efficient Solar Energy Utilization
by Han Sun, Yingai Jin and Firoz Alam
Materials 2025, 18(12), 2839; https://doi.org/10.3390/ma18122839 - 16 Jun 2025
Viewed by 473
Abstract
Two-dimensional transition metal carbides/nitrides (MXenes) have shown potential in biosensors, cancer theranostics, microbiology, electromagnetic interference shielding, photothermal conversion, and thermal energy storage due to their unique electronic structure, ability to absorb a wide range of light, and tunable surface chemistry. In spite of [...] Read more.
Two-dimensional transition metal carbides/nitrides (MXenes) have shown potential in biosensors, cancer theranostics, microbiology, electromagnetic interference shielding, photothermal conversion, and thermal energy storage due to their unique electronic structure, ability to absorb a wide range of light, and tunable surface chemistry. In spite of the growing interest in MXenes, there are relatively few studies on their applications in phase-change materials for enhancing thermal conductivity and weak photo-responsiveness between 0 °C and 150 °C. Thus, this study aims to provide a current overview of recent developments, to examine how MXenes are made, and to outline the combined effects of different processes that can convert light into heat. This study illustrates the mechanisms that include enhanced broadband photon harvesting through localized surface plasmon resonance, electron–phonon coupling-mediated nonradiative relaxation, and interlayer phonon transport that optimizes thermal diffusion pathways. This study emphasizes that MXene-engineered 3D thermal networks can greatly improve energy storage and heat conversion, solving important problems with phase-change materials (PCMs), like poor heat conductivity and low responsiveness to light. This study also highlights the real-world issues of making MXene-based materials on a large scale, and suggests future research directions for using them in smart thermal management systems and solar thermal grid technologies. Full article
Show Figures

Figure 1

11 pages, 4206 KiB  
Article
Micro-Actuators with Light and Magnetism Dual-Control for Maneuverable Movements
by Yang Zhang, Tenglong Fu, Erming Tian and Jing Yi
Appl. Sci. 2025, 15(12), 6719; https://doi.org/10.3390/app15126719 - 16 Jun 2025
Viewed by 379
Abstract
Recent studies have highlighted the advantageous applications of the Marangoni effect in interfacial propulsion systems. Among these, optically driven Marangoni systems are particularly promising owing to their precise controllability and eco-friendly operation. Nevertheless, among these actuators, free movement still is limited by the [...] Read more.
Recent studies have highlighted the advantageous applications of the Marangoni effect in interfacial propulsion systems. Among these, optically driven Marangoni systems are particularly promising owing to their precise controllability and eco-friendly operation. Nevertheless, among these actuators, free movement still is limited by the interaction between light and actuators. In this work, we present a facile fabrication method for photothermal composites comprising polydimethylsiloxane (PDMS) matrices embedded with carbon nanoparticles and Fe3O4 microparticles to achieve a dual-control micro-actuator. Experimental characterization confirmed the superior photothermal conversion efficiency of the composite material. Symmetrical structural configurations were engineered to achieve long-range (>15 cm), directionally programmable, and rotational motion under continuous near-infrared laser irradiation (808 nm, 2 W/cm2), while exhibiting magnetically responsive capabilities for trajectory modulation. Furthermore, the inherent viscoelasticity, mechanical flexibility, and enhanced tensile strength (up to 1.8 MPa) of the composite material enable propulsion of macroscopic payloads exceeding 50 g. The fabrication process demonstrates cost-effective, scalable, and environmentally sustainable characteristics, requiring neither complex equipment nor organic solvents. This strategy provides a paradigm shift for designing Marangoni effect-based photothermal actuators, with transformative potential in autonomous surface robotics and microfluidics applications. Full article
Show Figures

Figure 1

15 pages, 3537 KiB  
Article
High-Efficiency Broadband Selective Photothermal Absorbers Based on Multilayer Chromium Films
by Chu Li, Er-Tao Hu, Yu-Xiang Zheng, Song-You Wang, Yue-Mei Yang, Young-Pak Lee, Jun-Peng Guo, Qing-Yuan Cai, Wei-Bo Duan and Liang-Yao Chen
Crystals 2025, 15(6), 562; https://doi.org/10.3390/cryst15060562 - 14 Jun 2025
Viewed by 359
Abstract
Photothermal conversion is a pivotal energy transformation mechanism in solar energy systems. Achieving high-efficiency and broadband photothermal conversion within the solar radiation spectrum holds strategic significance in driving the innovative development of renewable energy technologies. In this study, a transmission matrix method was [...] Read more.
Photothermal conversion is a pivotal energy transformation mechanism in solar energy systems. Achieving high-efficiency and broadband photothermal conversion within the solar radiation spectrum holds strategic significance in driving the innovative development of renewable energy technologies. In this study, a transmission matrix method was employed to design an interference-type solar selective absorber based on multilayer Cr-SiO2 planar films, successfully achieving an average absorption of 94% throughout the entire solar spectral range. Further analysis indicates that this newly designed absorber shows excellent absorption performance even at a relatively large incident angle (up to 60°). Additionally, the newly designed absorber demonstrates lower polarization sensitivity, enabling efficient operation under complicated incident conditions. With its simple fabrication process and ease of preparation, the proposed absorber holds substantial potential for applications in photothermal conversion fields such as solar thermal collectors. Full article
(This article belongs to the Special Issue Preparation and Characterization of Optoelectronic Functional Films)
Show Figures

Figure 1

Back to TopTop