Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (334)

Search Parameters:
Keywords = petroleum consumption

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1683 KB  
Article
Optimization of a 100% Product Utilization Process for LPG Separation Based on Distillation-Membrane Technology
by Peigen Zhou, Tong Jing, Jianlong Dai, Jinzhi Li, Zhuan Yi, Wentao Yan and Yong Zhou
Membranes 2026, 16(1), 40; https://doi.org/10.3390/membranes16010040 - 10 Jan 2026
Viewed by 231
Abstract
This study presents the techno-economic optimization of a hybrid distillation-membrane process for the complete fractionation of liquefied petroleum gas (LPG), targeting high-purity propane, n-butane, and isobutane recovery. The process employs an initial distillation column to separate propane (99% purity) from a propane-enriched stream, [...] Read more.
This study presents the techno-economic optimization of a hybrid distillation-membrane process for the complete fractionation of liquefied petroleum gas (LPG), targeting high-purity propane, n-butane, and isobutane recovery. The process employs an initial distillation column to separate propane (99% purity) from a propane-enriched stream, which is subsequently fed to a two-stage membrane system using an MFI zeolite hollow-fiber membrane for n-butane/isobutane separation. Through systematic simulation and sensitivity analysis, different membrane configurations were evaluated. The two-stage process with a partial residue-side reflux configuration demonstrated superior economic performance, achieving a total operating cost of 31.58 USD/h. Key membrane parameters—area, permeance, and separation factor—were optimized to balance separation efficiency with energy consumption and cost. The analysis identified an optimal configuration: a membrane area of 800 m2, an n-butane permeance of 0.9 kg·m−2·h−1, and a separation factor of 40. This setup ensured high n-alkane recovery while effectively minimizing energy use and capital investment. The study concludes that the optimized distillation-membrane hybrid process offers a highly efficient and economically viable strategy for the full utilization of LPG components. Full article
Show Figures

Figure 1

10 pages, 571 KB  
Proceeding Paper
Role of Fuel Switching in the Decarbonization of Pakistan’s Cement Industry
by Ubaid Zia, Saleha Qureshi, Hina Younis and Adal Farooq
Eng. Proc. 2025, 111(1), 43; https://doi.org/10.3390/engproc2025111043 - 5 Jan 2026
Viewed by 231
Abstract
The cement industry is at the core of global economic and infrastructure development accounts, but it also accounts for 7% to 9% of total emitting CO2 For Pakistan, it is a major consumer of coal, emitting 8.9 Mt of CO2 annually, [...] Read more.
The cement industry is at the core of global economic and infrastructure development accounts, but it also accounts for 7% to 9% of total emitting CO2 For Pakistan, it is a major consumer of coal, emitting 8.9 Mt of CO2 annually, resulting in nearly 49% of the country’s coal While several strategic initiatives are being adopted to lower conventional fuel consumption in the cement sector such as an increased shift towards solar energy deployment, initiating the shift from coal to alternate materials, but a well-regulated alternative fuel policy framework across cement production processes remains a clear gap in the industry’s decarbonization efforts. Given this challenge, this study conducts a scenario-informed quantitative evaluation using the Low-Emission Analysis Platform (LEAP) to explore the decarbonization potential of fuel switching in Pakistan’s cement industry, aligning it with NDC, Net-zero, and energy transition targets. The results reveal that swapping out coal and petroleum coke for cleaner alternatives would be necessary for reducing emissions by 13.5 Mt under the NDC scenario and 17.1 Mt for net-zero by 2050. However, achieving these targets requires a well-defined policy framework, regulatory support for Refuse-Derived Fuel (RDF) and Tire-Derived Fuel (TFD), building a sustainable biomass chain and quality control units, and capital investment in cleaner fuels. Full article
Show Figures

Figure 1

18 pages, 559 KB  
Review
Sustainable Postharvest Innovations for Fruits and Vegetables: A Comprehensive Review
by Valeria Rizzo
Foods 2025, 14(24), 4334; https://doi.org/10.3390/foods14244334 - 16 Dec 2025
Viewed by 794
Abstract
The global food industry is undergoing a critical shift toward sustainability, driven by high postharvest losses—reaching up to 40% for fruits and vegetables—and the need to reduce environmental impact. Sustainable postharvest innovations focus on improving quality, extending shelf life, and minimizing waste through [...] Read more.
The global food industry is undergoing a critical shift toward sustainability, driven by high postharvest losses—reaching up to 40% for fruits and vegetables—and the need to reduce environmental impact. Sustainable postharvest innovations focus on improving quality, extending shelf life, and minimizing waste through eco-efficient technologies. Advances in non-thermal and minimal processing, including ultrasound, pulsed electric fields, and edible coatings, support nutrient preservation and food safety while reducing energy consumption. Although integrated postharvest technologies can reduce deterioration and microbial spoilage by 70–92%, significant challenges remain, including global losses of 20–40% and the high implementation costs of certain nanostructured materials. Simultaneously, eco-friendly packaging solutions based on biodegradable biopolymers and bio-composites are replacing petroleum-based plastics and enabling intelligent systems capable of monitoring freshness and detecting spoilage. Energy-efficient storage, smart sensors, and optimized cold-chain logistics further contribute to product integrity across distribution networks. In parallel, the circular bioeconomy promotes the valorization of agro-food by-products through the recovery of bioactive compounds with antioxidant and anti-inflammatory benefits. Together, these integrated strategies represent a promising pathway toward reducing postharvest losses, supporting food security, and building a resilient, environmentally responsible fresh produce system. Full article
Show Figures

Figure 1

18 pages, 4153 KB  
Article
Multi-Objective Optimization of Fatigue Performance in FDM-Printed PLA Biopolymer Using Grey Relational Method
by Ivan Peko, Nikša Čatipović, Karla Antunović and Petar Ljumović
Sustainability 2025, 17(24), 10902; https://doi.org/10.3390/su172410902 - 5 Dec 2025
Viewed by 358
Abstract
This study focuses on improving the fatigue strength and overall performance of sustainable biopolymer polylactic acid (PLA) components manufactured via Fused Deposition Modelling (FDM) additive manufacturing process. PLA, as a biodegradable and renewable polymer derived from natural resources, represents a promising alternative to [...] Read more.
This study focuses on improving the fatigue strength and overall performance of sustainable biopolymer polylactic acid (PLA) components manufactured via Fused Deposition Modelling (FDM) additive manufacturing process. PLA, as a biodegradable and renewable polymer derived from natural resources, represents a promising alternative to conventional petroleum-based plastics in engineering and research applications. The influence of key FDM process parameters—layer height, infill density, and number of perimeters—on critical performance indicators such as filament consumption, printing time, and fatigue strength (number of cycles to failure) was systematically analyzed using the Taguchi L9 orthogonal array. Subsequently, Grey Relational Analysis (GRA) was applied as a multi-objective optimization technique to identify the parameter settings that achieve an optimal balance between mechanical durability and resource efficiency. The obtained results demonstrate that a proper combination of process parameters can significantly enhance the mechanical reliability and sustainability profile of FDM-printed PLA parts, contributing to the broader adoption of eco-friendly materials in additive manufacturing. Full article
(This article belongs to the Special Issue Advanced Materials and Technologies for Environmental Sustainability)
Show Figures

Figure 1

21 pages, 3538 KB  
Article
Research on the Combined Treatment of Composite Organic-Contaminated Soil Using Diversion-Type Ultra-High-Temperature Pyrolysis and Chemical Oxidation
by Shuyuan Xing, Xianglong Duan and Minquan Feng
Sustainability 2025, 17(23), 10807; https://doi.org/10.3390/su172310807 - 2 Dec 2025
Viewed by 356
Abstract
Remediating complex-contaminated soils demands the synergistic optimization of efficiency, cost-effectiveness, and carbon emission reduction. Currently, ultra-high-temperature thermal desorption technology is mature in terms of principle and laboratory-scale performance; however, ongoing efforts are focusing on achieving stable, efficient, controllable, and cost-optimized operation in large-scale [...] Read more.
Remediating complex-contaminated soils demands the synergistic optimization of efficiency, cost-effectiveness, and carbon emission reduction. Currently, ultra-high-temperature thermal desorption technology is mature in terms of principle and laboratory-scale performance; however, ongoing efforts are focusing on achieving stable, efficient, controllable, and cost-optimized operation in large-scale engineering applications. To address this gap, this study aimed to (1) verify the energy efficiency and economic benefits of removing over 98% of target pollutants at a 7.5 × 104 m3 contaminated site and (2) elucidate the mechanisms underlying parallel scale–technology dual-factor cost reduction and energy–carbon–cost optimization, thereby accumulating case experience and data support for large-scale engineering deployment. To achieve these objectives, a “thermal stability–chemical oxidizability” classification criterion was developed to guide a parallel remediation strategy, integrating ex situ ultra-high-temperature thermal desorption (1000 °C) with persulfate-based chemical oxidation. This strategy was implemented at a 7.5 × 104 m3 large-scale site, delivering robust performance: the total petroleum hydrocarbon (TPH) and pentachlorophenol (PCP) removal efficiencies exceeded 99%, with a median removal rate of 98% for polycyclic aromatic hydrocarbons (PAHs). It also provided a critical operational example of a large-scale engineering application, demonstrating a daily treatment capacity of 987 m3, a unit remediation cost of 800 CNY·m−3, and energy consumption of 820 kWh·m−3, outperforming established benchmarks reported in the literature. A net reduction of 2.9 kilotonnes of CO2 equivalent (kt CO2e) in greenhouse gas emissions was achieved, which could be further enhanced with an additional 8.8 kt CO2e by integrating a hybrid renewable energy system (70% photovoltaic–molten salt thermal storage + 30% green power). In summary, this study establishes a “high-temperature–parallel oxidation–low-carbon energy” framework for the rapid remediation of large-scale multi-contaminant sites, proposes a feasible pathway toward developing a soil carbon credit mechanism, and fills a critical gap between laboratory-scale success and large-scale engineering applications of ultra-high-temperature remediation technologies. Full article
Show Figures

Figure 1

26 pages, 1990 KB  
Review
Recent Advances in Mitigating PourPoint Limitations of Biomass-Based Lubricants
by Zhenpeng Wang, Jingwen Wang, Zexin Li, Wencong Li, Lei Jiao, Yan Long and Yinan Hao
Lubricants 2025, 13(12), 524; https://doi.org/10.3390/lubricants13120524 - 30 Nov 2025
Cited by 1 | Viewed by 577
Abstract
As a key medium in industry, lubricating oil plays a significant role in reducing friction, cooling sealing and transmitting power, which directly affects equipment life and energy efficiency. Traditional mineral-based lubricating oils rely on non-renewable petroleum, and they have high energy consumption and [...] Read more.
As a key medium in industry, lubricating oil plays a significant role in reducing friction, cooling sealing and transmitting power, which directly affects equipment life and energy efficiency. Traditional mineral-based lubricating oils rely on non-renewable petroleum, and they have high energy consumption and poor biodegradability (<30%) during the production process. They can easily cause lasting pollution after leakage and have a high carbon footprint throughout their life cycle, making it difficult to meet the “double carbon” goal. Bio-based lubricating oil uses renewable resources such as cottonseed oil and waste grease as raw materials. This material offers three significant advantages: sustainable sourcing, environmental friendliness, and adjustable performance. Its biodegradation rate is over 80%, and it reduces carbon emissions by 50–90%. Moreover, we can control its properties through processes like hydrogenation, isomerization, and transesterification to ensure it complies with ISO 6743 and other relevant standards. However, natural oils and fats have regular molecular structure, high freezing point (usually > −10 °C), and easy precipitation of wax crystals at low temperature, which restricts their industrial application. In recent years, a series of modification studies have been carried out around “pour point depression-viscosity preservation”. Catalytic isomerization can reduce the freezing point to −42 °C while maintaining a high viscosity index. Epoxidation–ring-opening modification introduces branched chains or ether bonds, taking into account low-temperature fluidity and oxidation stability. The deep dewaxing-isomerization dewaxing process improves the base oil yield, and the freezing point drops by 30 °C. The synergistic addition of polymer pour point depressant and nanomaterials can further reduce the freezing point by 10–15 °C and improve the cryogenic pumping performance. The life cycle assessment shows that using the “zero crude oil” route of waste oil and green hydrogen, the carbon emission per ton of lubricating oil is only 0.32 t, and the cost gradually approaches the level of imported synthetic esters. In the future, with the help of biorefinery integration, enzyme catalytic modification and AI molecular design, it is expected to realize high-performance, low-cost, near-zero-carbon lubrication solutions and promote the green transformation of industry. Full article
Show Figures

Figure 1

18 pages, 1787 KB  
Article
Evaluation of Acrylamide/α-Lipoic Acid Statistical Copolymers as Degradable Water-Soluble Kinetic Gas Hydrate Inhibitors
by Chong Yang Du, Milan Marić and Phillip Servio
Polymers 2025, 17(23), 3125; https://doi.org/10.3390/polym17233125 - 25 Nov 2025
Viewed by 528
Abstract
Readily degradable low-dose hydrate inhibitors are of great significance for flow assurance in the petroleum industry. Recently, α-lipoic acid (LA) was shown to undergo ring-opening reaction via reversible addition–fragmentation chain-transfer copolymerization with acrylamides to introduce labile disulfide bonds into the stable vinyl polymer [...] Read more.
Readily degradable low-dose hydrate inhibitors are of great significance for flow assurance in the petroleum industry. Recently, α-lipoic acid (LA) was shown to undergo ring-opening reaction via reversible addition–fragmentation chain-transfer copolymerization with acrylamides to introduce labile disulfide bonds into the stable vinyl polymer backbone. Here, LA was copolymerized with acryloyl morpholine (AM) to evaluate their performance as kinetic hydrate inhibitors. Degradability was confirmed for the copolymers with 20 mol.% LA (AM/LA20, Mn = 19 → 9 kDa) after disulfide reduction. Thermogravimetric analysis also indicated faster thermal degradation of AM/LA due to the incorporation of weaker S-S and S-C linkages. Increasing LA content reduced hydrophilicity, and the copolymers were treated with NaOH to ensure water solubility. However, at 700 ppm, poly(AM) homopolymer reduced methane consumption during hydrate growth to 54% with respect to the uninhibited system, while gas consumption for the carboxylate AM/LA20 reached 78%. An advantageous feature of LA is its carboxylic acid, allowing desired functionalities to be grafted onto the degradable copolymer. Isopropyl amine (IPAm) was coupled with LA to form an amide known to be effective during hydrate inhibition (LA(IPAm)). The copolymer AM/LA(IPAm)20 demonstrated better water solubility compared to the original AM/LA20. Furthermore, the desirable IPAm functionality allowed the hydrate inhibition to be re-established at 54%, nearly recovering the performance of the poly(AM) homopolymer. This article assesses the application of LA and LA derivatives as building blocks for degradable amide-based kinetic hydrate inhibitors by validating their degradability with material characterizations and their inhibition performance during structure I hydrate growth. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Graphical abstract

14 pages, 1690 KB  
Article
Energy Efficiency Study Applied to Residual Heat Systems in the Ecuadorian Oil Industry Located in the Amazon Region
by Andrés Campana-Díaz, Marcelo Moya, Ricardo Villalva and Javier Martinez-Gómez
Energies 2025, 18(22), 5925; https://doi.org/10.3390/en18225925 - 11 Nov 2025
Viewed by 470
Abstract
The oil sector in Ecuador represents one of the largest national energy consumers, with significant contributions to greenhouse gas and thermal emissions due to reliance on diesel-based thermoelectric generation. This study assesses the feasibility of implementing waste heat recovery processes in upstream petroleum [...] Read more.
The oil sector in Ecuador represents one of the largest national energy consumers, with significant contributions to greenhouse gas and thermal emissions due to reliance on diesel-based thermoelectric generation. This study assesses the feasibility of implementing waste heat recovery processes in upstream petroleum operations, aiming to improve energy efficiency and reduce the sector’s carbon footprint. Historical production and energy consumption data (2015–2020) from the main oil blocks (43-ITT, 57-Shushufindi, 57-Libertador, 58-Cuyabeno, 60-Sacha, and 61-Auca) were analyzed, alongside experimental parameters from thermoelectric equipment. Key energy indicators, including recoverable heat potential, energy intensity, and CO2 emissions, were quantified to identify inefficiencies and opportunities for recovery. Results show that blocks with the highest crude production also exhibit the largest energy demand, with flue gas temperatures averaging 400 °C and an estimated recovery potential of up to 1.9 MWe through Rankine Cycle systems. Pre-feasibility analysis indicates a cost–benefit ratio of 1.03 under current conditions, which could reach 1.29 with higher load factors, while avoided emissions surpass 7000 tCO2 annually. The findings highlight a strong correlation between energy intensity and CO2 emissions, emphasizing the environmental relevance of recovery projects. Adoption of heat recovery technologies, coupled with regulatory incentives such as carbon pricing, offers a viable pathway to enhance energy efficiency, reduce operational costs, and strengthen sustainability in the Ecuadorian oil industry. Full article
(This article belongs to the Special Issue Energy, Engineering and Materials 2024)
Show Figures

Figure 1

17 pages, 513 KB  
Article
Petroleum Consumption and Financial Development: Evidence from Selected EMEs: Panel ARDL-PMG Approach
by Collen Mugodzva and Godfrey Marozva
Energies 2025, 18(22), 5892; https://doi.org/10.3390/en18225892 - 9 Nov 2025
Viewed by 734
Abstract
This paper examines the long-term and causal relationship between petroleum consumption and financial development in selected emerging market economies (EMEs) from 2000 to 2020. Using panel cointegration and an error correction model (ECM), the study captures both the short- and long-run dynamics of [...] Read more.
This paper examines the long-term and causal relationship between petroleum consumption and financial development in selected emerging market economies (EMEs) from 2000 to 2020. Using panel cointegration and an error correction model (ECM), the study captures both the short- and long-run dynamics of the petroleum–finance nexus while accounting for cross-country heterogeneity. The results show a significant long-run elasticity of petroleum consumption with respect to financial development, while the error correction term confirms robust convergence to equilibrium. In contrast, the short-run effects are insignificant, indicating that petroleum consumption does not immediately influence financial development. These findings highlight the need for robust energy policies that strengthen financial markets and support sustainable growth. Policymakers should prioritize infrastructure investments, strengthen financial linkages in the energy sector, and promote diversification to reduce the risks associated with petroleum dependence. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

26 pages, 6153 KB  
Article
Industrial Vegetable Oils: A Green Alternative for Enhancing Rubber Properties
by Julijana Žeravica, Olga Govedarica, Mirjana Jovičić, Sonja Stojanov and Dragan Govedarica
Polymers 2025, 17(21), 2898; https://doi.org/10.3390/polym17212898 - 30 Oct 2025
Cited by 1 | Viewed by 782
Abstract
This study investigates the viability of industrial hempseed oil as a sustainable extender oil in rubber compounding, addressing the urgent demand for alternatives to petroleum-based oils due to regulatory pressures on polycyclic aromatic hydrocarbons (PAH). We employed automated neural networks to [...] Read more.
This study investigates the viability of industrial hempseed oil as a sustainable extender oil in rubber compounding, addressing the urgent demand for alternatives to petroleum-based oils due to regulatory pressures on polycyclic aromatic hydrocarbons (PAH). We employed automated neural networks to analyze the physical and mechanical properties of rubber composites containing industrial hempseed oil, comparing them with six vegetable oils and three petroleum-based oils at extender oil concentrations from 0 to 30 phr. The results revealed that compounds with 20 phr of industrial hempseed oil and raw soybean oil exhibited the highest cure rate index values of 64.32 1/min. Rubber samples with industrial hempseed oil showed a significant 18% reduction in hardness compared to conventional oils, with the softest rubber measuring 40.5 Shore A hardness at 30 phr. Additionally, energy consumption during mixing was decreased by up to 12% for vegetable oil samples compared to mineral oils, enhancing processing efficiency. The neural network approach yielded more accurate predictions of the cure rate index, Shore A hardness, and power consumption during rubber mixing, with a validation performance exceeding 99.2%. Sensitivity analysis identified key factors, including oil content and surface tension, influencing rubber hardness. Overall, this study underscores the potential of industrial hempseed oil as an effective, eco-friendly substitute for conventional mineral oils, contributing to more sustainable practices in the rubber industry. Full article
(This article belongs to the Special Issue Artificial Intelligence in Polymers)
Show Figures

Figure 1

18 pages, 7318 KB  
Article
Reconstruction of Pore Structures in Petroleum Coke Packed Beds Utilizing CT Scanning and CFD Simulation of Resistance Characteristics
by Jing Li, Jindi Huang and Songlin Zhou
Processes 2025, 13(10), 3272; https://doi.org/10.3390/pr13103272 - 14 Oct 2025
Viewed by 456
Abstract
During the calcination of petroleum coke in a vertical shaft calciner, the particle packing structure exerts a decisive influence on the bed resistance characteristics and further significantly affects the devolatilization efficiency. This study employs three-dimensional computed tomography (CT) scanning technology to digitally reconstruct [...] Read more.
During the calcination of petroleum coke in a vertical shaft calciner, the particle packing structure exerts a decisive influence on the bed resistance characteristics and further significantly affects the devolatilization efficiency. This study employs three-dimensional computed tomography (CT) scanning technology to digitally reconstruct the pore structure of a packed bed of petroleum coke particles. Moreover, a computational fluid dynamics (CFD) simulation model is developed to simulate gas flow at the pore scale within the packed bed. A systematic analysis is conducted on the influence mechanisms of various factors, including particle size, gas velocity, gas composition, temperature, and bed length, on the gas flow resistance characteristics within the bed. The research findings indicate that the porosity of the packed beds of petroleum coke particles with different sizes ranges from 38.7% to 52%. The pore size within the bed exhibits a positive correlation with particle size, and gas migration predominantly occurs through slit flow. Under identical inlet gas velocity conditions, smaller particle sizes result in higher maximum gas velocities and greater unit pressure drops within the bed. At low gas velocities (e.g., 0.01–0.06 m/s in this work), both the maximum gas velocity and maximum pore pressure demonstrate a significant linear increase. The various factors exhibit different degrees of influence on the unit pressure drop, with particle size having the most significant impact, followed by gas velocity, then temperature, and finally gas composition. Consequently, the relevant research findings provide crucial theoretical support for optimizing the calcination process in vertical shaft calciners, expanding the range of raw material adaptability, and reducing production energy consumption. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

16 pages, 2244 KB  
Article
Scalable Biosynthesis and Recovery of Poly-3-Hydroxybutyrate Produced from Cotton-Derived Glucose by Cupriavidus necator
by Ashley M. Clark, Lucia E. Gargano, Gabriella M. Fioravanti, Hannah M. Schapiro and Ronald G. Kander
Polymers 2025, 17(20), 2745; https://doi.org/10.3390/polym17202745 - 14 Oct 2025
Viewed by 681
Abstract
To combat the growing issue of petroleum plastic waste, alternative bio-based polymers are being developed. Many of these biopolymers are made from bio-derived materials, or are biodegradable, but the most promising polymers fall in both categories. Polyhydroxyalkanoates (PHAs) are one such class of [...] Read more.
To combat the growing issue of petroleum plastic waste, alternative bio-based polymers are being developed. Many of these biopolymers are made from bio-derived materials, or are biodegradable, but the most promising polymers fall in both categories. Polyhydroxyalkanoates (PHAs) are one such class of polymers, and poly-3-hydroxybutyrate (P3HB), the most popular PHA, has shown great potential. This study utilized two types of cotton-derived glucose, alongside commercial glucose, as a feedstock for the biosynthesis of P3HB by Cupriavidus necator (also known as Ralstonia eutropha). The fermentation took place in a 2-L bioreactor, showing potential for scale-up. A single-solvent extraction method was created and utilized to reduce process complexity and chemical consumption of the polymer extraction. Both cotton-derived glucoses were shown to produce more P3HB than commercial glucose. The resulting P3HB samples were compared to each other and to the literature based on polymer yield and thermal characteristics. While all samples averaged a smaller yield than seen in the literature (indicating the need for optimization of the bacterial growth and metabolism with a growth curve in our future work), the cotton-derived glucose was shown to yield more P3HB than commercial glucose. Further, cotton-derived P3HB had very similar thermal properties to the commercial glucose-derived P3HB (and to values from the literature) with onset of thermal degradation ranging from 185 °C to 263 °C, cold crystallization temperatures ranging from 24 °C to 28 °C, and melting temperatures ranging from 147 °C to 151 °C. Lastly, all samples were shown to have a similar percentage crystallinity, ranging from 38% to 45%, which is slightly lower than that reported in the literature. P3HB made from cotton-derived glucose was shown to have potential as a scalable, sustainable alternative process. Full article
(This article belongs to the Special Issue Bioplastics from Renewable Sources)
Show Figures

Figure 1

20 pages, 5925 KB  
Article
Functional and Evolutionary Role of Reproductive Hormonal Dysregulation Following Dietary Exposure to Singed Meat
by Prosper Manu Abdulai, Orish Ebere Orisakwe, Costantino Parisi, Rubina Vangone, Corrado Pane, Emidio M. Sivieri, Domenico Pirozzi and Giulia Guerriero
Int. J. Mol. Sci. 2025, 26(19), 9774; https://doi.org/10.3390/ijms26199774 - 8 Oct 2025
Viewed by 1105
Abstract
Consumption of meat singed with non-standard fuels is a common practice in many low- and middle-income settings, yet it may introduce combustion-derived toxicants with serious health consequences. While the toxicological effects of pollutants such as polycyclic aromatic hydrocarbons and heavy metals are well [...] Read more.
Consumption of meat singed with non-standard fuels is a common practice in many low- and middle-income settings, yet it may introduce combustion-derived toxicants with serious health consequences. While the toxicological effects of pollutants such as polycyclic aromatic hydrocarbons and heavy metals are well documented, the specific impact of singed meat consumption on endocrine regulation remains poorly understood. Of particular concern is the reproductive hormonal network, which not only serves as a sensitive biomarker of systemic disruption but also represents an evolutionary safeguard of fertility and generational continuity. Our study addresses this knowledge gap using male Wistar rats fed for 90 days (week 0 to week 12) on diets containing increasing proportions (25%, 50%, 75%) of meat singed with firewood, liquefied petroleum gas (LPG), or tyres. Firewood- and tyre-singed meat induced dose- and source-dependent toxicity, including hepatocellular injury, impaired protein metabolism, elevated blood urea nitrogen and creatinine, organ hypertrophy, and pronounced oxidative stress. Hormonal analysis revealed reduced testosterone alongside increased FSH, LH, and prolactin, indicating hypothalamic–pituitary–gonadal axis disruption and reproductive risk. In contrast, LPG-singed meat caused only minor alterations. These findings highlight reproductive hormones as sensitive biomarkers, underscoring the health risks of singeing practices and their evolutionary implications for fertility and population fitness. Full article
(This article belongs to the Special Issue Hormones: Evolutionary and Functional Role)
Show Figures

Figure 1

23 pages, 2057 KB  
Article
Drivers of Carbon Emission in Xinjiang Energy Base: Perspective from the Five-Year Plan Periods
by Jiancheng Qin, Jingzhe Tang, Lei Gao, Kun Zhang and Hui Tao
Energies 2025, 18(19), 5204; https://doi.org/10.3390/en18195204 - 30 Sep 2025
Viewed by 629
Abstract
Using the Kaya identity and LMDI method, this study analyzes the influence of population, GDP per capita, energy intensity, and carbon intensity on Xinjiang’s carbon emissions, and compares the effects of industrial structure, energy intensity, and carbon intensity on the industrial sectors during [...] Read more.
Using the Kaya identity and LMDI method, this study analyzes the influence of population, GDP per capita, energy intensity, and carbon intensity on Xinjiang’s carbon emissions, and compares the effects of industrial structure, energy intensity, and carbon intensity on the industrial sectors during the Eighth to Twelfth Five-Year Plan (FYP) periods. Key findings are as follows: (1) Xinjiang’s carbon emissions center on resource- and energy-intensive sectors, emissions from sectors such as extraction of petroleum and natural gas, fuel processing, chemicals, ceramics and cement, iron and steel, and non-ferrous and power generation accounted for 62% of carbon emissions in 2015; (2) after the Sixth FYP, GDP per capita effect turned into the core driver of carbon emission growth, while the population effect played an auxiliary role. Meanwhile, the energy intensity effect exerted a marked inhibitory impact on the increase in carbon emissions, yet the restraining effect of carbon intensity was comparatively limited; (3) during the Eighth to Twelfth FYPs, carbon emission growth was mainly attributed to industrial structure effects of the mining and washing of coal, extraction of petroleum and natural gas, fuel processing, chemicals, ceramics and cement, iron and steel, non-ferrous and power generation. Energy intensity and carbon intensity effects in various industries inhibited emission growth. Based on new trends in Xinjiang’s socioeconomic development, policy recommendations proposed including promoting the low-carbon transformation of industrial structure, profound restructuring of energy consumption, and improving energy efficiency by advancing energy-saving technology. Full article
Show Figures

Figure 1

14 pages, 987 KB  
Article
Synergistic Potential of Contamination Remediation and Carbon Fixation: Functional Resilience of Carbon Fixation in Petroleum Hydrocarbon-Degrading Microbial Communities Under Enhanced Natural Attenuation
by Pingping Cai, Shuang Gan, Zhuo Ning and Min Zhang
Microorganisms 2025, 13(9), 2205; https://doi.org/10.3390/microorganisms13092205 - 20 Sep 2025
Viewed by 599
Abstract
Enhanced Natural Attenuation (ENA) can accelerate pollutant degradation by adding electron acceptors or nutrients. However, its impact on carbon-fixing microorganisms, which are widely found in the natural attenuation process, remains unclear. In this study, four types of ENA materials were added in batch [...] Read more.
Enhanced Natural Attenuation (ENA) can accelerate pollutant degradation by adding electron acceptors or nutrients. However, its impact on carbon-fixing microorganisms, which are widely found in the natural attenuation process, remains unclear. In this study, four types of ENA materials were added in batch experiments. Chemical analysis and metagenomic sequencing were employed to analyze the degradation kinetics of petroleum hydrocarbons, the consumption pattern of nitrate, as well as the functional genes and population evolution characteristics of carbon-fixing microorganisms. Results showed that nitrate-based enhancement materials significantly improved the petroleum hydrocarbon degradation rate but suppressed the expression of some carbon fixation genes, such as those involved in the Calvin–Benson–Bassham cycle. Nevertheless, the overall abundance of carbon fixation genes did not show a notable decline. Dominant bacterial genera such as Pseudomonas and Achromobacter possessed both hydrocarbon degradation and carbon fixation capabilities. Although the calcium peroxide treatment group only achieved a 40% petroleum hydrocarbon degradation rate, it significantly promoted the abundance of carbon fixation genes involved in the reductive tricarboxylic acid cycle pathway. Therefore, ENA alters carbon fixation pathways but does not diminish carbon fixation potential, indicating its potential for synergistically achieving pollution remediation and carbon fixation. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

Back to TopTop