Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (85)

Search Parameters:
Keywords = phase-shift PWM

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 7171 KB  
Article
Research on a Phase-Shift-Based Discontinuous PWM Method for 24V Onboard Thermally Limited Micro Voltage Source Inverters
by Shuo Wang and Chenyang Xia
Micromachines 2025, 16(10), 1128; https://doi.org/10.3390/mi16101128 - 30 Sep 2025
Abstract
This research explores a phase-shift-based discontinuous PWM method used for 24 V battery-powered onboard micro inverters, which are critical for thermally limited applications like micromachines, where efficient heat dissipation and compact size are paramount. Discontinuous pulse width modulation (DPWM) reduces switching losses by [...] Read more.
This research explores a phase-shift-based discontinuous PWM method used for 24 V battery-powered onboard micro inverters, which are critical for thermally limited applications like micromachines, where efficient heat dissipation and compact size are paramount. Discontinuous pulse width modulation (DPWM) reduces switching losses by clamping the phase voltage to the DC bus in order to improve inverter efficiency. Due to the change in power factor at different operating points from motors or the inductor load, the use of only one DPWM method cannot achieve the optimal efficiency of a three-phase voltage source inverter (3ph-VSI). This paper proposes a generalized DPWM method with a continuously adjustable phase shift angle, which extends the six traditional DPWM methods to any type. According to different power factors, the proposed DPWM method is divided into five power factor angle intervals, namely [−90°, −60°], [−60°, −30°], [−30°, 30°], [30°, 60°], and [60°, 90°], and automatically adjusts the phase shift angle to the optimal-efficiency DPWM mode. The power factor is calculated by means of the Synchronous Reference Frame Phase-Locked Loop (SRF-PLL) method. The switching losses and harmonic characteristics of the proposed DPWM are analyzed, and finally, a 24 V onboard 3ph-VSI experimental platform is built. The experimental results show that the efficiency of DPWM methods can be improved by 3–6% and the switching loss can be reduced by 40–50% under different power factors. At the same time, the dynamic performance of the proposed algorithm with a transition state is verified. This method is particularly suitable for miniaturized inverters where efficiency and thermal management are critical. Full article
Show Figures

Figure 1

16 pages, 2890 KB  
Article
Thermal Behavior Improvement in Induction Motors Using a Pulse-Width Phase Shift Triangle Modulation Technique in Multilevel H-Bridge Inverters
by Francisco M. Perez-Hidalgo, Juan-Ramón Heredia-Larrubia, Antonio Ruiz-Gonzalez and Mario Meco-Gutierrez
Machines 2025, 13(8), 703; https://doi.org/10.3390/machines13080703 - 8 Aug 2025
Viewed by 323
Abstract
This study investigates the thermal performance of induction motors powered by multilevel H-bridge inverters using a novel pulse-width phase shift triangle modulation (PSTM-PWM) technique. Conventional PWM methods introduce significant harmonic distortion, increasing copper and iron losses and causing overheating and reduced motor lifespan. [...] Read more.
This study investigates the thermal performance of induction motors powered by multilevel H-bridge inverters using a novel pulse-width phase shift triangle modulation (PSTM-PWM) technique. Conventional PWM methods introduce significant harmonic distortion, increasing copper and iron losses and causing overheating and reduced motor lifespan. Through experimental testing and comparison with standard PWM techniques (LS-PWM and PS-PWM), the proposed PSTM-PWM reduces harmonic distortion by up to 64% compared to the worst one and internal motor losses by up to 5.5%. A first-order thermal model is used to predict motor temperature, validated with direct thermocouple measurements and infrared thermography. The results also indicate that the PSTM-PWM technique improves thermal performance, particularly at a triangular waveform peak value of 3.5 V, reducing temperature by around 6% and offering a practical and simple solution for industrial motor drive applications. The modulation order was set to M = 7 to reduce both the losses in the power inverter and to prevent the generation of very high voltage pulses (high dV/dt), which can deteriorate the insulation of the induction motor windings over time. Full article
Show Figures

Figure 1

9 pages, 2918 KB  
Proceeding Paper
A Study on a Phase-Shift Controlled ZVS DC-DC Converter with a Synchronous Rectifier
by Tsvetana Grigorova, Georgi Bodurov and Mihail Dobrolitsky
Eng. Proc. 2025, 100(1), 43; https://doi.org/10.3390/engproc2025100043 - 15 Jul 2025
Viewed by 258
Abstract
The paper presents a study on a phase-shift controlled zero-voltage switching (ZVS) full-bridge DC-DC converter employing synchronous rectification using the LTC3722-1 controller. This analysis aimed to examine the impact of additional commutating inductance on the establishment of ZVS conditions, the precision of switching [...] Read more.
The paper presents a study on a phase-shift controlled zero-voltage switching (ZVS) full-bridge DC-DC converter employing synchronous rectification using the LTC3722-1 controller. This analysis aimed to examine the impact of additional commutating inductance on the establishment of ZVS conditions, the precision of switching control, and the dynamic interaction between ZVS performance and varying load conditions. The validity of this approach is achieved by presenting both simulation and experimental results, which illustrate its application in practical applications. Full article
Show Figures

Figure 1

14 pages, 2864 KB  
Article
Continuous-Control-Set Model Predictive Control Strategy for MMC-UPQC Under Non-Ideal Conditions
by Lianghua Chen, Jianping Zhou, Jiayu Zhai, Lisheng Yang, Xudong Qian and Zhiyong Tao
Energies 2025, 18(11), 2946; https://doi.org/10.3390/en18112946 - 3 Jun 2025
Viewed by 549
Abstract
In the MMC-based unified power quality conditioner (MMC-UPQC), the computational burden of finite-control-set model predictive control (FCS-MPC) increases rapidly with the number of MMC submodules. Meanwhile, conventional linear and nonlinear control methods suffer from limited compensation accuracy. To address this, a control strategy [...] Read more.
In the MMC-based unified power quality conditioner (MMC-UPQC), the computational burden of finite-control-set model predictive control (FCS-MPC) increases rapidly with the number of MMC submodules. Meanwhile, conventional linear and nonlinear control methods suffer from limited compensation accuracy. To address this, a control strategy combining continuous-control-set model predictive control (CCS-MPC) and phase-shifted carrier pulse-width modulation (PSC-PWM) is proposed. CCS-MPC performs repeated time-domain optimization based on the system model. It offers advantages such as fast dynamic response and ease of implementation, thereby enhancing both dynamic and steady-state performance, as well as compensation effectiveness. Unlike FCS-MPC, the computational complexity of CCS-MPC combined with PSC-PWM does not depend on the number of submodules, which significantly reduces the overall computational burden. Simulation results verify that the proposed method exhibits superior performance under three scenarios: grid-side voltage unbalance, high-order harmonic injection, and nonlinear load connection. Compared with the linear PI control strategy and the nonlinear passivity-based control strategy, the proposed method significantly enhances power quality and system robustness. Full article
Show Figures

Figure 1

25 pages, 4440 KB  
Article
PWM–PFM Hybrid Control of Three-Port LLC Resonant Converter for DC Microgrids
by Yi Zhang, Xiangjie Liu, Jiamian Wang, Baojiang Wu, Feilong Liu and Junfeng Xie
Energies 2025, 18(10), 2615; https://doi.org/10.3390/en18102615 - 19 May 2025
Viewed by 721
Abstract
This article proposes a high-efficiency isolated three-port resonant converter for DC microgrids, combining a dual active bridge (DAB)–LLC topology with hybrid Pulse Width Modulat-Pulse Frequency Modulation (PWM-PFM) phase shift control. Specifically, the integration of a dual active bridge and LLC resonant structure with [...] Read more.
This article proposes a high-efficiency isolated three-port resonant converter for DC microgrids, combining a dual active bridge (DAB)–LLC topology with hybrid Pulse Width Modulat-Pulse Frequency Modulation (PWM-PFM) phase shift control. Specifically, the integration of a dual active bridge and LLC resonant structure with interleaved buck/boost stages eliminates cascaded conversion losses. Energy flows bidirectionally between ports via zero-voltage switching, achieving a 97.2% efficiency across 150–300 V input ranges, which is a 15% improvement over conventional cascaded designs. Also, an improved PWM-PFM shift control scheme dynamically allocates power between ports without altering switching frequency. By decoupling power regulation and leveraging resonant tank optimization, this strategy reduces control complexity while maintaining a ±2.5% voltage ripple under 20% load transients. Additionally, a switch-controlled capacitor network and frequency tuning enable resonant parameter adjustment, achieving a 1:2 voltage gain range without auxiliary circuits. It reduces cost penalties compared to dual-transformer solutions, making the topology viable for heterogeneous DC microgrids. Based on a detailed theoretical analysis, simulation and experimental results verify the effectiveness of the proposed concept. Full article
(This article belongs to the Section F3: Power Electronics)
Show Figures

Figure 1

22 pages, 9371 KB  
Article
Single-Phase Transformerless Three-Level PV Inverter in CHB Configuration
by Wojciech Kołodziejski, Jacek Jasielski, Witold Machowski, Juliusz Godek and Grzegorz Szerszeń
Electronics 2025, 14(2), 364; https://doi.org/10.3390/electronics14020364 - 17 Jan 2025
Cited by 1 | Viewed by 1306
Abstract
The paper proposes an original single-phase transformerless three-level (S-PT) photovoltaic (PV) inverter in the cascade H bridge (CHB) configuration. The DC-link voltage of the inverter is created by two serial voltage sources with a voltage twice as low as the DC-link voltage. An [...] Read more.
The paper proposes an original single-phase transformerless three-level (S-PT) photovoltaic (PV) inverter in the cascade H bridge (CHB) configuration. The DC-link voltage of the inverter is created by two serial voltage sources with a voltage twice as low as the DC-link voltage. An appropriate VCC DC-link voltage is generated by a two-phase DC-DC boost converter, fed from the string panel output at a level determined by the maximum power point tracking (MPPT) algorithm. Two symmetrical sources with VCC/2 are formed by a divider of two series-connected capacitors of large and the same capacitance. The common mode (CM) voltage of the proposed inverter is constant, and the voltage stresses across all switches, diodes and gate drive circuits are half of the DC-link voltage. The principles of operation of the S-PT inverter, an implementation of a complete gate control system with galvanic isolation for all IGBTs, are also presented. The proposed inverter topologies have been implemented using high-speed IGBTs and simulated in PSPICE, as well as being experimentally validated. Full article
(This article belongs to the Section Power Electronics)
Show Figures

Figure 1

23 pages, 14773 KB  
Article
Reduction in DC-Link Capacitor Current by Phase Shifting Method for a Dual Three-Phase Voltage Source Inverters Dual Permanent Magnet Synchronous Motors System
by Deniz Şahin and Bülent Dağ
World Electr. Veh. J. 2025, 16(1), 39; https://doi.org/10.3390/wevj16010039 - 14 Jan 2025
Viewed by 1601
Abstract
This paper presents a carrier waves phase shifting method to reduce the dc-link capacitor current for a dual three-phase permanent magnet synchronous motor drive system. Dc-link capacitors absorb the ripple current generated at the input due to the harmonics of the pulse width [...] Read more.
This paper presents a carrier waves phase shifting method to reduce the dc-link capacitor current for a dual three-phase permanent magnet synchronous motor drive system. Dc-link capacitors absorb the ripple current generated at the input due to the harmonics of the pulse width modulation (PWM). The size, cost, reliability, and lifetime of the dc-link capacitor are negatively affected by this ripple current flowing through it. The proposed method is especially appropriate for common dc-link capacitors for a dual inverter system driving two PMSMs. In this paper, the input current of each inverter is analyzed using Double Fourier Analysis, and the harmonic components of the dc-link capacitor current are determined. The carrier wave phase shifting method is proposed to reduce the magnitude of the harmonics and thus reduce the dc-link capacitor current. Furthermore, the optimum angle between the carrier waves for the maximum reduction in the dc-link capacitor current is analyzed and simulated for different scenarios considering the speed and load torque of the PMSMs. The proposed method is verified through experiments and PMSMs are driven by three-phase voltage source inverters (VSIs) modulated with Space Vector Pulse Width Modulation (SVPWM), which is the most common PWM strategy. The proposed method reduces the dc-link capacitor current by 60%, thereby significantly decreasing the required dc-link capacitance, the volume of the drive system, and its cost. Full article
Show Figures

Figure 1

19 pages, 15211 KB  
Article
Hybrid Control Switching Technology for LLC Resonant Converter
by Jie Zhang and Zhixiao Cai
Energies 2024, 17(24), 6250; https://doi.org/10.3390/en17246250 - 11 Dec 2024
Cited by 2 | Viewed by 1389
Abstract
Aiming at the problem of the circuit operating frequency changing beyond the regulation range and zero switching not being guaranteed when the input voltage range of the LLC resonant converter is large, a hybrid control technology with a variable structure and variable mode [...] Read more.
Aiming at the problem of the circuit operating frequency changing beyond the regulation range and zero switching not being guaranteed when the input voltage range of the LLC resonant converter is large, a hybrid control technology with a variable structure and variable mode is proposed in this paper to realize the wide input range of the LLC resonant converter. Depending on the input voltage range, this technology can ensure the frequency range of the circuit and meet the realization conditions of zero voltage switching (ZVS) in different modes. The test results show that the circuit can control the frequency at 0 kHz~200 kHz, the phase shift range is 0~2π/5, the maximum voltage gain multiple is 3.3 times, and the control mode is three PWM hybrid switching control. Full article
(This article belongs to the Section F3: Power Electronics)
Show Figures

Figure 1

29 pages, 7577 KB  
Review
Overview of Isolated Bidirectional DC–DC Converter Topology and Switching Strategies for Electric Vehicle Applications
by Zhenkun Wang, Xianjin Su, Nianyin Zeng and Jiahui Jiang
Energies 2024, 17(10), 2434; https://doi.org/10.3390/en17102434 - 20 May 2024
Cited by 17 | Viewed by 5107
Abstract
Isolated bidirectional DC–DC converters are becoming increasingly important in various applications, particularly in the electric vehicle sector, due to their ability to achieve bidirectional power flow and their safety features. This paper aims to review the switch strategies and topologies of isolated bidirectional [...] Read more.
Isolated bidirectional DC–DC converters are becoming increasingly important in various applications, particularly in the electric vehicle sector, due to their ability to achieve bidirectional power flow and their safety features. This paper aims to review the switch strategies and topologies of isolated bidirectional DC–DC converters, with a specific focus on their applications in the field of electric vehicles. From the perspective of topology, PWM-type isolated bidirectional DC–DC converters, dual active bridge converters, and resonant-type isolated bidirectional DC–DC converters constitute the three main categories of these converters. The paper further examines the traditional switch strategies of these converters and discusses how specific switch technologies, such as single-phase shift, expanding-phase shift, double-phase shift, and triple-phase shift, can enhance the overall performance of isolated bidirectional DC–DC converters. The paper meticulously examines the characteristics of each topology and control scheme, as well as their typical use cases in practical applications. Particularly, the paper delves into the applications of isolated bidirectional DC–DC converters in the electric vehicle sector and draws conclusions regarding their potential and trends in future electric vehicle technology. Full article
Show Figures

Figure 1

20 pages, 8084 KB  
Article
Current-Prediction-Controlled Quasi-Z-Source Cascaded Multilevel Photovoltaic Inverter
by Shanshan Lei, Ningzhi Jin and Jiaxin Jiang
Electronics 2024, 13(10), 1824; https://doi.org/10.3390/electronics13101824 - 8 May 2024
Cited by 2 | Viewed by 1440
Abstract
To address problems that traditional two-stage inverters suffer such as high cost, low efficiency, and complex control, this study adopts a quasi-Z-source cascaded multilevel inverter. Firstly, the quasi-Z-source inverter utilizes a unique impedance network to achieve single-stage boost and inversion without requiring a [...] Read more.
To address problems that traditional two-stage inverters suffer such as high cost, low efficiency, and complex control, this study adopts a quasi-Z-source cascaded multilevel inverter. Firstly, the quasi-Z-source inverter utilizes a unique impedance network to achieve single-stage boost and inversion without requiring a dead zone setting. Additionally, its cascaded multilevel structure enables independent control of each power unit structure without capacitor voltage sharing problems. Secondly, this study proposes a current-predictive control strategy to reduce current harmonics on the grid side. Moreover, the feedback model of current and system state is established, and the fast control of grid-connected current is realized with the deadbeat control weighted by the predicted current deviation. And a grid-side inductance parameter identification is added to improve control accuracy. Also, an improved multi-carrier phase-shifted sinusoidal PWM method is adopted to address the issue of switching frequency doubling, which is caused by the shoot-through zero vector in quasi-Z-source inverters. Finally, the problems of switching frequency doubling and high harmonics on the grid side are solved by the improved deadbeat control strategy with an improved MPSPWM method. And a seven-level simulation model is built in MATLAB (2022b) to verify the correctness and superiority of the above theory. Full article
(This article belongs to the Special Issue Power Electronics in Renewable Systems)
Show Figures

Figure 1

14 pages, 4656 KB  
Article
Research on Hybrid Rectifier for High Power Electrolytic Hydrogen Production Based on Modular Multilevel Converter
by Cheng Huang, Yang Tan and Xin Meng
Energies 2024, 17(9), 2188; https://doi.org/10.3390/en17092188 - 2 May 2024
Cited by 3 | Viewed by 2464
Abstract
Aiming at the problem that silicon-controlled rectifiers (SCR) and pulse width modulation (PWM) rectifiers cannot balance high power levels, high hydrogen production efficiency, and high grid connected quality in the current research on rectifier power supplies for electrolytic hydrogen production, a new hybrid [...] Read more.
Aiming at the problem that silicon-controlled rectifiers (SCR) and pulse width modulation (PWM) rectifiers cannot balance high power levels, high hydrogen production efficiency, and high grid connected quality in the current research on rectifier power supplies for electrolytic hydrogen production, a new hybrid rectifier topology based on a modular multilevel converter (MMC) is proposed. The hybrid topology integrates a silicon-controlled rectifier (SCR) with an auxiliary power converter, wherein the SCR is designated as the primary power source for electrolytic hydrogen production. The auxiliary converter employs a cascaded modular multilevel converter (MMC) and an input-series-output-parallel (ISOP) phase-shifted full-bridge (PSFB) arrangement. This configuration allows the auxiliary converter to effectively mitigate AC-side harmonics and minimize DC-side ripple, concurrently transmitting a small amount of power. The effectiveness of the hybrid rectifier in achieving low ripple and harmonic distortion outputs was substantiated through hardware-in-the-loop experiments. Notably, the hybrid topology is characterized by its enhanced electric-to-hydrogen conversion efficiency, elevated power density, cost efficiency, and improved grid compatibility. Full article
Show Figures

Figure 1

16 pages, 6506 KB  
Article
An Efficiency Improvement Strategy for Triple-Active-Bridge-Based DC Energy Routers in DC Microgrids
by Xiaoli Meng, Qing Duan, Guanglin Sha, Caihong Zhao, Haoqing Wang, Xueli Wang and Zheng Lan
Electronics 2024, 13(7), 1172; https://doi.org/10.3390/electronics13071172 - 22 Mar 2024
Cited by 3 | Viewed by 1294
Abstract
A triple-active bridge (TAB) can be used as a power conversion unit in a three-port DC energy router (DCER) such as a triple-active bridge-based DC energy router (TAB-DCER). The operational loss of a TAB can be seen as a key factor affecting the [...] Read more.
A triple-active bridge (TAB) can be used as a power conversion unit in a three-port DC energy router (DCER) such as a triple-active bridge-based DC energy router (TAB-DCER). The operational loss of a TAB can be seen as a key factor affecting the efficiency of a TAB-DCER. However, the RMS value of the inductor current of the TAB-DCER increases under single-phase shift (SPS) control, and this greatly increases the system operating losses. The use of phase-shifted plus PWM (PS-PWM) control can reduce the RMS value of the inductor current, but its mathematical model is complex, and involves difficult calculations. To address this problem, in the study reported here, we developed an optimal control strategy for the RMS value of the inductor current based on TAB-DCER. First, the working principle of a TAB-DCER under PS-PWM control was analyzed, and a circuit decomposition model was established. Second, the operating modes under PS-PWM control were analyzed, and corresponding expressions of port power and the RMS value of the inductor current were obtained. Third, an optimized mathematical model of the sum of squares of the RMS value of the inductor current of the TAB-DCER was constructed. Finally, a genetic algorithm was used to solve the mathematical model and derive the optimal phase shift angle; this resulted in a lower RMS value of the inductor current in the TAB-DCER and reduced the system operating losses. The simulation and experimental results show that the TAB-DCER used in the present study can reduce operating losses, improve system efficiency, and deliver coordinated power control. Full article
(This article belongs to the Special Issue IoT Applications for Renewable Energy Management and Control)
Show Figures

Figure 1

26 pages, 14262 KB  
Article
Phase Shift APOD and POD Control Technique in Multi-Level Inverters to Mitigate Total Harmonic Distortion
by Kalsoom Bano, Ghulam Abbas, Mohammed Hatatah, Ezzeddine Touti, Ahmed Emara and Paolo Mercorelli
Mathematics 2024, 12(5), 656; https://doi.org/10.3390/math12050656 - 23 Feb 2024
Cited by 12 | Viewed by 2693
Abstract
Multi-level inverters are widely employed to generate new energy because of their huge capacity and benefits in sound control performance. One of the critical areas of study for multi-level inverters is control strategy research. In this study, the control strategy for a multi-level [...] Read more.
Multi-level inverters are widely employed to generate new energy because of their huge capacity and benefits in sound control performance. One of the critical areas of study for multi-level inverters is control strategy research. In this study, the control strategy for a multi-level inverter—which is frequently employed in HVDC and FACTS systems—is designed. An asymmetrical D.C. voltage source is supplied to create the appropriate output voltage waveform with fewer total harmonic distortions (THDs) at the output voltage and current waveforms. In this work, the pulse width modulation techniques of POD (phase opposition disposition) and APOD (alternative phase opposition disposition) MC PWM are applied to a multi-level inverter to generate the seven-level output voltage waveform. This study presents an enhanced variable carrier frequency APOD control approach that can successfully lower the overall harmonic distortion rate. The design and completion of the phase-shifting POD and APOD control strategies are followed by an analysis and comparison of the THD situation under various switching frequencies and a simulation and verification of the control strategy using MATLAB simulation. The TI DSP-based control approach has been programmed. The APOD technique increases the output voltage’s THD to 18.27%, while the output current waveform’s THD is reduced to 15.67% by utilizing the APOD PWM technique. Using the POD PWM approach increases the total harmonic distortion (THD) of the voltage waveform by 18.06% and the output current waveform’s THD by 15.45%. Full article
(This article belongs to the Special Issue Modeling, Simulation, and Analysis of Electrical Power Systems)
Show Figures

Figure 1

18 pages, 9361 KB  
Article
Design and Analysis of a Step-Up Multi-Port Converter Applicable for Energy Conversion in Photovoltaic Battery Systems
by Siyuan Shi, Song Xu, Wei Jiang and Seiji Hashimoto
Energies 2024, 17(1), 223; https://doi.org/10.3390/en17010223 - 31 Dec 2023
Cited by 1 | Viewed by 1675
Abstract
Aiming at the problems of large power fluctuations and poor stability in photovoltaic and other new energy power generation systems, a step-up multiport converter (MPC) that can simultaneously connect low-voltage photovoltaic cells, batteries, and loads (independent loads or power grids) is proposed in [...] Read more.
Aiming at the problems of large power fluctuations and poor stability in photovoltaic and other new energy power generation systems, a step-up multiport converter (MPC) that can simultaneously connect low-voltage photovoltaic cells, batteries, and loads (independent loads or power grids) is proposed in this manuscript. According to the possible operating conditions of the system, the working principles are described in detail. Theoretical analysis based on different working modes is presented and a hybrid modulation control method including pulse width modulation (PWM) and phase shift modulation (PSM) are applied to realize energy transmission between photovoltaics, batteries, and power grids. A simulation model is built in the PSIM environment to validate each working state of the system and mode switching function. Experiments are carried out on an experimental platform using the dsPIC33FJ64GS606 digital microcontroller as the control center, and the experimental results successfully verify the system function and PWM + PSM control efficiency. Full article
Show Figures

Figure 1

14 pages, 4538 KB  
Article
Design of High-Performance Driving Power Supply for Semiconductor Laser
by Bin Feng, Junfeng Zhao, Haofei Zhang, Tao Li and Jianjun Mi
Electronics 2023, 12(23), 4758; https://doi.org/10.3390/electronics12234758 - 23 Nov 2023
Cited by 2 | Viewed by 2058
Abstract
High power semiconductor laser is a kind of photoelectric device with high efficiency and high stability, the performance of its drive system directly affects its output characteristics and service life. In order to solve the problems of stability and robustness of the output [...] Read more.
High power semiconductor laser is a kind of photoelectric device with high efficiency and high stability, the performance of its drive system directly affects its output characteristics and service life. In order to solve the problems of stability and robustness of the output power of the semiconductor laser, a semiconductor laser driving power supply with high efficiency, low ripple and strong anti-interference ability was developed. In this paper, the topology of the LCC resonant converter is adopted (LCC refers to the type of resonant converter, because its resonator is composed of an inductor L and two capacitors C, it is called LCC resonant converter). The power supply adopts full-bridge LCC resonant power topology. Firstly, a mathematical model is established to analyze the relationship between LCC resonator parameters and output current gain. Secondly, an LCC resonator parameter design method is proposed to reduce the current stress of components, and the variable frequency phase shift (PFM-PWM) composite control strategy and linear active disturbance rejection control (LADRC) algorithm are proposed, which not only ensures the zero voltage (ZVS) conduction of MOS (Metal-Oxide-Semiconductor) tube, but also reduces the on-off loss of MOS tube. The PFM-PWM composite control strategy and LADRC algorithm not only improve the power efficiency of the drive power supply, suppress the output current ripple, but also ensure that the output current of the drive power supply is stable when the input voltage, load and parasitic parameters of the circuit change. Finally, the simulation and experimental results show that the power supply can be continuously adjustable in the output current range of 0–40 A, the current ripple is less than 0.8%, and the working efficiency is up to 92%. It has the characteristics of high stability, small ripple, high efficiency, low cost and good robustness. Full article
(This article belongs to the Special Issue Wide-Bandgap Device Application: Devices, Circuits, and Drivers)
Show Figures

Figure 1

Back to TopTop