Synergistic Integration of MXene Photothermal Conversion and TiO2 Radiative Cooling in Bifunctional PLA Fabrics for Adaptive Personal Thermal Management
Abstract
1. Introduction
2. Experimental Section
2.1. Materials
2.2. Modified TiO2 Finishing PLA Fabrics
2.3. MXene Finishing PLA Fabrics
2.4. Characterization
2.5. Special Characterization
3. Results and Discussion
3.1. Analysis of Functional Surface Properties of Nano-TiO2 in PLA Fabrics
3.2. Reflective and Infrared Emission Properties of PLA Fabrics After TiO2 Finishing
3.3. Analysis of MXene Functional Surface Properties of PLA Fabrics
3.4. Thermal Management Fabric Performance Testing
3.5. Performance of Functional PLA Fabrics Under Natural Conditions
3.6. Heating Performance of Functional PLA Fabric Under Specific Light Intensity
3.7. Mxene Coating Friction Fastness and Wash Fastness
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Triamnak, N.; Suttiruengwong, S.; Vittayakorn, N.; Girdthep, S.; Khankrua, R. The properties investigations of PLA/TiO2 and PLA/doped-TiO2 composites films. Polym.-Plast. Technol. Mater. 2023, 62, 1576–1586. [Google Scholar] [CrossRef]
- Kandemir, A.; Longana, M.L.; Panzera, T.H.; del Pino, G.G.; Hamerton, I.; Eichhorn, S.J. Natural Fibres as a Sustainable Reinforcement Constituent in Aligned Discontinuous Polymer Composites Produced by the HiPerDiF Method. Materials 2021, 14, 1885. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Wang, Z.; Liu, C.; Wang, H.; Guo, J.; Fu, L.; Feng, Y.; Wang, L.; Yang, F.; Liu, M. Engineering titanium carbide ultra-thin nanosheets for enhanced fire safety of intumescent flame retardant polylactic acid. Compos. Part B Eng. 2022, 236, 109792. [Google Scholar] [CrossRef]
- Zhao, X.; Li, K.; Wang, Y.; Tekinalp, H.; Richard, A.; Webb, E.; Ozcan, S. Bio-treatment of poplar via amino acid for interface control in biocomposites. Compos. Part B Eng. 2020, 199, 108276. [Google Scholar] [CrossRef]
- Standau, T.; Castellón, S.M.; Delavoie, A.; Bonten, C.; Altstädt, V. Effects of chemical modifications on the rheological and the expansion behavior of polylactide (PLA) in foam extrusion. e-Polymers 2019, 19, 297–304. [Google Scholar] [CrossRef]
- Duan, Y.; Gu, Y.; Yang, W.; Xu, P.; Huang, Y.; Ma, P. Enhanced EMI shielding and mechanical stability via deformable MXene-rNGO conductive networks in superelastic PDMS composite. Compos. Part B Eng. 2025, 295, 112198. [Google Scholar] [CrossRef]
- Cheng, N.; Miao, D.; Wang, C.; Lin, Y.; Babar, A.A.; Wang, X.; Wang, Z.; Yu, J.; Ding, B. Nanosphere-Structured Hierarchically Porous PVDF-HFP Fabric for Passive Daytime Radiative Cooling via One-Step Water Vapor-Induced Phase Separation. Chem. Eng. J. 2023, 460, 141581. [Google Scholar] [CrossRef]
- Pakdel, E.; Wang, X. Thermoregulating textiles and fibrous materials for passive radiative cooling functionality. Mater. Des. 2023, 231, 112006. [Google Scholar] [CrossRef]
- Xiang, B.; Zhang, R.; Zeng, X.; Luo, Y.; Luo, Z. An Easy-to-Prepare Flexible Dual-Mode Fiber Membrane for Daytime Outdoor Thermal Management. Adv. Fiber Mater. 2022, 4, 1058–1068. [Google Scholar] [CrossRef]
- Xie, A.-Q.; Qiu, H.; Jiang, W.; Wang, Y.; Niu, S.; Zhang, K.-Q.; Ho, G.W.; Wang, X.-Q. Recent Advances in Spectrally Selective Daytime Radiative Cooling Materials. Nano-Micro Lett. 2025, 17, 264. [Google Scholar] [CrossRef]
- Liu, J.-Z.; Jiang, W.; Zhuo, S.; Rong, Y.; Li, Y.-Y.; Lu, H.; Hu, J.; Wang, X.-Q.; Chen, W.; Liao, L.-S.; et al. Large-area radiation-modulated thermoelectric fabrics for high-performance thermal management and electricity generation. Sci. Adv. 2025, 11, eadr2158. [Google Scholar] [CrossRef] [PubMed]
- Javed, F.; Javed, S.; Mujahid, M.; Inam, F.U.; Bhatti, A.S. Modified optical characteristics of TiO2/Au/TiO2 thin composite films. Ceram. Int. 2019, 5, 22336–22343. [Google Scholar] [CrossRef]
- Yuan, X.; Wang, W.; Du, C.; Kang, Q.; Mao, Z.; Chen, S. A novel noise-reducing and anti-corrosion polyurethane elastomer coating material modified by MXene/porous TiO2. Surf. Interfaces 2024, 48, 104256. [Google Scholar] [CrossRef]
- Jin, M.; Zhang, X.; Nishimoto, S.; Liu, Z.; Tryk, D.A.; Emeline, A.V.; Murakami, T.; Fujishima, A. Light-Stimulated Composition Conversion in TiO2-Based Nanofibers. J. Phys. Chem. C 2006, 111, 658–665. [Google Scholar] [CrossRef]
- Furube, A.; Du, L.; Hara, K.; Katoh, R.; Tachiya, M. Ultrafast Plasmon-Induced Electron Transfer from Gold Nanodots into TiO2 Nanoparticles. J. Am. Chem. Soc. 2007, 129, 14852–14853. [Google Scholar] [CrossRef]
- Jin, C.; Liu, B.; Lei, Z.; Sun, J. Structure and photoluminescence of the TiO2 films grown by atomic layer deposition using tetrakis-dimethylamino titanium and ozone. Nanoscale Res. Lett. 2015, 10, 95. [Google Scholar] [CrossRef]
- Stevanovic, A.; Yates, J.T. Electron Hopping through TiO2 Powder: A Study by Photoluminescence Spectroscopy. J. Phys. Chem. C 2013, 117, 24189–24195. [Google Scholar] [CrossRef]
- Ola, O.; Maroto-Valer, M.M. Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction. J. Photochem. Photobiol. C Photochem. Rev. 2015, 24, 16–42. [Google Scholar] [CrossRef]
- Liu, L.; Xue, Z.; Gao, T.; Zhao, Q.; Sun, Y.; Wu, Y. Photocatalytic degradation performance of Ag-modified flexible TiO2 nanofiber film. Opt. Mater. 2025, 160, 116720. [Google Scholar] [CrossRef]
- Tahir, M. Synergistic effect in MMT-dispersed Au/TiO2 monolithic nanocatalyst for plasmon-absorption and metallic interband transitions dynamic CO2 photo-reduction to CO. Appl. Catal. B Environ. Energy 2017, 219, 329–343. [Google Scholar] [CrossRef]
- Zhang, M.; Lyu, J.; Zuo, Y.; Li, X.; Li, P. Effect of KH560 concentration on adhesion between silicate modified poplar and waterborne varnish. Prog. Org. Coat. 2022, 174, 107267. [Google Scholar] [CrossRef]
- Jebali, S.; Mejri, C.; Albouchi, W.; Meftah, M.; Oueslati, A.; Oueslati, W. Uncovering the Possibilities of Ceramic Ba(1−x)CoxTiO3 Nanocrystals: Heightened Electrical and Dielectric Attributes. Solids 2024, 5, 460–484. [Google Scholar] [CrossRef]
- Zhao, K.; Guo, Z.; Wang, J.; Xie, H. Phase change n-Octadecane microencapsulated in titanium dioxide nanoparticle-doped polymer for photothermal conversion and photocatalysis. Sol. Energy 2023, 254, 73–87. [Google Scholar] [CrossRef]
- Gladkikh, S.N.; Loginova, S.E.; Gerasimova, L.G.; Shchukina, E.S. The Effect of Titanium Dioxide on Heat Stability of Sealants. Polym. Sci. Ser. D 2020, 3, 136–140. [Google Scholar] [CrossRef]
- Qu, L.; Bei, G.; Nijemeisland, M.; Cao, D.; van der Zwaag, S.; Sloof, W.G. Point contact abrasive wear behavior of MAX phase materials. Ceram. Int. 2020, 46, 1722–1729. [Google Scholar] [CrossRef]
- Miloserdov, P.A.; Gorshkov, V.A.; Kovalev, I.D.; Kovalev, D.Y. High-Temperature Synthesis of Cast Materials Based on Nb2AlC MAX Phase. Ceram. Int. 2019, 45, 2689–2691. [Google Scholar] [CrossRef]
- Zuena, M.; Buemi, L.P.; Stringari, L.; Legnaioli, S.; Lorenzetti, G.; Palleschi, V.; Nodari, L.; Tomasin, P. An integrated diagnostic approach to Max Ernst’s painting materials in his Attirement of the Bride. J. Cult. Herit. 2020, 43, 329–337. [Google Scholar] [CrossRef]
- Lakhnik, A.M.; Kirian, I.M.; Rud, A.D. The Mg/MAX-phase composite for hydrogen storage. Int. J. Hydrogen Energy 2021, 47, 7274–7280. [Google Scholar] [CrossRef]
- Liu, J.; Lu, W.; Lu, X.; Zhang, L.; Dong, H.; Li, Y. Versatile Ti3C2Tx MXene for free-radical scavenging. Nano Res. 2021, 15, 2558–2566. [Google Scholar] [CrossRef]
- Liu, P.; Liu, H.; Zhang, T.; Chen, L.; Guo, W.; Gu, T.; Yu, F.; Liu, Y.; Wang, G. Ti3C2Tx quantum dot-modified Ti3C2Tx nanosheets freestanding films for flexible solid-state pseudocapacitors. Chem. Eng. J. 2023, 477, 146913. [Google Scholar] [CrossRef]
- Qiang, T.; Qi, X.; Gao, H.; Qiang, H.; Wang, S.; Hu, L.; Hu, N. UV-shielding, flexible and enhanced thermal-conductive polylactide composites modified with single-layered, large-sized MXene nano-sheets. Polym. Bull. 2024, 81, 12243–12265. [Google Scholar] [CrossRef]
- Li, D.; Ye, L.; Liu, H.; Wei, Q.; Zhang, X.; Zheng, Z.; Li, Z.; Lu, S. Flexible and transparent polylactic acid/hydrophobically modified nanobagasse cellulose/tannic acid/MXene films with highly efficient ultraviolet shielding. Compos. Sci. Technol. 2024, 251, 110550. [Google Scholar] [CrossRef]
- Gao, Y.; Ma, X.; Zhang, M.; Xu, H.; Xu, P.; Ding, Y. Sandwich structured PLA fabrics with high electromagnetic interference shielding and low reflection characteristics. Mater. Lett. 2024, 382, 137871. [Google Scholar] [CrossRef]
- Basavarajappa, P.S.; Patil, S.B.; Ganganagappa, N.; Reddy, K.R.; Raghu, A.V.; Reddy, C.V. Recent progress in metal-doped TiO2, non-metal doped/codoped TiO2 and TiO2 nanostructured hybrids for enhanced photocatalysis. Int. J. Hydrogen Energy 2020, 45, 7764–7778. [Google Scholar] [CrossRef]
- Paulsone, P.; Pervenecka, J.; Zarins, E.; Kokars, V.; Vembris, A. Optical and Amplified Spontaneous Emission Properties of 4H-Pyran-4-Ylidene-2-Cyanoacetate Fragment Containing 2-Cyanoacetic Acid Derivative in PVK, PSU, or PS Matrix. Solids 2024, 5, 520–532. [Google Scholar] [CrossRef]
- Wu, J.-M.; Xing, H. Facet-dependent decoration of TiO2 mesocrystals on TiO2 microcrystals for enhanced photoactivity. Nanotechnology 2019, 31, 025604. [Google Scholar] [CrossRef]
- Kumari, M.L.A.; Devi, L.G.; Maia, G.; Chen, T.-W.; Al-Zaqri, N.; Ali, M.A. Mechanochemical synthesis of ternary heterojunctions TiO2(A)/TiO2(R)/ZnO and TiO2(A)/TiO2(R)/SnO2 for effective charge separation in semiconductor photocatalysis: A comparative study. Environ. Res. 2022, 203, 111841. [Google Scholar] [CrossRef]
- Nidhi; Tyagi, N.; Bhardwaj, V.; Moka, S.; Singh, M.K.; Khanuja, M.; Sharma, G. An overview on synthesis of MXene and MXene based nanocomposites for supercapacitors. Mater. Today Commun. 2024, 41, 110223. [Google Scholar] [CrossRef]
- Malaki, M.; Maleki, A.; Varma, R.S. MXenes and ultrasonication. J. Mater. Chem. A 2019, 7, 10843–10857. [Google Scholar] [CrossRef]
- Bian, X.; Yang, Z.; Zhang, T.; Yu, J.; Xu, G.; Chen, A.; He, Q.; Pan, J. Multifunctional Flexible AgNW/MXene/PDMS Composite Films for Efficient Electromagnetic Interference Shielding and Strain Sensing. ACS Appl. Mater. Interfaces 2023, 15, 41906–41915. [Google Scholar] [CrossRef]
- Bian, F.; Huang, R.; Li, X.; Hu, J.; Lin, S. Facile Construction of Chestnut-Like Structural Fireproof PDMS/Mxene@BN for Advanced Thermal Management and Electromagnetic Shielding Applications. Adv. Sci. 2024, 11, e2307482. [Google Scholar] [CrossRef] [PubMed]
- Fang, M.; Li, Q.; Yang, D.; Zhou, B.; Feng, Y.; Liu, C. Synergistic light-to-heat conversion effect of MXene-based transparent film with insulating PDMS/Fe3O4 coating. Compos. Part A Appl. Sci. Manuf. 2023, 174, 107745. [Google Scholar] [CrossRef]
- FZ/T 73027-2016; Determination of the Air Permeability of Fabrics. China Textile Press: Beijing, China, 2016.
- Tong, Y.; Fang, S.; Wang, C.; Hu, Y.H. A unique black TiO2 created from CO-induced oxidation of defect-rich TiO2. J. Phys. Chem. Solids 2021, 154, 110053. [Google Scholar] [CrossRef]
- Jin, T.Z.; Fan, X.; Mukhopadhyay, S. Antimicrobial effects of pulsed light activated TiO2-Polylactic acid film. Heliyon 2024, 10, e38891. [Google Scholar] [CrossRef]
- Graupner, N.; Müssig, J. Cellulose Fiber-Reinforced PLA versus PP. Int. J. Polym. Sci. 2017, 2017, 6059183. [Google Scholar] [CrossRef]
- Zhang, C.; Zhou, Y.; Zhang, Y.; Zhao, S.; Fang, J.; Sheng, X.; Zhang, T.; Zhang, H. Double-Shelled TiO2 Hollow Spheres Assembled with TiO2 Nanosheets. Chem.-A Eur. J. 2017, 23, 4336–4343. [Google Scholar] [CrossRef]
- Dall’Agnese, Y.; Rozier, P.; Taberna, P.-L.; Gogotsi, Y.; Simon, P. Capacitance of two-dimensional titanium carbide (MXene) and MXene/carbon nanotube composites in organic electrolytes. J. Power Sources 2016, 306, 510–515. [Google Scholar] [CrossRef]
Spray Volume/mL | m1/g | m2/g | Weight Gain Rate/(g·cm−2) |
---|---|---|---|
0.5 | 0.7767 | 0.7934 | 0.000668 |
1.0 | 0.7980 | 0.8272 | 0.001168 |
1.5 | 0.8016 | 0.8609 | 0.002372 |
2.0 | 0.8376 | 0.9077 | 0.002804 |
2.5 | 0.8529 | 0.9411 | 0.003528 |
3.0 | 0.7921 | 0.8763 | 0.003368 |
Spray Volume/mL | m1/g | m2/g | Weight Gain Rate/(g·cm−2) |
---|---|---|---|
0.5 | 0.8203 | 0.8209 | 0.000024 |
1.0 | 0.7795 | 0.7818 | 0.000092 |
1.5 | 0.8176 | 0.8204 | 0.000112 |
2.0 | 0.7939 | 0.7978 | 0.000156 |
2.5 | 0.7804 | 0.7845 | 0.000164 |
3.0 | 0.7965 | 0.8007 | 0.000168 |
Consignment | UVA Transmittance (%) | UVB Transmittance (%) | Protection Factor (UPF) |
---|---|---|---|
1 | 15.43 | 8.54 | 9.45 |
2 | 9.15 | 3.94 | 11.63 |
3 | 13.56 | 7.96 | 10.29 |
average value | 12.71 | 6.81 | 10.46 |
Consignment | UVA Transmittance (%) | UVB Transmittance (%) | Protection Factor (UPF) |
---|---|---|---|
1 | 0.73 | 0.27 | 188.51 |
2 | 0.78 | 0.59 | 169.18 |
3 | 0.75 | 0.53 | 192.11 |
average value | 0.75 | 0.46 | 183.27 |
Consignment | PLA (mm/s) | Function PLA (mm/s) |
---|---|---|
1 | 804.93 | 487.95 |
2 | 820.46 | 465.61 |
3 | 803.76 | 489.32 |
average value | 809.72 | 480.96 |
Dry Friction Fastness/(Grade) | Wet Friction Fastness/(Grade) | Colorfastness to Fading/(Grade) | Color Fastness/(Grade) | |
---|---|---|---|---|
MXene coating | 4 | 3–4 | 4–5 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, T.; Yin, Y. Synergistic Integration of MXene Photothermal Conversion and TiO2 Radiative Cooling in Bifunctional PLA Fabrics for Adaptive Personal Thermal Management. Solids 2025, 6, 37. https://doi.org/10.3390/solids6030037
Han T, Yin Y. Synergistic Integration of MXene Photothermal Conversion and TiO2 Radiative Cooling in Bifunctional PLA Fabrics for Adaptive Personal Thermal Management. Solids. 2025; 6(3):37. https://doi.org/10.3390/solids6030037
Chicago/Turabian StyleHan, Tianci, and Yunjie Yin. 2025. "Synergistic Integration of MXene Photothermal Conversion and TiO2 Radiative Cooling in Bifunctional PLA Fabrics for Adaptive Personal Thermal Management" Solids 6, no. 3: 37. https://doi.org/10.3390/solids6030037
APA StyleHan, T., & Yin, Y. (2025). Synergistic Integration of MXene Photothermal Conversion and TiO2 Radiative Cooling in Bifunctional PLA Fabrics for Adaptive Personal Thermal Management. Solids, 6(3), 37. https://doi.org/10.3390/solids6030037