Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (899)

Search Parameters:
Keywords = phenylpropanoid pathway

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3181 KiB  
Article
Comparative Analysis of Phenolic Acid Metabolites and Differential Genes Between Browning-Resistant and Browning-Sensitive luffa During the Commercial Fruit Stage
by Yingna Feng, Shuai Gao, Rui Wang, Yeqiong Liu, Zhiming Yan, Mingli Yong, Cui Feng, Weichen Ni, Yichen Fang, Simin Zhu, Liwang Liu and Yuanhua Wang
Horticulturae 2025, 11(8), 903; https://doi.org/10.3390/horticulturae11080903 (registering DOI) - 4 Aug 2025
Abstract
Browning significantly impacts the commercial value of luffa (luffa cylindrica) and is primarily driven by the metabolic processes of phenolic acids. Investigating changes in phenolic acids during browning aids in understanding the physiological mechanisms underlying this process and provides a basis [...] Read more.
Browning significantly impacts the commercial value of luffa (luffa cylindrica) and is primarily driven by the metabolic processes of phenolic acids. Investigating changes in phenolic acids during browning aids in understanding the physiological mechanisms underlying this process and provides a basis for improving storage, processing, variety breeding, and utilization of germplasm resources. This study compared browning-resistant (‘30’) and browning-sensitive (‘256’) luffa varieties using high-throughput sequencing and metabolomics techniques. The results revealed 55 genes involved in the phenylpropanoid biosynthesis pathway, including 8 phenylalanine ammonia-lyase (PAL) genes, 20 peroxidase (POD) genes, 2 polyphenol oxidase (PPO) genes associated with tyrosine metabolism, and 37 peroxisome-related genes. Real-time quantitative (qPCR) was employed to validate 15 browning-related genes, revealing that the expression levels of LcPOD21 and LcPOD6 were 12.5-fold and 25-fold higher in ‘30’ compared to ‘256’, while LcPAL5 and LcPAL4 were upregulated in ‘30’. Enzyme analysis showed that catalase (CAT) and phenylalanine ammonia-lyase (PAL) activities were higher in ‘30’ than in ‘256’. Conversely, superoxide dismutase (SOD) and polyphenol oxidase (PPO) activities were reduced in ‘30’, whereas CAT activity was upregulated. The concentrations of cinnamic acid, p-coumaric acid, trans-5-O-(4-coumaroyl)mangiferic acid, and caffealdehyde were lower in browning-resistant luffa ‘30’ than in browning-sensitive luffa ‘256’, suggesting that their levels influence browning in luffa. These findings elucidate the mechanisms underlying browning and inform strategies for the storage, processing, and genetic improvement of luffa. Full article
Show Figures

Figure 1

18 pages, 3801 KiB  
Article
Characteristics and Transcriptome Analysis of Anther Abortion in Male Sterile Celery (Apium graveolens L.)
by Yao Gong, Zhenyue Yang, Huan Li, Kexiao Lu, Chenyang Wang, Aisheng Xiong, Yangxia Zheng, Guofei Tan and Mengyao Li
Horticulturae 2025, 11(8), 901; https://doi.org/10.3390/horticulturae11080901 (registering DOI) - 3 Aug 2025
Abstract
To elucidate the molecular mechanisms underlying anther abortion in celery male sterile lines, this study investigates the morphological differences of floral organs and differential gene expression patterns between two lines at the flowering stage. Using the male sterile line of celery ‘QCBU-001’ and [...] Read more.
To elucidate the molecular mechanisms underlying anther abortion in celery male sterile lines, this study investigates the morphological differences of floral organs and differential gene expression patterns between two lines at the flowering stage. Using the male sterile line of celery ‘QCBU-001’ and the fertile line ‘Jinnan Shiqin’ as materials, anther structure was analyzed by paraffin sections, and related genes were detected using transcriptome sequencing and qRT-PCR. The results indicated that the anther locules were severely shrunken at maturity in the sterile lines. The callose deficiency led to abnormal development of microspores, preventing the formation of mature pollen grains and ultimately leading to complete anther abortion. The transcriptome results revealed that 3246 genes were differentially expressed in sterile and fertile lines, which were significantly enriched in pathways such as starch and sucrose metabolism and phenylpropanoid biosynthesis. Additionally, differential expression patterns of transcription factor families (MYB, bHLH, AP2, GRAS, and others) suggested their potential involvement in regulating anther abortion. Notably, the expression level of callose synthase gene AgGSL2 was significantly downregulated in sterile anthers, which might be an important cause of callose deficiency and pollen sterility. This study not only provides a theoretical basis for elucidating the molecular mechanism underlying male sterility in celery but also lays a foundation for the utilization and improvement of male sterile lines in vegetable hybrid breeding. Full article
Show Figures

Figure 1

16 pages, 2971 KiB  
Article
Dissecting Organ-Specific Aroma-Active Volatile Profiles in Two Endemic Phoebe Species by Integrated GC-MS Metabolomics
by Ming Xu, Yu Chen and Guoming Wang
Metabolites 2025, 15(8), 526; https://doi.org/10.3390/metabo15080526 (registering DOI) - 3 Aug 2025
Abstract
Background: Phoebe zhennan and Phoebe chekiangensis are valuable evergreen trees recognized for their unique aromas and ecological significance, yet the organ-related distribution and functional implications of aroma-active volatiles remain insufficiently characterized. Methods: In this study, we applied an integrated GC-MS-based volatile metabolomics [...] Read more.
Background: Phoebe zhennan and Phoebe chekiangensis are valuable evergreen trees recognized for their unique aromas and ecological significance, yet the organ-related distribution and functional implications of aroma-active volatiles remain insufficiently characterized. Methods: In this study, we applied an integrated GC-MS-based volatile metabolomics approach combined with a relative odor activity value (rOAV) analysis to comprehensively profile and compare the volatile metabolite landscape in the seeds and leaves of both species. Results: In total, 1666 volatile compounds were putatively identified, of which 540 were inferred as key aroma-active contributors based on the rOAV analysis. A multivariate statistical analysis revealed clear tissue-related separation: the seeds were enriched in sweet, floral, and fruity volatiles, whereas the leaves contained higher levels of green leaf volatiles and terpenoids associated with ecological defense. KEGG pathway enrichment indicated that terpenoid backbone and phenylpropanoid biosynthesis pathways played major roles in shaping these divergent profiles. A Venn diagram analysis further uncovered core and unique volatiles underlying species and tissue specificity. Conclusions: These insights provide an integrated reference for understanding tissue-divergent volatile profiles in Phoebe species and offer a basis for fragrance-oriented selection, ecological trait evaluation, and the sustainable utilization of organ-related metabolic characteristics in breeding and conservation programs. Full article
(This article belongs to the Section Plant Metabolism)
Show Figures

Graphical abstract

15 pages, 3854 KiB  
Article
PVC Inhibits Radish (Raphanus sativus L.) Seedling Growth by Interfering with Plant Hormone Signal Transduction and Phenylpropanoid Biosynthesis
by Lisi Jiang, Zirui Liu, Wenyuan Li, Yangwendi Yang, Zirui Yu, Jiajun Fan, Lixin Guo, Chang Guo and Wei Fu
Horticulturae 2025, 11(8), 896; https://doi.org/10.3390/horticulturae11080896 (registering DOI) - 3 Aug 2025
Abstract
Polyvinyl chloride (PVC) is commonly employed as mulch in agriculture to boost crop yields. However, its toxicity is often overlooked. Due to its chemical stability, resistance to degradation, and the inadequacy of the recycling system, PVC tends to persist in farm environments, where [...] Read more.
Polyvinyl chloride (PVC) is commonly employed as mulch in agriculture to boost crop yields. However, its toxicity is often overlooked. Due to its chemical stability, resistance to degradation, and the inadequacy of the recycling system, PVC tends to persist in farm environments, where it can decompose into microplastics (MPs) or nanoplastics (NPs). The radish (Raphanus sativus L.) was chosen as the model plant for this study to evaluate the underlying toxic mechanisms of PVC NPs on seedling growth through the integration of multi-omics approaches with oxidative stress evaluations. The results indicated that, compared with the control group, the shoot lengths in the 5 mg/L and 150 mg/L treatment groups decreased by 33.7% and 18.0%, respectively, and the root lengths decreased by 28.3% and 11.3%, respectively. However, there was no observable effect on seed germination rates. Except for the peroxidase (POD) activity in the 150 mg/L group, all antioxidant enzyme activities and malondialdehyde (MDA) levels were higher in the treated root tips than in the control group. Both transcriptome and metabolomic analysis profiles showed 2075 and 4635 differentially expressed genes (DEGs) in the high- and low-concentration groups, respectively, and 1961 metabolites under each treatment. PVC NPs predominantly influenced seedling growth by interfering with plant hormone signaling pathways and phenylpropanoid production. Notably, the reported toxicity was more evident at lower concentrations. This can be accounted for by the plant’s “growth-defense trade-off” strategy and the manner in which nanoparticles aggregate. By clarifying how PVC NPs coordinately regulate plant stress responses via hormone signaling and phenylpropanoid biosynthesis pathways, this research offers a scientific basis for assessing environmental concerns related to nanoplastics in agricultural systems. Full article
(This article belongs to the Special Issue Stress Physiology and Molecular Biology of Vegetable Crops)
Show Figures

Figure 1

22 pages, 5283 KiB  
Article
Transcriptome Analysis Reveals Candidate Pathways and Genes Involved in Wheat (Triticum aestivum L.) Response to Zinc Deficiency
by Shoujing Zhu, Shiqi Zhang, Wen Wang, Nengbing Hu and Wenjuan Shi
Biology 2025, 14(8), 985; https://doi.org/10.3390/biology14080985 (registering DOI) - 2 Aug 2025
Abstract
Zinc (Zn) deficiency poses a major global health challenge, and wheat grains generally contain low Zn concentrations. In this study, the wheat cultivar ‘Zhongmai 175’ was identified as zinc-efficient. Hydroponic experiments demonstrated that Zn deficiency induced the secretion of oxalic acid and malic [...] Read more.
Zinc (Zn) deficiency poses a major global health challenge, and wheat grains generally contain low Zn concentrations. In this study, the wheat cultivar ‘Zhongmai 175’ was identified as zinc-efficient. Hydroponic experiments demonstrated that Zn deficiency induced the secretion of oxalic acid and malic acid in root exudates and significantly increased total root length in ‘Zhongmai 175’. To elucidate the underlying regulatory mechanisms, transcriptome profiling via RNA sequencing was conducted under Zn-deficient conditions. A total of 2287 and 1935 differentially expressed genes (DEGs) were identified in roots and shoots, respectively. Gene Ontology enrichment analysis revealed that these DEGs were primarily associated with Zn ion transport, homeostasis, transmembrane transport, and hormone signaling. Key DEGs belonged to gene families including VIT, NAS, DMAS, ZIP, tDT, HMA, and NAAT. KEGG pathway analysis indicated that phenylpropanoid biosynthesis, particularly lignin synthesis genes, was significantly downregulated in Zn-deficient roots. In shoots, cysteine and methionine metabolism, along with plant hormone signal transduction, were the most enriched pathways. Notably, most DEGs in shoots were associated with the biosynthesis of phytosiderophores (MAs, NA) and ethylene. Overall, genes involved in Zn ion transport, phytosiderophore biosynthesis, dicarboxylate transport, and ethylene biosynthesis appear to play central roles in wheat’s adaptive response to Zn deficiency. These findings provide a valuable foundation for understanding the molecular basis of Zn efficiency in wheat and for breeding Zn-enriched varieties. Full article
Show Figures

Figure 1

25 pages, 10827 KiB  
Article
Integrated Transcriptomic and Metabolomic Analysis Reveals Nitrogen-Mediated Delay of Premature Leaf Senescence in Red Raspberry Leaves
by Qiang Huo, Feiyang Chang, Peng Jia, Ziqian Fu, Jiaqi Zhao, Yiwen Gao, Haoan Luan, Ying Wang, Qinglong Dong, Guohui Qi and Xuemei Zhang
Plants 2025, 14(15), 2388; https://doi.org/10.3390/plants14152388 - 2 Aug 2025
Viewed by 188
Abstract
The premature senescence of red raspberry leaves severely affects plant growth. In this study, the double-season red raspberry cultivar ‘Polka’ was used, with N150 (0.10 g N·kg−1) selected as the treatment group (T150) and N0 (0 g N·kg−1 [...] Read more.
The premature senescence of red raspberry leaves severely affects plant growth. In this study, the double-season red raspberry cultivar ‘Polka’ was used, with N150 (0.10 g N·kg−1) selected as the treatment group (T150) and N0 (0 g N·kg−1) set as the control (CK). This study systematically investigated the mechanism of premature senescence in red raspberry leaves under different nitrogen application levels by measuring physiological parameters and conducting a combined multi-omics analysis of transcriptomics and metabolomics. Results showed that T150 plants had 8.34 cm greater height and 1.45 cm greater ground diameter than CK. The chlorophyll, carotenoid, soluble protein, and sugar contents in all leaf parts of T150 were significantly higher than those in CK, whereas soluble starch contents were lower. Malondialdehyde (MDA) content and superoxide anion (O2) generation rate in the lower leaves of T150 were significantly lower than those in CK. Superoxide sismutase (SOD) and peroxidase (POD) activities in the middle and lower functional leaves of T150 were higher than in CK, while catalase (CAT) activity was lower. Transcriptomic analysis identified 4350 significantly differentially expressed genes, including 2062 upregulated and 2288 downregulated genes. Metabolomic analysis identified 135 differential metabolites, out of which 60 were upregulated and 75 were downregulated. Integrated transcriptomic and metabolomic analysis showed enrichment in the phenylpropanoid biosynthesis (ko00940) and flavonoid biosynthesis (ko00941) pathways, with the former acting as an upstream pathway of the latter. A premature senescence pathway was established, and two key metabolites were identified: chlorogenic acid content decreased, and naringenin chalcone content increased in early senescent leaves, suggesting their pivotal roles in the early senescence of red raspberry leaves. Modulating chlorogenic acid and naringenin chalcone levels could delay premature senescence. Optimizing fertilization strategies may thus reduce senescence risk and enhance the productivity, profitability, and sustainability of the red raspberry industry. Full article
(This article belongs to the Special Issue Horticultural Plant Physiology and Molecular Biology)
Show Figures

Figure 1

21 pages, 7215 KiB  
Article
Transcriptome Profiling Reveals Mungbean Defense Mechanisms Against Powdery Mildew
by Sukanya Inthaisong, Pakpoom Boonchuen, Akkawat Tharapreuksapong, Panlada Tittabutr, Neung Teaumroong and Piyada Alisha Tantasawat
Agronomy 2025, 15(8), 1871; https://doi.org/10.3390/agronomy15081871 - 1 Aug 2025
Viewed by 141
Abstract
Powdery mildew (PM), caused by Sphaerotheca phaseoli, severely threatens mungbean (Vigna radiata) productivity and quality, yet the molecular basis of resistance remains poorly defined. This study employed transcriptome profiling to compare defense responses in a resistant genotype, SUPER5, and a [...] Read more.
Powdery mildew (PM), caused by Sphaerotheca phaseoli, severely threatens mungbean (Vigna radiata) productivity and quality, yet the molecular basis of resistance remains poorly defined. This study employed transcriptome profiling to compare defense responses in a resistant genotype, SUPER5, and a susceptible variety, CN84-1, following pathogen infection. A total of 1755 differentially expressed genes (DEGs) were identified, with SUPER5 exhibiting strong upregulation of genes encoding pathogenesis-related (PR) proteins, disease resistance proteins, and key transcription factors. Notably, genes involved in phenylpropanoid and flavonoid biosynthesis, pathways associated with antimicrobial compound and lignin production, were markedly induced in SUPER5. In contrast, CN84-1 showed limited activation of defense genes and downregulation of essential regulators such as MYB14. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses highlighted the involvement of plant–pathogen interaction pathways, MAPK signaling, and reactive oxygen species (ROS) detoxification in the resistant response. Quantitative real-time PCR validated 11 candidate genes, including PAL3, PR2, GSO1, MLO12, and P21, which function in pathogen recognition, signaling, the biosynthesis of antimicrobial metabolites, the production of defense proteins, defense regulation, and the reinforcement of the cell wall. Co-expression network analysis revealed three major gene modules linked to flavonoid metabolism, chitinase activity, and responses to both abiotic and biotic stresses. These findings offer valuable molecular insights for breeding PM-resistant mungbean varieties. Full article
Show Figures

Figure 1

23 pages, 1268 KiB  
Article
Combining Stable Isotope Labeling and Candidate Substrate–Product Pair Networks Reveals Lignan, Oligolignol, and Chicoric Acid Biosynthesis in Flax Seedlings (Linum usitatissimum L.)
by Benjamin Thiombiano, Ahlam Mentag, Manon Paniez, Romain Roulard, Paulo Marcelo, François Mesnard and Rebecca Dauwe
Plants 2025, 14(15), 2371; https://doi.org/10.3390/plants14152371 - 1 Aug 2025
Viewed by 149
Abstract
Functional foods like flax (Linum usitatissimum L.) are rich sources of specialized metabolites that contribute to their nutritional and health-promoting properties. Understanding the biosynthesis of these compounds is essential for improving their quality and potential applications. However, dissecting complex metabolic networks in [...] Read more.
Functional foods like flax (Linum usitatissimum L.) are rich sources of specialized metabolites that contribute to their nutritional and health-promoting properties. Understanding the biosynthesis of these compounds is essential for improving their quality and potential applications. However, dissecting complex metabolic networks in plants remains challenging due to the dynamic nature and interconnectedness of biosynthetic pathways. In this study, we present a synergistic approach combining stable isotopic labeling (SIL), Candidate Substrate–Product Pair (CSPP) networks, and a time-course study with high temporal resolution to reveal the biosynthetic fluxes shaping phenylpropanoid metabolism in young flax seedlings. By feeding the seedlings with 13C3-p-coumaric acid and isolating isotopically labeled metabolization products prior to the construction of CSPP networks, the biochemical validity of the connections in the network was supported by SIL, independent of spectral similarity or abundance correlation. This method, in combination with multistage mass spectrometry (MSn), allowed confident structural proposals of lignans, neolignans, and hydroxycinnamic acid conjugates, including the presence of newly identified chicoric acid and related tartaric acid esters in flax. High-resolution time-course analyses revealed successive waves of metabolite formation, providing insights into distinct biosynthetic fluxes toward lignans and early lignification intermediates. No evidence was found here for the involvement of chlorogenic or caftaric acid intermediates in chicoric acid biosynthesis in flax, as has been described in other species. Instead, our findings suggest that in flax seedlings, chicoric acid is synthesized through successive hydroxylation steps of p-coumaroyl tartaric acid esters. This work demonstrates the power of combining SIL and CSPP strategies to uncover novel metabolic routes and highlights the nutritional potential of flax sprouts rich in chicoric acid. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

28 pages, 5315 KiB  
Article
Integrated Transcriptome and Metabolome Analysis Provides Insights into the Low-Temperature Response in Sweet Potato (Ipomoea batatas L.)
by Zhenlei Liu, Jiaquan Pan, Sitong Liu, Zitong Yang, Huan Zhang, Tao Yu and Shaozhen He
Genes 2025, 16(8), 899; https://doi.org/10.3390/genes16080899 - 28 Jul 2025
Viewed by 307
Abstract
Background/Objectives: Sweet potato is a tropical and subtropical crop and its growth and yield are susceptible to low-temperature stress. However, the molecular mechanisms underlying the low temperature stress of sweetpotato are unknown. Methods: In this work, combined transcriptome and metabolism analysis was employed [...] Read more.
Background/Objectives: Sweet potato is a tropical and subtropical crop and its growth and yield are susceptible to low-temperature stress. However, the molecular mechanisms underlying the low temperature stress of sweetpotato are unknown. Methods: In this work, combined transcriptome and metabolism analysis was employed to investigate the low-temperature responses of two sweet potato cultivars, namely, the low-temperature-resistant cultivar “X33” and the low-temperature-sensitive cultivar “W7”. Results: The differentially expressed metabolites (DEMs) of X33 at different time stages clustered in five profiles, while they clustered in four profiles of W7 with significant differences. Differentially expressed genes (DEGs) in X33 and W7 at different time points clustered in five profiles. More DEGs exhibited continuous or persistent positive responses to low-temperature stress in X33 than in W7. There were 1918 continuously upregulated genes and 6410 persistent upregulated genes in X33, whereas 1781 and 5804 were found in W7, respectively. Core genes involved in Ca2+ signaling, MAPK cascades, the reactive oxygen species (ROS) signaling pathway, and transcription factor families (including bHLH, NAC, and WRKY) may play significant roles in response to low temperature in sweet potato. Thirty-one common differentially expressed metabolites (DEMs) were identified in the two cultivars in response to low temperature. The KEGG analysis of these common DEMs mainly belonged to isoquinoline alkaloid biosynthesis, phosphonate and phosphinate metabolism, flavonoid biosynthesis, cysteine and methionine metabolism, glycine, serine, and threonine metabolism, ABC transporters, and glycerophospholipid metabolism. Five DEMs with identified Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were selected for correlation analysis. KEGG enrichment analysis showed that the carbohydrate metabolism, phenylpropanoid metabolism, and glutathione metabolism pathways were significantly enriched and played vital roles in low-temperature resistance in sweet potato. Conclusions: These findings contribute to a deeper understanding of the molecular mechanisms underlying plant cold tolerance and offer targets for molecular breeding efforts to enhance low-temperature resistance. Full article
Show Figures

Figure 1

18 pages, 3095 KiB  
Article
Investigating Seed Germination, Seedling Growth, and Enzymatic Activity in Onion (Allium cepa) Under the Influence of Plasma-Treated Water
by Sabnaj Khanam, Young June Hong, Eun Ha Choi and Ihn Han
Int. J. Mol. Sci. 2025, 26(15), 7256; https://doi.org/10.3390/ijms26157256 - 27 Jul 2025
Viewed by 308
Abstract
Seed germination and early seedling growth are pivotal stages that define crop establishment and yield potential. Conventional agrochemicals used to improve these processes often raise environmental concerns, highlighting the need for sustainable alternatives. In this study, we demonstrated that water treated with cylindrical [...] Read more.
Seed germination and early seedling growth are pivotal stages that define crop establishment and yield potential. Conventional agrochemicals used to improve these processes often raise environmental concerns, highlighting the need for sustainable alternatives. In this study, we demonstrated that water treated with cylindrical dielectric barrier discharge (c-DBD) plasma, enriched with nitric oxide (NO) and reactive nitrogen species (RNS), markedly enhanced onion (Allium cepa) seed germination and seedling vigor. The plasma-treated water (PTW) promoted rapid imbibition, broke dormancy, and accelerated germination rates beyond 98%. Seedlings irrigated with PTW exhibited significantly increased biomass, root and shoot length, chlorophyll content, and antioxidant enzyme activities, accompanied by reduced lipid peroxidation. Transcriptomic profiling revealed that PTW orchestrated a multifaceted regulatory network by upregulating gibberellin biosynthesis genes (GA3OX1/2), suppressing abscisic acid signaling components (ABI5), and activating phenylpropanoid metabolic pathways (PAL, 4CL) and antioxidant defense genes (RBOH1, SOD). These molecular changes coincided with elevated NO2 and NO3 levels and finely tuned hydrogen peroxide dynamics, underpinning redox signaling crucial for seed activation and stress resilience. Our findings establish plasma-generated NO-enriched water as an innovative, eco-friendly technology that leverages redox and hormone crosstalk to stimulate germination and early growth, offering promising applications in sustainable agriculture. Full article
(This article belongs to the Special Issue Plasma-Based Technologies for Food Safety and Health Enhancement)
Show Figures

Figure 1

21 pages, 1285 KiB  
Article
Stage-Specific Transcriptomic Insights into Seed Germination and Early Development in Camellia oleifera Abel.
by Zhen Zhang, Caixia Liu, Ying Zhang, Zhilong He, Longsheng Chen, Chengfeng Xun, Yushen Ma, Xiaokang Yuan, Yanming Xu and Rui Wang
Plants 2025, 14(15), 2283; https://doi.org/10.3390/plants14152283 - 24 Jul 2025
Viewed by 207
Abstract
Seed germination is a critical phase in the plant lifecycle of Camellia oleifera (oil tea), directly influencing seedling establishment and crop reproduction. In this study, we examined transcriptomic and physiological changes across five defined germination stages (G0–G4), from radicle dormancy to cotyledon emergence. [...] Read more.
Seed germination is a critical phase in the plant lifecycle of Camellia oleifera (oil tea), directly influencing seedling establishment and crop reproduction. In this study, we examined transcriptomic and physiological changes across five defined germination stages (G0–G4), from radicle dormancy to cotyledon emergence. Using RNA sequencing (RNA-seq), we assembled 169,652 unigenes and identified differentially expressed genes (DEGs) at each stage compared to G0, increasing from 1708 in G1 to 10,250 in G4. Functional enrichment analysis revealed upregulation of genes associated with cell wall organization, glucan metabolism, and Photosystem II assembly. Key genes involved in cell wall remodeling, including cellulose synthase (CESA), phenylalanine ammonia-lyase (PAL), 4-coumarate-CoA ligase (4CL), caffeoyl-CoA O-methyltransferase (COMT), and peroxidase (POD) showed progressive activation during germination. A Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed dynamic regulation of phenylpropanoid and flavonoid biosynthesis, photosynthesis, carbohydrate metabolism, and hormone signaling pathways. Transcription factors such as indole-3-acetic acid (IAA), ABA-responsive element binding factor (ABF), and basic helix–loop–helix (bHLH) were upregulated, suggesting hormone-mediated regulation of dormancy release and seedling development. Physiologically, cytokinin (CTK) and IAA levels peaked in G4, antioxidant enzyme activities were highest in G2, and starch content increased toward later stages. These findings provide new insights into the molecular mechanisms underlying seed germination in C. oleifera and identify candidate genes relevant to rootstock breeding and nursery propagation. Full article
Show Figures

Figure 1

14 pages, 991 KiB  
Article
Zinc Sulfate Stress Enhances Flavonoid Content and Antioxidant Capacity from Finger Millet Sprouts for High-Quality Production
by Xin Tian, Jing Zhang, Zhangqin Ye, Weiming Fang, Xiangli Ding and Yongqi Yin
Foods 2025, 14(15), 2563; https://doi.org/10.3390/foods14152563 - 22 Jul 2025
Viewed by 255
Abstract
The enhancement of flavonoid content and antioxidant capacity in plants remains a significant area of focus in the investigation of plant-derived functional foods. This study systematically investigated the impact of exogenous zinc sulfate (5 mM ZnSO4) stress on flavonoid content and [...] Read more.
The enhancement of flavonoid content and antioxidant capacity in plants remains a significant area of focus in the investigation of plant-derived functional foods. This study systematically investigated the impact of exogenous zinc sulfate (5 mM ZnSO4) stress on flavonoid content and antioxidant capacity in finger millet (Eleusine coracana L.) sprouts, along with its underlying molecular mechanisms. The results demonstrated that treatment with 5 mM ZnSO4 significantly increased the flavonoid content in sprouts, reaching a maximum value of 5.59 μg/sprout on the 6th day of germination. ZnSO4 stress significantly enhanced the activities of PAL, 4CL, and C4H, while also considerably upregulating the expression levels of flavonoid-biosynthesis-related genes. Physiological indicators revealed that ZnSO4 stress increased the contents of malondialdehyde, hydrogen peroxide, and superoxide anion in the sprouts, while inhibiting sprout growth. As a stress response, ZnSO4 stress enhances the antioxidant system by increasing antioxidant capacity (ABTS, DPPH, and FRAP), antioxidant enzyme activity (POD and SOD), and related gene expression (POD, CAT, and APX) in sprouts. This study provides experimental evidence for ZnSO4 stress to improve flavonoid accumulation and antioxidant capacity in finger millet sprouts and provides important theoretical and practical guidance for the development of high-quality functional foods. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Figure 1

20 pages, 2342 KiB  
Article
Metabolomic Profiling of Desiccation Response in Recalcitrant Quercus acutissima Seeds
by Haiyan Chen, Fenghou Shi, Boqiang Tong, Yizeng Lu and Yongbao Shen
Agronomy 2025, 15(7), 1738; https://doi.org/10.3390/agronomy15071738 - 18 Jul 2025
Viewed by 327
Abstract
Quercus acutissima seeds exhibit high desiccation sensitivity, posing significant challenges for long-term preservation. This study investigates the physiological and metabolic responses of soluble osmoprotectants—particularly soluble proteins and proline—during the desiccation process. Seeds were sampled at three critical moisture content levels: 38.8%, 26.8%, and [...] Read more.
Quercus acutissima seeds exhibit high desiccation sensitivity, posing significant challenges for long-term preservation. This study investigates the physiological and metabolic responses of soluble osmoprotectants—particularly soluble proteins and proline—during the desiccation process. Seeds were sampled at three critical moisture content levels: 38.8%, 26.8%, and 14.8%, corresponding to approximately 99%, 52%, and 0% germination, respectively. We measured germination ability, soluble protein content, and proline accumulation, and we performed untargeted metabolomic profiling using LC-MS. Soluble protein levels increased early but declined later during desiccation, while proline levels continuously increased for sustained osmotic adjustment. Metabolomics analysis identified a total of 2802 metabolites, with phenylpropanoids and polyketides (31.12%) and lipids and lipid-like molecules (29.05%) being the most abundant. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis showed that differentially expressed metabolites were mainly enriched in key pathways such as amino acid metabolism, energy metabolism, and nitrogen metabolism. Notably, most amino acids decreased in content, except for proline, which showed an increasing trend. Tricarboxylic acid cycle intermediates, especially citric acid and isocitric acid, showed significantly decreased levels, indicating energy metabolism imbalance due to uncoordinated consumption without effective replenishment. The reductions in key amino acids such as glutamic acid and aspartic acid further reflected metabolic network disruption. In summary, Q. acutissima seeds fail to establish an effective desiccation tolerance mechanism. The loss of soluble protein-based protection, limited capacity for proline-mediated osmotic regulation, and widespread metabolic disruption collectively lead to irreversible cellular damage. These findings highlight the inherent metabolic vulnerabilities of recalcitrant seeds and suggest potential preservation strategies, such as supplementing critical metabolites (e.g., TCA intermediates) during storage to delay metabolic collapse and mitigate desiccation-induced damage. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

14 pages, 1196 KiB  
Article
Effects of Methyl Jasmonate on Flavonoid Accumulation and Physiological Metabolism in Finger Millet (Eleusine coracana L.) Sprouts
by Zhangqin Ye, Jing Zhang, Xin Tian, Zhengfei Yang, Jiangyu Zhu and Yongqi Yin
Plants 2025, 14(14), 2201; https://doi.org/10.3390/plants14142201 - 16 Jul 2025
Viewed by 310
Abstract
Finger millet (Eleusine coracana L.) is a nutrient-dense cereal with high flavonoid content, yet the mechanisms regulating its secondary metabolite biosynthesis remain underexplored. Various exogenous stimuli can readily activate the enzymatic pathways and gene expression associated with flavonoid biosynthesis in plants, which [...] Read more.
Finger millet (Eleusine coracana L.) is a nutrient-dense cereal with high flavonoid content, yet the mechanisms regulating its secondary metabolite biosynthesis remain underexplored. Various exogenous stimuli can readily activate the enzymatic pathways and gene expression associated with flavonoid biosynthesis in plants, which are regulated by developmental cues. Research has established that methyl jasmonate (MeJA) application enhances secondary metabolite production in plant systems. This investigation examined MeJA’s influence on flavonoid accumulation and physiological responses in finger millet sprouts to elucidate the molecular mechanisms underlying MeJA-mediated flavonoid accumulation. The findings revealed that MeJA treatment significantly suppressed sprout elongation while enhancing the biosynthesis of total flavonoids and phenolic compounds. MeJA treatment triggered oxidative stress responses, with hydrogen peroxide and superoxide anion concentrations increasing 1.84-fold and 1.70-fold compared to control levels at 4 days post-germination. Furthermore, the antioxidant defense mechanisms in finger millet were upregulated following treatment, resulting in significant enhancement of catalase and peroxidase enzymatic activities and corresponding transcript abundance. MeJA application augmented the activities of key phenylpropanoid pathway enzymes—phenylalanine ammonia-lyase (PAL) and cinnamate 4-hydroxylase (C4H)—and upregulated their respective gene expression. At 4 days post-germination, EcPAL and EcC4H transcript levels were elevated 3.67-fold and 2.61-fold, respectively, compared to untreated controls. MeJA treatment significantly induced the expression of downstream structural genes and transcriptional regulators. This study provides a deeper understanding of the mechanism of flavonoid accumulation in foxtail millet induced by MeJA, and lays a foundation for exogenous conditions to promote flavonoid biosynthesis in plants. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

20 pages, 4343 KiB  
Article
Transcriptome Analysis of Resistant and Susceptible Sorghum Lines to the Sorghum Aphid (Melanaphis sacchari (Zehntner))
by Minghui Guan, Junli Du, Jieqin Li, Tonghan Wang, Lu Sun, Yongfei Wang and Degong Wu
Agriculture 2025, 15(14), 1502; https://doi.org/10.3390/agriculture15141502 - 12 Jul 2025
Viewed by 225
Abstract
The sorghum aphid (Melanaphis sacchari (Zehntner, 1897)), a globally destructive pest, severely compromises sorghum yield and quality. This study compared aphid-resistant (HX133) and aphid-susceptible (HX37) sorghum (Sorghum bicolor (L.) Moench) cultivars, revealing that HX133 significantly suppressed aphid proliferation through repellent and [...] Read more.
The sorghum aphid (Melanaphis sacchari (Zehntner, 1897)), a globally destructive pest, severely compromises sorghum yield and quality. This study compared aphid-resistant (HX133) and aphid-susceptible (HX37) sorghum (Sorghum bicolor (L.) Moench) cultivars, revealing that HX133 significantly suppressed aphid proliferation through repellent and antibiotic effects, while aphid populations increased continuously in HX37. Transcriptome analysis identified 2802 differentially expressed genes (DEGs, 45.9% upregulated) in HX133 at 24 h post-infestation, in contrast with only 732 DEGs (21% upregulated) in HX37. Pathway enrichment highlighted shikimate-mediated phenylpropanoid/flavonoid biosynthesis and glutathione metabolism as central to HX133’s defense response, alongside photosynthesis-related pathways common to both cultivars. qRT-PCR validation confirmed activation of the shikimate pathway in HX133, driving the synthesis of dhurrin—a cyanogenic glycoside critical for aphid resistance—and other tyrosine-derived metabolites (e.g., benzyl isoquinoline alkaloids, tocopherol). These findings demonstrate that HX133 employs multi-layered metabolic regulation, particularly dhurrin accumulation, to counteract aphid infestation, whereas susceptible cultivars exhibit limited defense induction. This work provides molecular targets for enhancing aphid resistance in sorghum breeding programs. Full article
(This article belongs to the Section Crop Genetics, Genomics and Breeding)
Show Figures

Figure 1

Back to TopTop