Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,329)

Search Parameters:
Keywords = phase change properties

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 26631 KiB  
Technical Note
Induced Polarization Imaging: A Geophysical Tool for the Identification of Unmarked Graves
by Matthias Steiner and Adrián Flores Orozco
Remote Sens. 2025, 17(15), 2687; https://doi.org/10.3390/rs17152687 - 3 Aug 2025
Abstract
The identification of unmarked graves is important in archaeology, forensics, and cemetery management, but invasive methods are often restricted due to ethical or cultural concerns. This necessitates the use of non-invasive geophysical techniques. Our study demonstrates the potential of induced polarization (IP) imaging [...] Read more.
The identification of unmarked graves is important in archaeology, forensics, and cemetery management, but invasive methods are often restricted due to ethical or cultural concerns. This necessitates the use of non-invasive geophysical techniques. Our study demonstrates the potential of induced polarization (IP) imaging as a non-invasive remote sensing technique specifically suited for detecting and characterizing unmarked graves. IP leverages changes in the electrical properties of soil and pore water, influenced by the accumulation of organic matter from decomposition processes. Measurements were conducted at an inactive cemetery using non-invasive textile electrodes to map a documented grave from the early 1990s, with a survey design optimized for high spatial resolution. The results reveal a distinct polarizable anomaly at a 0.75–1.0 m depth with phase shifts exceeding 12 mrad, attributed to organic carbon from wooden burial boxes, and a plume-shaped conductive anomaly indicating the migration of dissolved organic matter. While electrical conductivity alone yielded diffuse grave boundaries, the polarization response sharply delineated the grave, aligning with photographic documentation. These findings underscore the value of IP imaging as a non-invasive, data-driven approach for the accurate localization and characterization of graves. The methodology presented here offers a promising new tool for archaeological prospection and forensic search operations, expanding the geophysical toolkit available for remote sensing in culturally and legally sensitive contexts. Full article
Show Figures

Figure 1

12 pages, 8945 KiB  
Article
Effect of Si Addition on Microstructure and Mechanical Properties of SiC Ceramic Fabricated by Direct LPBF with CVI Technology
by Yipu Wang, Pei Wang, Liqun Li, Jian Zhang, Yulei Zhang, Jin Peng, Xingxing Wang, Nan Kang, Mohamed El Mansori and Konda Gokuldoss Prashanth
Appl. Sci. 2025, 15(15), 8585; https://doi.org/10.3390/app15158585 (registering DOI) - 1 Aug 2025
Viewed by 113
Abstract
In this paper, SiC and Si/SiC ceramics were fabricated using direct laser powder bed fusion with chemical vapor infiltration. Their microstructure, mechanical properties and the impacts of silicon addition were analyzed. The incorporation of silicon led to an increase in the relative density [...] Read more.
In this paper, SiC and Si/SiC ceramics were fabricated using direct laser powder bed fusion with chemical vapor infiltration. Their microstructure, mechanical properties and the impacts of silicon addition were analyzed. The incorporation of silicon led to an increase in the relative density of the silicon carbide ceramics from 76.4% to 78.3% and the compression strength increased from 39 ± 13 MPa to 90 ± 8 MPa after laser powder bed fusion with chemical vapor infiltration. The melting and re-solidification of silicon allows the silicon to encapsulate the silicon carbide grains, changing the microstructure and the failure mechanism of the silicon carbide ceramics, resulting in a small amount of silicon residue. In the LPBF-CVI SiC ceramic specimen, the LPBF-formed SiC exhibits a microhardness of 24.2 ± 1.0 GPa. In LPBF-CVI Si/SiC, the spherical dual-phase structure displays a moderately increased hardness (25.9 ± 4.4 GPa), and the CVI-formed SiC exhibits a hardness of 55.3 ± 9.3 GPa. Full article
Show Figures

Figure 1

16 pages, 3003 KiB  
Article
Experimental Investigations on Sustainable Dual-Biomass-Based Composite Phase Change Materials for Energy-Efficient Building Applications
by Zhiwei Sun, Wei Wen, Jiayu Wu, Jingjing Shao, Wei Cai, Xiaodong Wen, Chaoen Li, Haijin Guo, Yin Tang, Meng Wang, Dongjing Liu and Yang He
Materials 2025, 18(15), 3632; https://doi.org/10.3390/ma18153632 (registering DOI) - 1 Aug 2025
Viewed by 118
Abstract
The incorporation of phase change material (PCM) can enhance wall thermal performance and indoor thermal comfort, but practical applications still face challenges related to high costs and potential leakage issues. In this study, a novel dual-biomass-based shape-stabilized PCM (Bio-SSPCM) was proposed, wherein waste [...] Read more.
The incorporation of phase change material (PCM) can enhance wall thermal performance and indoor thermal comfort, but practical applications still face challenges related to high costs and potential leakage issues. In this study, a novel dual-biomass-based shape-stabilized PCM (Bio-SSPCM) was proposed, wherein waste cooking fat and waste reed straw were, respectively, incorporated as the PCM substance and supporting material. The waste fat (lard) consisted of both saturated and unsaturated fatty acid glycerides, exhibiting a melting point about 21.2–41.1 °C and a melting enthalpy value of 40 J/g. Reed straw was carbonized to form a sustainable porous biochar supporting matrix, which was used for the vacuum adsorption of waste fat. The results demonstrate that the as-prepared dual-Bio-SSPCM exhibited excellent thermal performance, characterized by a latent heat capacity of 25.4 J/g. With the addition of 4 wt% of expanded graphite (EG), the thermal conductivity of the composite PCM reached 1.132 W/(m·K), which was 5.4 times higher than that of the primary lard. The thermal properties of the Bio-SSPCM were characterized using an analog T-history method. The results demonstrated that the dual-Bio-SSPCM exhibited exceptional and rapid heat storage and exothermic capabilities. The dual-Bio-SSPCM, prepared from waste cooking fat and reed straw, can be considered as environmentally friendly construction material for energy storage in line with the principles of the circular economy. Full article
(This article belongs to the Special Issue Eco-Friendly Intelligent Infrastructures Materials)
Show Figures

Figure 1

22 pages, 9293 KiB  
Article
Thermal Stability of the Ultra-Fine-Grained Structure and Mechanical Properties of AlSi7MgCu0.5 Alloy Processed by Equal Channel Angular Pressing at Room Temperature
by Miloš Matvija, Martin Fujda, Ondrej Milkovič, Marek Vojtko and Katarína Gáborová
Crystals 2025, 15(8), 701; https://doi.org/10.3390/cryst15080701 (registering DOI) - 31 Jul 2025
Viewed by 122
Abstract
Understanding the limitations of cold-formed aluminum alloys in practice applications is essential, particularly due to the risk of substructural changes and a reduction in strength when exposed to elevated temperatures. In this study, the thermal stability of the ultra-fine-grained (UFG) structure formed by [...] Read more.
Understanding the limitations of cold-formed aluminum alloys in practice applications is essential, particularly due to the risk of substructural changes and a reduction in strength when exposed to elevated temperatures. In this study, the thermal stability of the ultra-fine-grained (UFG) structure formed by equal channel angular pressing (ECAP) at room temperature and the mechanical properties of the AlSi7MgCu0.5 alloy were investigated. Prior to ECAP, the plasticity of the as-cast alloy was enhanced by a heat treatment consisting of solution annealing, quenching, and artificial aging to achieve an overaged state. Four repetitive passes via ECAP route A resulted in the homogenization of eutectic Si particles within the α-solid solution, the formation of ultra-fine grains and/or subgrains with high dislocation density, and a significant improvement in alloy strength due to strain hardening. The main objective of this work was to assess the microstructural and mechanical stability of the alloy after post-ECAP annealing in the temperature range of 373–573 K. The UFG microstructure was found to be thermally stable up to 523 K, above which notable grain and/or subgrain coarsening occurred as a result of discontinuous recrystallization of the solid solution. Mechanical properties remained stable up to 423 K; above this temperature, a considerable decrease in strength and a simultaneous increase in ductility were observed. Synchrotron radiation X-ray diffraction (XRD) was employed to analyze the phase composition and crystallographic characteristics, while transmission electron microscopy (TEM) was used to investigate substructural evolution. Mechanical properties were evaluated through tensile testing, impact toughness testing, and hardness measurements. Full article
(This article belongs to the Special Issue Celebrating the 10th Anniversary of International Crystallography)
Show Figures

Figure 1

15 pages, 5148 KiB  
Article
Effect of Kr15+ Ion Irradiation on the Structure and Properties of PSZ Ceramics
by Madi Abilev, Almira Zhilkashinova, Leszek Łatka, Alexandr Pavlov, Igor Karpov, Leonid Fedorov and Sergey Gert
Ceramics 2025, 8(3), 95; https://doi.org/10.3390/ceramics8030095 (registering DOI) - 31 Jul 2025
Viewed by 123
Abstract
This article deals with the effect of Kr15+ ion irradiation on the structure and properties of partially stabilized zirconium dioxide (ZrO2 + 3 mol. % Y2O3) ceramics. Ion irradiation is used to simulate radiation damage typical of [...] Read more.
This article deals with the effect of Kr15+ ion irradiation on the structure and properties of partially stabilized zirconium dioxide (ZrO2 + 3 mol. % Y2O3) ceramics. Ion irradiation is used to simulate radiation damage typical of operating conditions in nuclear reactors and space technology. It is shown that with an increase in the irradiation fluence, point defects are formed, dislocations accumulate, and the crystal lattice parameters change. At high fluences (>1013 ions/cm2), a phase transition of the monoclinic (m-ZrO2) phase to the tetragonal (t-ZrO2) and cubic (c-ZrO2) modifications is observed, which is accompanied by a decrease in the crystallite size and an increase in internal stresses. Changes in the mechanical properties of the material were also observed: at moderate irradiation fluences, strengthening is observed due to the formation of dislocation structures, whereas at high fluences (>1014 ions/cm2), a decrease in strength and a potential amorphization of the structure begins. The change in the phase composition was confirmed by X-ray phase analysis and Raman spectroscopy. The results obtained allow a deeper understanding of the mechanisms of radiation-induced phase transformations in stabilized ZrO2 and can be used in the development of ceramic materials with increased radiation resistance. Full article
Show Figures

Figure 1

23 pages, 5204 KiB  
Article
Evaluation of Polypropylene Reusability Using a Simple Mechanical Model Derived from Injection-Molded Products
by Tetsuo Takayama, Rikuto Takahashi, Nao Konno and Noriyuki Sato
Polymers 2025, 17(15), 2107; https://doi.org/10.3390/polym17152107 - 31 Jul 2025
Viewed by 246
Abstract
In response to growing global concerns about plastic waste, the development of efficient recycling technologies for thermoplastics has become increasingly important. Polypropylene (PP), a widely used commodity resin, is of particular interest because of the urgent need to establish sustainable material circulation. However, [...] Read more.
In response to growing global concerns about plastic waste, the development of efficient recycling technologies for thermoplastics has become increasingly important. Polypropylene (PP), a widely used commodity resin, is of particular interest because of the urgent need to establish sustainable material circulation. However, conventional mechanical property evaluations of injection-molded products typically require dedicated specimens, which involve additional material and energy costs. As described herein, we propose a simplified mechanical model to derive Poisson’s ratio and critical expansion stress directly from standard uniaxial tensile tests of molded thermoplastics. The method based on the true stress–true strain relationship in the small deformation region was validated using various thermoplastics (PP, POM, PC, and ABS), with results showing good agreement with those of the existing literature. The model was applied further to assess changes in mechanical properties of Homo-PP and Block-PP subjected to repeated extrusion. Both materials exhibited reductions in elastic modulus and critical expansion stress with increasing extrusion cycles, whereas Block-PP showed a slower degradation rate because of thermo-crosslinking in its ethylene–propylene rubber (EPR) phase. DSC and chemiluminescence analyses suggested changes in stereoregularity and radical formation as key factors. This method offers a practical approach for evaluating recycled PP and contributes to high-quality recycling and material design. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

12 pages, 2084 KiB  
Article
Recycling of PAN Waste into Nonwoven Materials Using Electrospinning Method
by Yaroslav V. Golubev, Igor S. Makarov, Denis N. Karimov, Natalia A. Arkharova, Radmir V. Gainutdinov, Sergey A. Legkov and Sergey V. Kotomin
Fibers 2025, 13(8), 102; https://doi.org/10.3390/fib13080102 - 30 Jul 2025
Viewed by 198
Abstract
For the first time, electrospinning has been used to recycle polyacrylonitrile terpolymer (PAN) waste following the solid-phase N-methylmorpholine-N-oxide (NMMO) process from PAN solutions in DMSO into nonwoven materials. The morphology of the obtained material has been studied. The material derived from secondary raw [...] Read more.
For the first time, electrospinning has been used to recycle polyacrylonitrile terpolymer (PAN) waste following the solid-phase N-methylmorpholine-N-oxide (NMMO) process from PAN solutions in DMSO into nonwoven materials. The morphology of the obtained material has been studied. The material derived from secondary raw materials was compared to the material from the original PAN using IR spectroscopy, X-ray diffraction, scanning electron microscopy, and atomic force microscopy. It has been demonstrated that the chemical changes of PAN that occur during NMMO processing do not interfere with nonwoven material manufacture. Spun PAN nonwovens with different histories have similar morphology. It has been shown that the elastic modulus of ultrafine fibers depends on the history of PAN. Single monofilaments produced from initial PAN have a threefold greater elastic modulus than fibers spun from NMMO-recycled polymer. The revealed structure and properties of PAN fibers allow them to be considered as filter materials, as well as precursors of carbon nonwoven fabrics. Full article
Show Figures

Graphical abstract

19 pages, 4860 KiB  
Article
Load-Flow-Based Calculation of Initial Short-Circuit Currents for Converter-Based Power System
by Deepak Deepak, Anisatur Rizqi Oetoyo, Krzysztof Rudion, Christoph John and Hans Abele
Energies 2025, 18(15), 4045; https://doi.org/10.3390/en18154045 - 30 Jul 2025
Viewed by 280
Abstract
Short-circuit current is a key characteristic value for synchronous generator-based power systems. It is employed for different applications during the planning and operation phases. The proportion of converter-interfaced units is increasing in order to integrate more renewable energy sources into the system. These [...] Read more.
Short-circuit current is a key characteristic value for synchronous generator-based power systems. It is employed for different applications during the planning and operation phases. The proportion of converter-interfaced units is increasing in order to integrate more renewable energy sources into the system. These units have different fault current characteristics due to their physical properties and operation strategies. Consequently, the network’s short-circuit current profile is changing, both in terms of magnitude and injection time. Therefore, accurately estimating fault currents is crucial for reliable power system planning and operation. Traditionally, two calculation methods are employed: the equivalent voltage source (IEC 60909/VDE 0102) and the superimposition (complete) method. In this work, the assumptions, simplifications, and limitations from both types of methods are addressed. As a result, a new load-flow-based method is presented, improving the static modeling of generating units and the accuracy in the estimation of short-circuit currents. The method is tested for mixed generation types comprising of synchronous generators, and grid-following (current source) and grid-forming (voltage source before and current source after the current limit) converters. All methods are compared against detailed time-domain RMS simulations using a modified IEEE-39 bus system and a real network from ENTSO-E. It is shown that the proposed method provides the best accuracy in the calculation of initial short-circuit currents for converter-based power systems. Full article
Show Figures

Figure 1

13 pages, 1996 KiB  
Article
Corrosion and Discharge Performance of a Mg-La-Zr Alloy as an Anode for Mg-Air Batteries
by Yan Song, Gang Fang, Junping Zhang, Guanrun Chu, Peng Wang, Ang Zhang, Yuyang Gao and Bin Jiang
Metals 2025, 15(8), 847; https://doi.org/10.3390/met15080847 - 29 Jul 2025
Viewed by 178
Abstract
The corrosion behavior and electrochemical performance of Mg-La-Zr and Mg-La alloys were studied. Microstructural observation indicated that the trace alloying of Zr refined the grain size of Mg-La alloy, which improved the discharge activity of Mg-La alloys. At the same time, the addition [...] Read more.
The corrosion behavior and electrochemical performance of Mg-La-Zr and Mg-La alloys were studied. Microstructural observation indicated that the trace alloying of Zr refined the grain size of Mg-La alloy, which improved the discharge activity of Mg-La alloys. At the same time, the addition of Zr led to a transformation of the second-phase distribution from intracrystalline to grain boundary central distribution. This change inhibited the self-corrosion of the alloy during discharge and improved the anode utilization efficiency. Therefore, an air battery based on a Mg-La-Zr alloy anode with a unique microstructure demonstrated a high discharge performance. In this paper, the relationship between the microstructure and anodic properties of Mg-La-Zr alloy are systematically elucidated. Full article
Show Figures

Figure 1

11 pages, 3356 KiB  
Article
Probing the pH Effect on Boehmite Particles in Water Using Vacuum Ultraviolet Single-Photon Ionization Mass Spectrometry
by Xiao Sui, Bo Xu and Xiao-Ying Yu
Int. J. Mol. Sci. 2025, 26(15), 7254; https://doi.org/10.3390/ijms26157254 - 27 Jul 2025
Viewed by 235
Abstract
Boehmite has been widely used in theoretical research and industry, especially for hazardous material processing. For the liquid-phase treating process, the interfacial properties of boehmite are believed to be affected by pH conditions, which change its physicochemical behavior. However, molecular-level detection on cluster [...] Read more.
Boehmite has been widely used in theoretical research and industry, especially for hazardous material processing. For the liquid-phase treating process, the interfacial properties of boehmite are believed to be affected by pH conditions, which change its physicochemical behavior. However, molecular-level detection on cluster ions is challenging when using bulk approaches. Herein we employ in situ vacuum ultraviolet single-photon ionization mass spectrometry (VUV SPI-MS) coupled with a vacuum-compatible microreactor system for analysis at the liquid–vacuum interface (SALVI) to investigate the solute molecular composition of boehmite under different pH conditions for the first time. The mass spectral results show that more complex clustering of solute molecules exists at the solid–liquid (s–l) interface than conventionally perceived in a “simple” aqueous solution. Besides solute ions, such as boehmite molecules and fragments, the composition and appearance energies of these newly discovered solvated cluster ions are determined by VUV SPI-MS in different pH solutions. We offer new results for the pH-dependent effect of boehmite and provide insights into a more detailed solvation mechanism at the s–l interface. By comparing the key products under different pH conditions, fundamental understanding of boehmite dissolution is revealed to assist the engineering design of waste processing and storage solutions. Full article
(This article belongs to the Special Issue Ion and Molecule Transport in Membrane Systems, 6th Edition)
Show Figures

Figure 1

14 pages, 2594 KiB  
Article
Low-Temperature Performance and Thermal Control of Asphalt Modified with Microencapsulated Phase-Change Materials
by Liming Zhang, Junmao Wang, Jinhua Wu, Ran Zhang, Yinchuan Guo, Hongbo Shen, Xinghua Liu and Kuncan Li
Coatings 2025, 15(8), 879; https://doi.org/10.3390/coatings15080879 - 26 Jul 2025
Viewed by 356
Abstract
Conventional asphalt is prone to cracking in cold climates due to its poor flexibility and limited ability to regulate temperature. This study investigates the use of low-temperature microencapsulated phase-change materials (MPCMs) to improve both the thermal storage and low-temperature performance of asphalt. MPCMs [...] Read more.
Conventional asphalt is prone to cracking in cold climates due to its poor flexibility and limited ability to regulate temperature. This study investigates the use of low-temperature microencapsulated phase-change materials (MPCMs) to improve both the thermal storage and low-temperature performance of asphalt. MPCMs were incorporated into asphalt through physical blending at various concentrations. The physical, thermal, and rheological properties of the asphalt were then systematically evaluated. Tests included penetration, softening point, ductility, thermogravimetric analysis (TGA), and dynamic shear rheometer (DSR). The addition of MPCMs increased penetration and ductility. It slightly reduced the softening point and viscosity. These changes suggest improved flexibility and workability at low temperatures. Rheological tests showed reductions in rutting and fatigue factors. This indicates better resistance to thermal and mechanical stresses. Bending Beam Rheometer (BBR) results further confirmed that MPCMs lowered creep stiffness and increased the m-value. These findings demonstrate improved crack resistance under cold conditions. Thermal cycling tests also showed that MPCMs delayed the cooling process and reduced temperature fluctuations. This highlights their potential to enhance both energy efficiency and the durability of asphalt pavements in cold regions. Full article
(This article belongs to the Special Issue Synthesis and Application of Functional Polymer Coatings)
Show Figures

Graphical abstract

22 pages, 9343 KiB  
Article
Effect of Polymer Molecular Weight on the Structure and Properties of Ultra-High-Molecular-Weight Polyethylene Membranes Prepared via Controlled Swelling
by Andrey V. Basko, Konstantin V. Pochivalov, Tatyana N. Lebedeva, Mikhail Y. Yurov, Alexander S. Zabolotnov, Sergey S. Gostev, Alexey A. Yushkin, Alexey V. Volkov and Sergei V. Bronnikov
Polymers 2025, 17(15), 2044; https://doi.org/10.3390/polym17152044 - 26 Jul 2025
Viewed by 325
Abstract
A recently proposed method called “controlled swelling of monolithic films” was implemented to prepare ultra-high-molecular-weight polyethylene (UHMWPE) ultrafiltration membranes. For the first time, the effect of UHMWPE molecular weight (MW) on the structure and properties of the membranes prepared via this special case [...] Read more.
A recently proposed method called “controlled swelling of monolithic films” was implemented to prepare ultra-high-molecular-weight polyethylene (UHMWPE) ultrafiltration membranes. For the first time, the effect of UHMWPE molecular weight (MW) on the structure and properties of the membranes prepared via this special case of thermally induced phase separation was studied in detail. The morphology and properties of the membranes were studied using SEM, DSC, liquid–liquid displacement porometry, and standard methods for the evaluation of mechanical properties, permeance, rejection, and abrasion resistance. High-quality membranes with a tensile strength of 5.0–17.8 MPa, a mean pore size of 25–50 nm, permeance of 17–107 L m−2 h−1 bar−1, rejection of model contaminant (blue dextran) of 72–98%, and great abrasion resistance can be prepared only if the MW of the polymer in the initial monolithic film is sufficiently high. The properties of the membranes can effectively be controlled by changing the MW of the polymer and the mass fraction of the latter in the swollen film. Shrinkage is responsible for the variation in the membrane properties. The membranes prepared from a higher-MW polymer are more prone to shrinking after the removal of the solvent. Shrinkage decreases before rising again and minimizes with an increase in the polymer content in the swollen film. Full article
Show Figures

Graphical abstract

22 pages, 3781 KiB  
Article
Enhancing Parenteral Nutrition via Supplementation with Antioxidant Lutein in Human Serum Albumin-Based Nanosuspension
by Izabela Żółnowska, Aleksandra Gostyńska-Stawna, Katarzyna Dominiak, Barbara Jadach and Maciej Stawny
Pharmaceutics 2025, 17(8), 971; https://doi.org/10.3390/pharmaceutics17080971 - 26 Jul 2025
Viewed by 448
Abstract
Background/Objectives: Parenteral nutrition (PN) supports patients unable to receive nutrients via the gastrointestinal tract, but it lacks the health-promoting natural bioactive compounds found in a typical oral diet. This study aimed to develop a human serum albumin-based intravenous delivery system for lutein [...] Read more.
Background/Objectives: Parenteral nutrition (PN) supports patients unable to receive nutrients via the gastrointestinal tract, but it lacks the health-promoting natural bioactive compounds found in a typical oral diet. This study aimed to develop a human serum albumin-based intravenous delivery system for lutein (an antioxidant carotenoid with vision-supportive and hepatoprotective properties) as a PN additive. Methods: An albumin–lutein nanosuspension (AlbLuteN) was synthesized using a modified nanoparticle albumin-bound (nabTM) technology and characterized physicochemically. The nanoformulation was added to four commercial PN admixtures to assess the supplementation safety throughout the maximum infusion period. Visual inspection and measurements of fat globules larger than 5 µm (PFAT5) and the mean hydrodynamic diameter (Z-average), zeta potential, pH, osmolality, and lutein content were performed to detect potential interactions and evaluate the physicochemical stability. Results: AlbLuteN consisted of uniform particles (Z-average of 133.5 ± 2.8 nm) with a zeta potential of −28.1 ± 1.8 mV, lutein content of 4.76 ± 0.39%, and entrapment efficiency of 84.4 ± 6.3%. Differential scanning calorimetry confirmed the amorphous state of lutein in the nanosuspension. AlbLuteN was successfully incorporated into PN admixtures, without visible phase separation or significant changes in physicochemical parameters. The PFAT5 and Z-average values remained within pharmacopeial limits over 24 h. No substantial shifts in zeta potential, pH, or osmolality were observed. The lutein content remained stable, with losses below 3%. Conclusions: AlbLuteN can be safely added to representative PN admixtures without compromising their stability. This approach offers a novel strategy for intravenous lutein delivery and may contribute to improving the nutritional profile of PN. Full article
Show Figures

Figure 1

23 pages, 5262 KiB  
Article
Designing Gel-Inspired Food-Grade O/W Pickering Emulsions with Bacterial Nanocellulose–Chitosan Complexes
by Antiopi Vardaxi, Eftychios Apostolidis, Ioanna G. Mandala, Stergios Pispas, Aristeidis Papagiannopoulos and Erminta Tsouko
Gels 2025, 11(8), 577; https://doi.org/10.3390/gels11080577 - 24 Jul 2025
Viewed by 310
Abstract
This study explored the potential of chitosan (CH)/bacterial cellulose (BC) complexes (0.5% w/v) as novel emulsifiers to stabilize oil-in-water (o/w) Pickering emulsions (20% v/v sunflower oil), with a focus on their gel-like behavior. Emulsions were prepared using CH [...] Read more.
This study explored the potential of chitosan (CH)/bacterial cellulose (BC) complexes (0.5% w/v) as novel emulsifiers to stabilize oil-in-water (o/w) Pickering emulsions (20% v/v sunflower oil), with a focus on their gel-like behavior. Emulsions were prepared using CH combined with BNC derived via H2SO4 (BNC1) or H2SO4-HCl (BNC2) hydrolysis. Increasing BNC content improved stability by reducing phase separation and enhancing viscosity, while CH contributed interfacial activity and electrostatic stabilization. CH/BNC125:75 emulsions showed the highest stability, maintaining an emulsion stability index (ESI) of up to 100% after 3 days, with minimal change in droplet size (Rh ~8.5–8.8 μm) and a positive ζ-potential (15.1–29.8 mV), as confirmed by dynamic/electrophoretic light scattering. pH adjustment to 4 and 10 had little effect on their ESI, while ionic strength studies showed that 0.1 M NaCl caused only a slight increase in droplet size combined with the highest ζ-potential (−35.2 mV). Higher salt concentrations led to coalescence and disruption of their gel-like structure. Rheological analysis of CH/BNC125:75 emulsions revealed shear-thinning behavior and dominant elastic properties (G′ > G″), indicating a soft gel network. Incorporating sunflower-seed protein isolates into CH/BNC1 (25:75) emulsions led to coacervate formation (three-layer system), characterized by a decrease in droplet size and an increase in ζ-potential (up to 32.8 mV) over 7 days. These findings highlight CH/BNC complexes as sustainable stabilizers for food-grade Pickering emulsions, supporting the development of biopolymer-based emulsifiers aligned with bioeconomy principles. Full article
(This article belongs to the Special Issue Recent Advances in Food Gels (2nd Edition))
Show Figures

Figure 1

11 pages, 1833 KiB  
Article
Influence of Selenium Pressure on Properties of AgInGaSe2 Thin Films and Their Application to Solar Cells
by Xianfeng Zhang, Engang Fu, Yong Lu and Yang Yang
Nanomaterials 2025, 15(15), 1146; https://doi.org/10.3390/nano15151146 - 24 Jul 2025
Viewed by 197
Abstract
A wide-bandgap AgInGaSe2 (AIGS) thin film was fabricated using molecular beam epitaxy (MBE) via a three-stage method. The influence of Selenium (Se) pressure on the properties of AIGS films and solar cells was studied in detail. It was found that Se pressure [...] Read more.
A wide-bandgap AgInGaSe2 (AIGS) thin film was fabricated using molecular beam epitaxy (MBE) via a three-stage method. The influence of Selenium (Se) pressure on the properties of AIGS films and solar cells was studied in detail. It was found that Se pressure played a very important role during the fabrication process, whereby Se pressure was varied from 0.8 × 10−3 Torr to 2.5 × 10−3 Torr in order to specify the effect of Se pressure. A two-stage mechanism during the production of AIGS solar cells was concluded according to the experimental results. With an increase in Se pressure, the grain size significantly increased due to the supply of the Ag–Se phase; the superficial roughness also increased. When Se pressure was increased to 2.1 × 10−3 Torr, the morphology of AIGS changed abruptly and clear grain boundaries were observed with a typical grain size of over 1.5 μm. AIGS films fabricated with a low Se pressure tended to show a higher bandgap due to the formation of anti-site defects such as In and Ga on Ag sites as a result of the insufficient Ag–Se phase. With an increase in Se pressure, the crystallinity of the AIGS film changed from the (220)-orientation to the (112)-orientation. When Se pressure was 2.1 × 10−3 Torr, the AIGS solar cell demonstrated its best performance of about 9.6% (Voc: 810.2 mV; Jsc: 16.7 mA/cm2; FF: 71.1%) with an area of 0.2 cm2. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

Back to TopTop