Effect of Si Addition on Microstructure and Mechanical Properties of SiC Ceramic Fabricated by Direct LPBF with CVI Technology
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
- (1)
- The densities of LPBF-SiC specimens were 65.7%; the compressive strength was 6 ± 1 MPa. After CVI, the density increased to 76.4% and the compressive strength increased to 39 ± 13 MPa.
- (2)
- A 70.5% density and 19 ± 8 MPa compressive strength were obtained for LPBF-Si/SiC specimens after adding Si. After CVI, the density of the LPBF-CVI Si/SiC specimen was increased to 78.3% and the compressive strength was increased to 90 ± 8 MPa.
- (3)
- During the LPBF-forming process, silicon carbide undergoes slight decomposition, and the subsequent CVI densification treatment enables the decomposed silicon to re-react and regenerate silicon carbide.
- (4)
- The nano-hardness values of the LPBF-CVI and LPBF-CVI SiC ceramic specimens differ in different regions. The nano-hardness values of the LPBF-formed SiC and Si/SiC regions are 24.2 ± 1.0 GPa and 25.9 ± 4.4 GPa, respectively, whereas the nano-hardness values of the CVI-formed SiC region can be as high as 55.3 ± 9.3 GPa.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, J.; Zhang, Y.; Fu, Y.; Chen, R.; Li, T.; Hou, X.; Li, H. Research progress in chemical vapor deposition for high-temperature anti-oxidation/ablation coatings on thermal structural composites. Compos. Part B Eng. 2025, 291, 112015. [Google Scholar] [CrossRef]
- Fu, Y.; Zhang, Y.; Li, T.; Han, L.; Miao, Q. Effect of SiC on the anti-ablation resistance and flexural strength of (Hf-Ta-Zr)C-C/C composites. J. Eur. Ceram. Soc. 2024, 44, 107–118. [Google Scholar] [CrossRef]
- Lv, J.S.; Li, W.; Li, Z.L.; Fu, Y.Q.; Ma, Y.W.; Guo, L.X.; Li, J.C.; Li, T.; Zhang, Y.L. Ablation-resistant (Hf,Zr)B2-SiC composite coating with alternating lamellar architecture by one-step atmospheric plasma spraying. Compos. Part B Eng. 2025, 297, 112302. [Google Scholar] [CrossRef]
- Xu, M.; Girish, Y.R.; Rakesh, K.P.; Wu, P.; Manukumar, H.M.; Byrappa, S.M.; Udayabhanu; Byrappa, K. Recent advances and challenges in silicon carbide (SiC) ceramic nanoarchitectures and their applications. Mater. Today Commun. 2021, 28, 102533. [Google Scholar] [CrossRef]
- Tanaka, H. Silicon Carbide Ceramics-1: Fundamental and Solid Reaction. In Sintering of Silicon Carbide; Sömiya, S., Inomata, Y., Eds.; Springer: Dordrecht, The Netherlands, 1991; pp. 213–238. [Google Scholar]
- Gibson, I.; Rosen, D.; Stucker, B.; Khorasani, M. Additive Manufacturing Technologies; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Chen, Z.W.; Li, Z.Y.; Li, J.J.; Liu, C.B.; Lao, C.S.; Fu, Y.L.; Liu, C.Y.; Li, Y.; Wang, P. He, Y. 3D printing of ceramics: A review. J. Eur. Ceram. Soc. 2019, 39, 661–687. [Google Scholar] [CrossRef]
- Sun, J.; Ye, D.; Zou, J.; Chen, X.; Wang, Y.; Yuan, J.; Liang, H.; Qu, H.; Binner, J.; Bai, J. A review on additive manufacturing of ceramic matrix composites. J. Mater. Sci. Technol. 2023, 138, 1–16. [Google Scholar] [CrossRef]
- Bartkowiak, T.; Peta, K.; Królczyk, J.B.; Niesłony, P.; Bogdan-Chudy, M.; Przeszłowski, Ł.; Trych-Wildner, A.; Wojciechowska, N.; Królczyk, G.M.; Wieczorowski, M. Wetting properties of polymer additively manufactured surfaces-Multiscale and multi-technique study into the surface-measurement-function interactions. Tribol. Int. 2025, 202, 110394. [Google Scholar] [CrossRef]
- Wang, P.; Eckert, J.; Prashanth, K.-G.; Wu, M.-W.; Kaban, I.; Xi, L.-X.; Scudino, S. A review of particulate-reinforced aluminum matrix composites fabricated by selective laser melting. Trans. Nonferrous Met. Soc. China 2020, 30, 2001–2034. [Google Scholar] [CrossRef]
- Shen, Z.; Su, H.; Yu, M.; Cao, Y.; Guo, Y.; Jiang, H.; Liu, Y.; Li, X.; Dong, D.; Yang, P.; et al. Unveiling exotic multi-scale microstructure transformation and crack formation mechanisms in eutectic ceramic composite by laser powder bed fusion. Compos. Part B Eng. 2025, 288, 111883. [Google Scholar] [CrossRef]
- Xu, T.; Cheng, S.; Jin, L.; Zhang, K.; Zeng, T. High-temperature flexural strength of SiC ceramics prepared by additive manufacturing. Int. J. Appl. Ceram. Technol. 2020, 17, 438–448. [Google Scholar] [CrossRef]
- Deckers, J.; Vleugels, J.; Kruth, J.P. Additive Manufacturing of Ceramics: A Review. J. Ceram. Sci. Technol. 2014, 5, 245–260. [Google Scholar]
- Nan, W.; Pasha, M.; Bonakdar, T.; Lopez, A.; Zafar, U.; Nadimi, S.; Ghadiri, M. Jamming during particle spreading in additive manufacturing. Powder Technol. 2018, 338, 253–262. [Google Scholar] [CrossRef]
- Wang, K.; Yin, J.; Chen, X.; Wang, L.; Xiao, H.; Liu, X.; Huang, Z. Advances on direct selective laser printing of ceramics: An overview. J. Alloy. Compd. 2024, 975, 172821. [Google Scholar] [CrossRef]
- Fleisher, A.; Zolotaryov, D.; Kovalevsky, A.; Muller-Kamskii, G.; Eshed, E.; Kazakin, M.; Popov, V. Reaction bonding of silicon carbides by Binder Jet 3D-Printing, phenolic resin binder impregnation and capillary liquid silicon infiltration. Ceram. Int. 2019, 45, 18023–18029. [Google Scholar] [CrossRef]
- Du, W.; Ma, B.; Thomas, J.; Singh, D. Concurrent reaction-bonded joining and densification of additively manufactured silicon carbide by liquid silicon infiltration. J. Eur. Ceram. Soc. 2023, 43, 2345–2353. [Google Scholar] [CrossRef]
- Lv, X.; Ye, F.; Cheng, L.; Fan, S.; Liu, Y. Fabrication of SiC whisker-reinforced SiC ceramic matrix composites based on 3D printing and chemical vapor infiltration technology. J. Eur. Ceram. Soc. 2019, 39, 3380–3386. [Google Scholar] [CrossRef]
- Gai, W.H.; Zhang, Y.L.; Zhang, J.; Chen, H.; Chen, G.H.; Kong, J.A. Oxidation behavior of supersonic air plasma sprayed Yb2SiO5/Si and Yb2Si2O7/Si coating for CVD-SiC coated C/C composites in wet oxygen at 1773 K: Experimental and first-principle calculation. Ceram. Int. 2025, 51, 11088–11096. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, Y.; Liu, B.; Huang, Z. The preparation of SiC-based ceramics by one novel strategy combined 3D printing technology and liquid silicon infiltration process. Ceram. Int. 2019, 45, 10800–10804. [Google Scholar] [CrossRef]
- Terrani, K.; Jolly, B.; Trammell, M. 3D printing of high-purity silicon carbide. J. Am. Ceram. Soc. 2020, 103, 1575–1581. [Google Scholar] [CrossRef]
- GB/T 8489-2006; Test Method for Compressive Strength of Fine Ceramics (Advanced Ceramics, Advanced Technical Ceramics). China Standards Press: Beijing, China, 2006.
- Chaugule, P.S.; Du, W.; Kamath, R.R.; Barua, B.; Messner, M.C.; Singh, D. Reliability comparisons between additively manufactured and conventional SiC–Si ceramic composites. J. Am. Ceram. Soc. 2024, 107, 3117–3133. [Google Scholar] [CrossRef]
- Meyers, S.; De Leersnijder, L.; Vleugels, J.; Kruth, J.-P. Direct laser sintering of reaction bonded silicon carbide with low residual silicon content. J. Eur. Ceram. Soc. 2018, 38, 3709–3717. [Google Scholar] [CrossRef]
- Lamm, B.W.; Karakoc, O.; Mao, K.; Koyanagi, T.; Liu, J.; Katoh, Y. Phase separation during the direct powder bed fusion of SiC. Int. J. Appl. Ceram. Technol. 2024, 21, 1722–1734. [Google Scholar] [CrossRef]
Laser Power | Scanning Speed | Layer Thickness | Scanning Spacing | Preheating Temperature |
---|---|---|---|---|
300 | 500 | 60 | 70 | 350 |
Pressure (kPa) | Temperature (°C) | CH3Cl3Si (mL/min) | H2 (mL/min) | Ar (mL/min) | Duration (Hours) |
---|---|---|---|---|---|
5–15 | 900–1200 | 50–200 | 500–1500 | 400–800 | 2–8 |
Composite | Relative Density (%) | Compressive Strength (MPa) |
---|---|---|
LPBF SiC | 65.7 | 6 ± 1 |
LPBF-CVI SiC | 76.4 | 39 ± 13 |
LPBF Si/SiC | 70.5 | 19 ± 8 |
LPBF-CVI Si/SiC | 78.3 | 90 ± 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Wang, P.; Li, L.; Zhang, J.; Zhang, Y.; Peng, J.; Wang, X.; Kang, N.; El Mansori, M.; Prashanth, K.G. Effect of Si Addition on Microstructure and Mechanical Properties of SiC Ceramic Fabricated by Direct LPBF with CVI Technology. Appl. Sci. 2025, 15, 8585. https://doi.org/10.3390/app15158585
Wang Y, Wang P, Li L, Zhang J, Zhang Y, Peng J, Wang X, Kang N, El Mansori M, Prashanth KG. Effect of Si Addition on Microstructure and Mechanical Properties of SiC Ceramic Fabricated by Direct LPBF with CVI Technology. Applied Sciences. 2025; 15(15):8585. https://doi.org/10.3390/app15158585
Chicago/Turabian StyleWang, Yipu, Pei Wang, Liqun Li, Jian Zhang, Yulei Zhang, Jin Peng, Xingxing Wang, Nan Kang, Mohamed El Mansori, and Konda Gokuldoss Prashanth. 2025. "Effect of Si Addition on Microstructure and Mechanical Properties of SiC Ceramic Fabricated by Direct LPBF with CVI Technology" Applied Sciences 15, no. 15: 8585. https://doi.org/10.3390/app15158585
APA StyleWang, Y., Wang, P., Li, L., Zhang, J., Zhang, Y., Peng, J., Wang, X., Kang, N., El Mansori, M., & Prashanth, K. G. (2025). Effect of Si Addition on Microstructure and Mechanical Properties of SiC Ceramic Fabricated by Direct LPBF with CVI Technology. Applied Sciences, 15(15), 8585. https://doi.org/10.3390/app15158585