Reconstruction of Pore Structures in Petroleum Coke Packed Beds Utilizing CT Scanning and CFD Simulation of Resistance Characteristics
Abstract
1. Introduction
2. Experiment
2.1. Experimental Materials
2.2. Characterization of Pore Structure in Petroleum Coke Packed Bed
3. Simulation Model for Gas Flow at Pore Scale in Packed Bed of Petroleum Coke Articles
3.1. Mathematical Model
3.2. Geometric Modeling and Mesh Generation
3.3. Model Parameters
4. Results and Discussion
4.1. Model Validation
4.2. Effect of Particle Size on Bed Resistance Properties
4.3. Effect of Gas Velocity on Bed Resistance Properties
4.4. Effect of Bed Length on Bed Resistance Properties
4.5. Effect of Temperature on Bed Resistance Properties
4.6. Effect of Gas Composition on Bed Resistance Properties
4.7. Evaluation of the Influence Degree of Various Factors
5. Conclusions
- (1)
- Based on extracting typical 2D bed geometric structures from 3D CT scanning images and generating meshes, a CFD simulation model for pore-scale gas flow in a petroleum coke particle packed bed was developed. Numerically computed bed pressure drop values closely matched those calculated using the revised Ergun equation, with a data discrepancy of less than 15%, confirming the model’s reliability.
- (2)
- The interstitial spaces in the petroleum coke bed are the primary migration channels for volatile gases, with gas migrating via interstitial flow. Under a constant gas flow rate, as particle size decreases from −12.5 + 8.0 mm to −2.0 + 1.6 mm, the maximum gas flow velocity climbs from 1.75 m/s to 2.45 m/s, and the bed pressure drop surges from 2.65 Pa to 74.7 Pa, a 28-fold increase. Within the low-velocity range of 0.01–0.06 m/s, both the maximum gas flow velocity and the maximum pore pressure in the bed exhibit a significant linear increase with the gas flow rate. The bed pressure drop also increases significantly with rising gas temperature and inlet flow velocity. Additionally, a larger gas molecular weight decreases gas kinematic viscosity, thereby reducing its transport rate.
- (3)
- By using orthogonal experimental design and ANOVA analysis, the influence of various factors on the unit pressure drop of the petroleum coke packed bed layer was clarified. Experimental results show that particle size has the greatest impact, followed by gas flow velocity, temperature, and gas composition.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shen, F.H.; Qu, S.M.; Li, J.Y.; Yang, Z.H.; Zhou, C.G.; Yang, F.; He, Z.Q.; Xiang, K.S.; Shi, M.Q.; Liu, H. Development of chemical looping desulfurization method for high sulfur petroleum coke. Fuel 2024, 357, 129658. [Google Scholar] [CrossRef]
- Zheng, B.; Liu, Y.Q.; Zou, L.C.; Li, R.W.; Karimi, N. Heat transfer characteristics of calcined petroleum coke in waste heat recovery process. Math. Probl. Eng. 2016, 2016, 2649383. [Google Scholar] [CrossRef]
- Lou, B.; Zhang, J.; Li, J.; Chai, L.; Shi, N.; Wen, F.; Yang, X.; Huang, X.; Tian, L.; Liu, D. Comparative study on devolatilization behavior, microstructural evolution and resultant properties during calcination of petroleum coke with distinct mesophase texture. J. Anal. Appl. Pyrol. 2024, 177, 106329. [Google Scholar] [CrossRef]
- Cabral, R.L.B.; Galvão, E.R.V.P.; Fechine, P.B.A.; Galvão, F.M.F.; Nascimento, J.H.O.D. A minireview on the utilization of petroleum coke as a precursor for carbon-based nanomaterials (CNMS): Perspectives and potential applications. RSC Adv. 2024, 14, 19953–19968. [Google Scholar] [CrossRef]
- Wang, S.Y.; Sun, X.J.; Xie, L.F.; Ji, Y.J.; Lu, L.W.; Chen, Y.Q.; Huang, H.M.; Ye, D.Q. Preparation of heteroatom-doped hyper-crosslinked polymers via waste utilization of sulfur-containing petroleum coke: A promising adsorbent for CO2 capture. Environ. Pollut. 2025, 365, 125397. [Google Scholar] [CrossRef]
- Luo, Y.T.; Lu, B.; Deng, Y.X.; Yang, J.N. Analysis of China’s petroleum coke market in 2023 and forecast for 2024. Int. Pet. Econ. 2024, 32, 62–68. (In Chinese) [Google Scholar]
- Huang, J.D.; Li, J.; Li, M.Z.; Yan, K. Orthogonal design-based grey relational analysis for influence of factors on calcination temperature in shaft calciner. J. Chem. Eng. Jpn. 2019, 52, 811–821. [Google Scholar] [CrossRef]
- Huang, J.D.; Zhang, D.; Li, J. Influence mechanism of migration path of petroleum coke pyrolysis volatiles in a vertical shaft calciner. J. Cent. South Univ. (Sci. Technol.) 2023, 54, 465–476. [Google Scholar]
- Liu, L.C.; Cao, H.J.; Xiang, D.; Xia, Y.Y.; Li, P.; Zhou, Z.S. Technical and life cycle performance comparison between petroleum coke chemical looping combustion and oxy-combustion combining with advanced steam cycles for power generation processes. J. Clean Prod. 2023, 417, 137960. [Google Scholar] [CrossRef]
- Huang, J.D.; Lu, H.; Li, J.; Yang, Y.M. Heat transfer characteristics of petroleum coke particle packed bed: An experimental and CFD simulation study. Asia-Pac. J. Chem. Eng. 2025, 20, e3174. [Google Scholar] [CrossRef]
- Huang, J.D.; Lu, H.; Li, J.; Yang, Y.M. Resistance characteristics and particle movement behavior of a petroleum coke particle packed bed in a vertical shaft calciner under different burden distribution methods. Asia-Pac. J. Chem. Eng. 2024, 19, e3105. [Google Scholar] [CrossRef]
- Feng, J.S.; Dong, H.; Liu, J.Y.; Liang, K.; Gao, J.Y. Experimental study of gas flow characteristics in vertical tank for sinter waste heat recovery. Appl. Therm. Eng. 2015, 91, 73–79. [Google Scholar] [CrossRef]
- Feng, J.S.; Dong, H.; Li, H.Z.; Gao, J.Y. Flow resistance characteristics in vertical tank for sinter waste heat recovery. J. Cent. South Univ. (Sci. Technol.) 2017, 48, 867–872. [Google Scholar]
- Zhang, S.Z.; Wen, Z.; Liu, X.L.; Zhang, H.; Liu, X.H.; Wang, S. Effects of particle shape on permeability and resistance coefficients of sinter packed bed. J. Cent. South Univ. (Sci. Technol.) 2021, 52, 1066–1075. [Google Scholar]
- Zheng, K.C.; Liu, B.; Ren, F.Y.; Yang, S.Y.; Li, Z.D.; Hu, J.L. Theoretical derivation and analysis of flow resistance formula in porous media based on variable diameter tube ball model. Int. J. Heat Fluid Flow 2024, 107, 109326. [Google Scholar] [CrossRef]
- Mohammadpour, K.; Hermann, W.; Specht, E. CFD simulation of cross-flow mixing in a packed bed using porous media model and experimental validation. Comput. Part. Mech. 2019, 6, 157–162. [Google Scholar] [CrossRef]
- Wang, G.; Shen, J.N.; Chu, X.Y.; Cao, C.J.; Jiang, C.H.; Zhou, X.H. Characterization and analysis of pores and fissures of high-rank coal based on CT three-dimensional reconstruction. J. China Coal Soc. 2017, 42, 2074–2080. (In Chinese) [Google Scholar]
- Kyrimis, S.; Raja, R.; Armstrong, L. Image processing of computed tomography scanned poly-dispersed beds for computational fluid dynamic studies. Adv. Powder Technol. 2023, 34, 104199. [Google Scholar] [CrossRef]
- Zhang, S.Z.; Wen, Z.; Liu, X.L.; Xing, Y.; Zhang, H. Gas flow characteristics through irregular particle bed with the vertical confined wall for waste heat recovery. Int. J. Photoenergy 2022, 2022, 1890541. [Google Scholar] [CrossRef]
- Zhang, S.Z.; Wen, Z.; Liu, X.L.; Liu, X.H.; Wang, S.; Zhang, H. Experimental study on the permeability and resistance characteristics in the packed bed with the multi-size irregular particle applied in the sinter vertical waste heat recovery technology. Powder Technol. 2021, 384, 304–312. [Google Scholar] [CrossRef]
- Schwarzmayr, P.; Birkelbach, F.; Walter, H.; Javernik, F.; Schwaiger, M.; Hofmann, R. Packed bed thermal energy storage for waste heat recovery in the iron and steel industry: A cold model study on powder hold-up and pressure drop. J. Energy Storage 2024, 75, 109735. [Google Scholar] [CrossRef]
- Zhang, G.J.; Zhao, P.Y.; Xu, Y.; Zhang, Y.F. Characteristics of pressure drop of charred layer in coke dry quenching over coke oven gas. Energy Fuels 2017, 31, 4548–4555. [Google Scholar] [CrossRef]
- Leißner, T.; Diener, A.; Löwer, E.; Ditscherlein, R.; Krüger, K.; Kwade, A.; Peuker, U.A. 3D ex-situ and in-situ X-ray CT process studies in particle technology-A perspective. Adv. Powder Technol. 2020, 31, 78–86. [Google Scholar] [CrossRef]
- du Plessis, A.; Yadroitsev, I.; Yadroitsava, I.; Le Roux, S.G. X-ray microcomputed tomography in additive manufacturing: A review of the current technology and applications. 3D Print. Addit. Manuf. 2018, 5, 227–247. [Google Scholar] [CrossRef]
- Wang, J.K.; Ma, P.N.; Meng, H.X.; Cheng, F.Z.; Zhou, H. Investigation on the evolution characteristics of bed porous structure during iron ore sintering. Particuology 2023, 74, 35–47. [Google Scholar] [CrossRef]
- Monfared, Z.G.; Hellström, J.G.I.; Umeki, K. Effect of particle irregularity and particle size distribution on the morphology of packed beds of biochar particles. Sci. Rep. 2025, 15, 15086. [Google Scholar] [CrossRef] [PubMed]
- Liang, D. A comprehensive study on the effects of porous char particles on drag coefficients under combustion based on micro-CT and pore-resolving simulation. Powder Technol. 2025, 460, 121073. [Google Scholar] [CrossRef]
- Wang, C.H.; Chen, W.Z.; Liu, W.N. Testing and analyses on thermal physical parameters of green petroleum in coke calcining kin. Energy Metall. Ind. 2007, 26, 61–63. (In Chinese) [Google Scholar]
- Linstrom, P.J.; Mallard, W.G. (Eds.) NIST Chemistry WebBook, NIST Standard Reference Database Number 69; National Institute of Standards and Technology: Gaithersburg, MA, USA, 2025. [Google Scholar]
- Hassan, E.B.E.; Hoffmann, J. Review on pressure drop through a randomly packed bed of crushed rocks. Discov. Appl. Sci. 2024, 6, 126. [Google Scholar] [CrossRef]
- Wang, Y.W.; Lu, T. Influence of the particle diameter and porosity of packed porous media on the mixing of hot and cold fluids in a T-junction. Int. J. Heat Mass Transf. 2015, 84, 680–690. [Google Scholar] [CrossRef]
- Shen, W.J.; Song, F.Q.; Hu, X.; Zhu, G.M.; Zhu, W.Y. Experimental study on flow characteristics of gas transport in micro- and nanoscale pores. Sci. Rep. 2019, 9, 10196. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.Q.; Wang, A.J.; Li, L.; Li, J.L.; Zhang, N.C.; Jin, K.Q.; Chang, J. Influence mechanism of gas pressure on multiscale dynamic apparent diffusion-permeability of coalbed methane. ACS Omega 2023, 8, 35964–35974. [Google Scholar] [CrossRef] [PubMed]
- Qian, J.H.; Wu, H.A.; Wang, F.C. A generalized knudsen theory for gas transport with specular and diffuse reflections. Nat. Commun. 2023, 14, 7386. [Google Scholar] [CrossRef] [PubMed]
- Xiong, W.; Zhang, L.H.; Zhao, Y.L.; Hu, Q.Y.; Tian, Y.; He, X.; Zhang, R.H.; Zhang, T. Prediction of the viscosity of natural gas at high temperature and high pressure using free-volume theory and entropy scaling. Petrol. Sci. 2023, 20, 3210–3222. [Google Scholar] [CrossRef]
Particle Size (mm) | Median Grain Size (D50, mm) | Bed Porosity (%) | Deviation (%) | |
---|---|---|---|---|
Calculated Values | Experimental Values [11] | |||
−12.5 + 8.0 | 10.25 | 52.0 | ||
−5.0 + 3.2 | 4.10 | 44.5 | ||
−3.2 + 2.5 | 2.85 | 46.7 | 47.9 | 1.2 |
−2.0 + 1.6 | 1.80 | 38.7 | 44.81 | 6.11 |
Level | Particle Size (mm) | Gas Flow Velocity (m/s) | Geometry of the Computational Domain: Length × Width (mm) | Temperature (K) | Gas Composition (vol%) |
---|---|---|---|---|---|
1 | −12.5 + 8.0 | 0.01 | 50 × 50 | 600 | 100% CO |
2 | −5.0 + 3.2 | 0.02 | 100 × 50 | 900 | 100% CH4 |
3 | −3.2 + 2.5 | 0.04 | 150 × 50 | 1200 | Volatile gas mixture (CH4:H2:CO:N2 = 30:60:5:5) [28] |
4 | −2.0 + 1.6 | 0.06 | 200 × 50 | 1500 | 100% H2 |
No | A | B | C | D | Unit Pressure Drop (Pa/m) |
---|---|---|---|---|---|
1 | −12.5 + 8.0 | 0.01 | 600 | H2 | 0.21 |
2 | −12.5 + 8.0 | 0.01 | 1200 | CH4 | 0.37 |
3 | −12.5 + 8.0 | 0.01 | 1500 | CO | 0.49 |
4 | −12.5 + 8.0 | 0.04 | 600 | CH4 | 1.00 |
5 | −12.5 + 8.0 | 0.04 | 1200 | CO | 1.99 |
6 | −12.5 + 8.0 | 0.04 | 1500 | H2 | 1.53 |
7 | −12.5 + 8.0 | 0.06 | 600 | CO | 2.42 |
8 | −12.5 + 8.0 | 0.06 | 1200 | H2 | 2.01 |
9 | −12.5 + 8.0 | 0.06 | 1500 | CH4 | 2.67 |
10 | −3.2 + 2.5 | 0.01 | 600 | CH4 | 2.18 |
11 | −3.2 + 2.5 | 0.01 | 1200 | CO | 4.56 |
12 | −3.2 + 2.5 | 0.01 | 1500 | H2 | 3.56 |
13 | −3.2 + 2.5 | 0.04 | 600 | CO | 13.41 |
14 | −3.2 + 2.5 | 0.04 | 1200 | H2 | 12.41 |
15 | −3.2 + 2.5 | 0.04 | 1500 | CH4 | 16.28 |
16 | −3.2 + 2.5 | 0.06 | 600 | H2 | 11.85 |
17 | −3.2 + 2.5 | 0.06 | 1200 | CH4 | 21.16 |
18 | −3.2 + 2.5 | 0.06 | 1500 | CO | 27.52 |
19 | −2.0 + 1.6 | 0.01 | 600 | CO | 11.13 |
20 | −2.0 + 1.6 | 0.01 | 1200 | H2 | 10.47 |
21 | −2.0 + 1.6 | 0.01 | 1500 | CH4 | 13.71 |
22 | −2.0 + 1.6 | 0.04 | 600 | H2 | 26.52 |
23 | −2.0 + 1.6 | 0.04 | 1200 | CH4 | 47.54 |
24 | −2.0 + 1.6 | 0.04 | 1500 | CO | 61.87 |
25 | −2.0 + 1.6 | 0.06 | 600 | CH4 | 45.36 |
26 | −2.0 + 1.6 | 0.06 | 1200 | CO | 93.25 |
27 | −2.0 + 1.6 | 0.06 | 1500 | H2 | 72.45 |
Factors | SSD | DF | MS | F-Value | F Critical Value | p-Value | Significance |
---|---|---|---|---|---|---|---|
A | 8119.470 | 2 | 4059.735 | 383.129 | 5.143 | 0 | * |
B | 3019.268 | 2 | 1509.634 | 142.469 | 5.143 | 0 | * |
A × B | 2600.836 | 4 | 650.209 | 61.362 | 4.534 | 0 | * |
C | 510.872 | 2 | 255.436 | 24.106 | 5.143 | 0.001 | * |
A × C | 544.523 | 4 | 136.131 | 12.847 | 4.534 | 0.004 | * |
D | 430.860 | 4 | 107.715 | 10.165 | 4.534 | 0.008 | * |
A × D | 378.225 | 2 | 189.112 | 17.847 | 5.143 | 0.003 | * |
Error | 63.578 | 6 | 10.596 | 1.000 | 4.284 | 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Huang, J.; Zhou, S. Reconstruction of Pore Structures in Petroleum Coke Packed Beds Utilizing CT Scanning and CFD Simulation of Resistance Characteristics. Processes 2025, 13, 3272. https://doi.org/10.3390/pr13103272
Li J, Huang J, Zhou S. Reconstruction of Pore Structures in Petroleum Coke Packed Beds Utilizing CT Scanning and CFD Simulation of Resistance Characteristics. Processes. 2025; 13(10):3272. https://doi.org/10.3390/pr13103272
Chicago/Turabian StyleLi, Jing, Jindi Huang, and Songlin Zhou. 2025. "Reconstruction of Pore Structures in Petroleum Coke Packed Beds Utilizing CT Scanning and CFD Simulation of Resistance Characteristics" Processes 13, no. 10: 3272. https://doi.org/10.3390/pr13103272
APA StyleLi, J., Huang, J., & Zhou, S. (2025). Reconstruction of Pore Structures in Petroleum Coke Packed Beds Utilizing CT Scanning and CFD Simulation of Resistance Characteristics. Processes, 13(10), 3272. https://doi.org/10.3390/pr13103272