Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (11,647)

Search Parameters:
Keywords = personalized model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1430 KiB  
Review
Three-Dimensional Culture System: A New Frontier in Cancer Research, Drug Discovery, and Stem Cell-Based Therapy
by Guya Diletta Marconi, Antonella Mazzone, Ylenia Della Rocca, Oriana Trubiani, Jacopo Pizzicannella and Francesca Diomede
Biology 2025, 14(7), 875; https://doi.org/10.3390/biology14070875 - 17 Jul 2025
Abstract
Two-dimensional culture systems have been used for a long time in the research field but their disadvantages make it difficult to reproduce the in vivo environment. Three-dimensional culture systems overcome these limitations, simulating the physiological context of an organism, from the molecular level [...] Read more.
Two-dimensional culture systems have been used for a long time in the research field but their disadvantages make it difficult to reproduce the in vivo environment. Three-dimensional culture systems overcome these limitations, simulating the physiological context of an organism, from the molecular level to the cellular, tissue, and organ complexity levels. This review focuses on 3D cellular models, such as spheroids and tumoroids, which reproduce tumor heterogeneity and microenvironments. It also includes 3D cultures of mesenchymal stem cells (MSCs), particularly those derived from teeth. In conclusion, 3D models are profoundly impacting the biomedical field by offering more accurate in vitro platforms for drug development and disease modeling, thereby significantly reducing the reliance on animal testing and leading to the advancement of personalized and regenerative medicine. Full article
22 pages, 587 KiB  
Article
Meaning in the Algorithmic Museum: Towards a Dialectical Modelling Nexus of Virtual Curation
by Huining Guan and Pengbo Chen
Heritage 2025, 8(7), 284; https://doi.org/10.3390/heritage8070284 - 17 Jul 2025
Abstract
The rise of algorithm-driven virtual museums presents a philosophical challenge for how cultural meaning is constructed and critiqued in digital curation. Prevailing approaches highlight important but partial aspects: the loss of aura and authenticity in digital reproductions, efforts to maintain semiotic continuity with [...] Read more.
The rise of algorithm-driven virtual museums presents a philosophical challenge for how cultural meaning is constructed and critiqued in digital curation. Prevailing approaches highlight important but partial aspects: the loss of aura and authenticity in digital reproductions, efforts to maintain semiotic continuity with physical exhibits, optimistic narratives of technological democratisation, and critical technopessimist warnings about commodification and bias. Yet none provides a unified theoretical model of meaning-making under algorithmic curation. This paper proposes a dialectical-semiotic framework to synthesise and transcend these positions. The Dialectical Modelling Nexus (DMN) is a new conceptual structure that views meaning in virtual museums as emerging from the dynamic interplay of original and reproduced contexts, human and algorithmic sign systems, personal interpretation, and ideological framing. Through a critique of prior theories and a synthesis of their insights, the DMN offers a comprehensive model to diagnose how algorithms mediate museum content and to guide critical curatorial practice. The framework illuminates the dialectical tensions at the heart of algorithmic cultural mediation and suggests principles for preserving authentic, multi-layered meaning in the digital museum milieu. Full article
(This article belongs to the Special Issue Digital Museology and Emerging Technologies in Cultural Heritage)
15 pages, 807 KiB  
Viewpoint
The New Horizon: A Viewpoint of Novel Drugs, Biomarkers, Artificial Intelligence, and Self-Management in Improving Kidney Transplant Outcomes
by Artur Quintiliano and Andrew J. Bentall
J. Clin. Med. 2025, 14(14), 5077; https://doi.org/10.3390/jcm14145077 - 17 Jul 2025
Abstract
The increasing prevalence of chronic kidney disease (CKD) and end-stage kidney disease (ESKD) has led to a growing demand for kidney transplantation (KTx). Identifying risk factors that enable improved allograft survival through novel therapeutic agents, advanced biomarkers, and artificial intelligence (AI)-driven data integration [...] Read more.
The increasing prevalence of chronic kidney disease (CKD) and end-stage kidney disease (ESKD) has led to a growing demand for kidney transplantation (KTx). Identifying risk factors that enable improved allograft survival through novel therapeutic agents, advanced biomarkers, and artificial intelligence (AI)-driven data integration are critical to addressing this challenge. Drugs, such as SGLT2 inhibitors and finerenone, have demonstrated improved outcomes in patients but lack comprehensive long-term evidence in KTx patients. The use of biomarkers, including circulating cytokines and transcriptomics, coupled with AI, could enhance early detection and personalized treatment strategies. Addressing patient self-management and addressing health access disparities may be more achievable using technologies used at home rather than traditional models of healthcare and thus lead to increased transplant success, both in terms of transplantation rates and allograft longevity. Full article
(This article belongs to the Special Issue Kidney Transplantation: State of the Art Knowledge)
Show Figures

Figure 1

25 pages, 432 KiB  
Review
Targeting CX3CR1 Signaling Dynamics: A Critical Determinant in the Temporal Regulation of Post-Stroke Neurorepair
by Quan He, Tong Zhou and Quanwei He
Brain Sci. 2025, 15(7), 759; https://doi.org/10.3390/brainsci15070759 - 17 Jul 2025
Abstract
Ischemic stroke ranks among the top global causes of disability and mortality, with a highly dynamic pathological process. Post-stroke neuroinflammation, mediated by microglia, demonstrates a dual role in both injury and repair. The CX3CR1/CX3CL1 signaling axis, highly expressed in microglia, acts as a [...] Read more.
Ischemic stroke ranks among the top global causes of disability and mortality, with a highly dynamic pathological process. Post-stroke neuroinflammation, mediated by microglia, demonstrates a dual role in both injury and repair. The CX3CR1/CX3CL1 signaling axis, highly expressed in microglia, acts as a key regulator. This review examines the spatiotemporal dynamics of the axis across the stroke process and its involvement in neural repair. Crucially, this signaling pathway demonstrates stage-dependent functional duality: its cellular sources, receptor expression profiles, and functional consequences undergo temporally orchestrated shifts, manifesting coexisting or interconverting protective and damaging properties. Ignoring this dynamism compromises the therapeutic efficacy of targeted interventions. Thus, we propose a triple precision strategy of “stroke phase—biomarker—targeted intervention”. It uses specific biomarkers for precise staging and designs interventions based on each phase’s signaling characteristics. Despite challenges like biomarker validation, mechanistic exploration, and cross-species differences, integrating cutting-edge technologies such as spatial metabolomics and AI-driven dynamic modeling promises to shift stroke therapy toward personalized spatiotemporal programming. Temporally targeting CX3CR1 signaling may offer a key basis for developing next-generation precision neural repair strategies for stroke. Full article
19 pages, 4902 KiB  
Article
Metabolic Profiling of Distinct TP53-Mutant Esophageal Adenocarcinoma Models Reveals Different Bioenergetic Dependencies
by Erica Cataldi-Stagetti, Nicola Rizzardi, Arianna Orsini, Bianca De Nicolo, Chiara Diquigiovanni, Luca Pincigher, Noah Moruzzi, Romana Fato, Christian Bergamini and Elena Bonora
Int. J. Mol. Sci. 2025, 26(14), 6869; https://doi.org/10.3390/ijms26146869 - 17 Jul 2025
Abstract
Esophageal adenocarcinoma (EAC) is a highly aggressive malignancy with rising incidence and poor prognosis. TP53, previously identified as the most frequently mutated gene in EAC in our studies, plays a central role in tumor suppression and regulation. However, the metabolic consequences of [...] Read more.
Esophageal adenocarcinoma (EAC) is a highly aggressive malignancy with rising incidence and poor prognosis. TP53, previously identified as the most frequently mutated gene in EAC in our studies, plays a central role in tumor suppression and regulation. However, the metabolic consequences of TP53 mutations in EAC remain largely uncharacterized. We metabolically profiled three TP53-mutant EAC cell models (OE33, OE19, and FLO1) representing progressive stages of tumor differentiation and harboring distinct TP53 alterations. Our analyses revealed different metabolic phenotypes associated with TP53 status. OE33 cells predominantly use glycolytic metabolism but display limited adaptability to environmental changes, possibly due to a higher differentiation state. FLO1 cells exhibit a strong glycolytic dependence, elevated lactate production, and robust proliferation under acidic conditions, consistent with an aggressive and metastatic phenotype. OE19 cells preferentially utilize oxidative phosphorylation, demonstrated by resilience to glucose and glutamine deprivation, and ROS accumulation. These findings highlight the metabolic plasticity of EAC and suggest that TP53 mutation type might influence bioenergetic dependencies. Targeting these metabolic vulnerabilities may offer novel therapeutic avenues for personalized treatment in EAC. Full article
(This article belongs to the Special Issue Cancer Biology: From Genetic Aspects to Treatment)
Show Figures

Figure 1

23 pages, 2572 KiB  
Article
Drivers and Barriers for Edible Streets: A Case Study in Oxford, UK
by Kuhu Gupta, Mohammad Javad Seddighi, Emma L. Davies, Pariyarath Sangeetha Thondre and Mina Samangooei
Sustainability 2025, 17(14), 6538; https://doi.org/10.3390/su17146538 - 17 Jul 2025
Abstract
This study introduces Edible Streets as a distinct and scalable model of community-led urban food growing, specifically investigating the drivers and barriers to the initiative. Unlike traditional urban food-growing initiatives, Edible Streets explores the integration of edible plants into street verges and footpaths [...] Read more.
This study introduces Edible Streets as a distinct and scalable model of community-led urban food growing, specifically investigating the drivers and barriers to the initiative. Unlike traditional urban food-growing initiatives, Edible Streets explores the integration of edible plants into street verges and footpaths with direct community involvement of the people who live/work in a street. This study contributes new knowledge by evaluating Edible Streets through the COM-B model of behavioural change, through policy and governance in addition to behaviour change, and by developing practical frameworks to facilitate its implementation. Focusing on Oxford, the research engaged residents through 17 in-person interviews and 18 online surveys, alongside a stakeholder workshop with 21 policymakers, community leaders, and NGO representatives. Findings revealed strong motivation for Edible Streets, driven by values of sustainability, community resilience, and improved well-being. However, capability barriers, including knowledge gaps in gardening, land-use policies, and food preservation, as well as opportunity constraints related to land access, water availability, and environmental challenges, hindered participation. To address these, a How-to Guide was developed, and a pilot Edible Street project was launched. Future steps include establishing a licensing application model to facilitate urban food growing and conducting a Post-Use Evaluation and Impact Study. Nationally, this model could support Right to Grow policies, while globally, it aligns with climate resilience and food security goals. Locally grown food enhances biodiversity, reduces carbon footprints, and strengthens social cohesion. By tackling key barriers and scaling solutions, this study provides actionable insights for policymakers and practitioners to create resilient, equitable urban food systems. Full article
(This article belongs to the Section Sustainable Urban and Rural Development)
Show Figures

Figure 1

11 pages, 931 KiB  
Article
Clinical Characteristics and Survival Trends of Male Breast Cancer in the United States: A Propensity Score Matched Analysis
by Jayasree Krishnan, Malak Alharbi, Kristopher Attwood and Arya Mariam Roy
J. Pers. Med. 2025, 15(7), 321; https://doi.org/10.3390/jpm15070321 - 17 Jul 2025
Abstract
Background: Male breast cancer (MBC) is extremely rare, representing less than 1% of breast cancer (BC). Owing to the rarity, there is a substantial knowledge gap regarding the survival trends of MBC compared with female breast cancer (FBC). Methods: We queried the National [...] Read more.
Background: Male breast cancer (MBC) is extremely rare, representing less than 1% of breast cancer (BC). Owing to the rarity, there is a substantial knowledge gap regarding the survival trends of MBC compared with female breast cancer (FBC). Methods: We queried the National Cancer Database for BC patients diagnosed during 2004–2018 and utilized an inverse propensity weighted cox regression model assessed the association between sex and overall survival (OS) and survival trends over time by sex. Results: We identified 24,055 MBC and 2,532,470 FBC patients. Patients with MBC were older (mean age: 65.6 vs. 61.4 years), and more likely to have stage IV at diagnosis (7% vs. 4.7%), larger tumors (cT4: 6% vs. 3.7%), and node-positive disease (18.5% vs. 15.5%) (p < 0.001) compared with FBC. MBC were more likely to be estrogen (ER) (88.5% vs. 78.5%) and progesterone receptor (PR) (79.6% vs. 68%) positive and less likely to be HER2 receptor positive (7.9% vs. 9.3%) or triple negative (2.8% vs. 7.6%) compared with FBC (all p < 0.001). The OS rates were lower in MBC compared with FBC (5-year: 73% vs. 83%; 10-year: 54% vs. 70%, p < 0.001). In the propensity weighted cox-regression model, males had higher mortality than females with BC (HR 2.8, 95% CI 2.88–2.9, p < 0.001). The 5-year OS rates increased steadily for FBC from 2004–2015; however, the survival rates did not improve for MBC over the last decade. Conclusions: Our study shows that MBC patients continue to have poor OS compared with patients with FBC and no significant improvement in survival of MBC patients over the past decade. These results underscore the need to investigate personalized treatment interventions for patients with MBC to improve outcomes. Full article
(This article belongs to the Section Personalized Therapy and Drug Delivery)
Show Figures

Figure 1

14 pages, 704 KiB  
Review
From Rare Genetic Variants to Polygenic Risk: Understanding the Genetic Basis of Cardiomyopathies
by Ana Belen Garcia-Ruano, Elena Sola-Garcia, Maria Martin-Istillarty and Jose Angel Urbano-Moral
J. Cardiovasc. Dev. Dis. 2025, 12(7), 274; https://doi.org/10.3390/jcdd12070274 - 17 Jul 2025
Abstract
Cardiomyopathies represent a heterogeneous group of myocardial disorders, traditionally classified by phenotype into hypertrophic, dilated, and arrhythmogenic. Historically, these conditions have been attributed to high-penetrance rare variants in key structural genes, consistent with a classical Mendelian pattern of inheritance. However, emerging evidence suggests [...] Read more.
Cardiomyopathies represent a heterogeneous group of myocardial disorders, traditionally classified by phenotype into hypertrophic, dilated, and arrhythmogenic. Historically, these conditions have been attributed to high-penetrance rare variants in key structural genes, consistent with a classical Mendelian pattern of inheritance. However, emerging evidence suggests that this model does not fully capture the full spectrum and complexity of disease expression. Many patients do not harbor identifiable pathogenic variants, while others carrying well-known disease-causing variants remain unaffected. This highlights the role of incomplete penetrance, likely modulated by additional genetic modifiers. Recent advances in genomics have revealed a broader view of the genetic basis of cardiomyopathies, introducing new players such as common genetic variants identified as risk alleles, as well as intermediate-effect variants. This continuum of genetic risk, reflecting an overall genetic influence, interacts further with environmental and lifestyle factors, likely contributing together to the observed variability in clinical presentation. This model offers a more realistic framework for understanding genetic inheritance and helps provide a clearer picture of disease expression and penetrance. This review explores the evolving genetic architecture of cardiomyopathies, spanning from a monogenic foundation to intermediate-risk variants and complex polygenic contribution. Recognizing this continuum is essential for enhancing diagnostic accuracy, guiding family screening strategies, and enabling personalized patient management. Full article
(This article belongs to the Section Genetics)
Show Figures

Figure 1

21 pages, 1689 KiB  
Article
Exploring LLM Embedding Potential for Dementia Detection Using Audio Transcripts
by Brandon Alejandro Llaca-Sánchez, Luis Roberto García-Noguez, Marco Antonio Aceves-Fernández, Andras Takacs and Saúl Tovar-Arriaga
Eng 2025, 6(7), 163; https://doi.org/10.3390/eng6070163 - 17 Jul 2025
Abstract
Dementia is a neurodegenerative disorder characterized by progressive cognitive impairment that significantly affects daily living. Early detection of Alzheimer’s disease—the most common form of dementia—remains essential for prompt intervention and treatment, yet clinical diagnosis often requires extensive and resource-intensive procedures. This article explores [...] Read more.
Dementia is a neurodegenerative disorder characterized by progressive cognitive impairment that significantly affects daily living. Early detection of Alzheimer’s disease—the most common form of dementia—remains essential for prompt intervention and treatment, yet clinical diagnosis often requires extensive and resource-intensive procedures. This article explores the effectiveness of automated Natural Language Processing (NLP) methods for identifying Alzheimer’s indicators from audio transcriptions of the Cookie Theft picture description task in the PittCorpus dementia database. Five NLP approaches were compared: a classical Tf–Idf statistical representation and embeddings derived from large language models (GloVe, BERT, Gemma-2B, and Linq-Embed-Mistral), each integrated with a logistic regression classifier. Transcriptions were carefully preprocessed to preserve linguistically relevant features such as repetitions, self-corrections, and pauses. To compare the performance of the five approaches, a stratified 5-fold cross-validation was conducted; the best results were obtained with BERT embeddings (84.73% accuracy) closely followed by the simpler Tf–Idf approach (83.73% accuracy) and the state-of-the-art model Linq-Embed-Mistral (83.54% accuracy), while Gemma-2B and GloVe embeddings yielded slightly lower performances (80.91% and 78.11% accuracy, respectively). Contrary to initial expectations—that richer semantic and contextual embeddings would substantially outperform simpler frequency-based methods—the competitive accuracy of Tf–Idf suggests that the choice and frequency of the words used might be more important than semantic or contextual information in Alzheimer’s detection. This work represents an effort toward implementing user-friendly software capable of offering an initial indicator of Alzheimer’s risk, potentially reducing the need for an in-person clinical visit. Full article
Show Figures

Figure 1

33 pages, 534 KiB  
Review
Local AI Governance: Addressing Model Safety and Policy Challenges Posed by Decentralized AI
by Bahrad A. Sokhansanj
AI 2025, 6(7), 159; https://doi.org/10.3390/ai6070159 - 17 Jul 2025
Abstract
Policies and technical safeguards for artificial intelligence (AI) governance have implicitly assumed that AI systems will continue to operate via massive power-hungry data centers operated by large companies like Google and OpenAI. However, the present cloud-based AI paradigm is being challenged by rapidly [...] Read more.
Policies and technical safeguards for artificial intelligence (AI) governance have implicitly assumed that AI systems will continue to operate via massive power-hungry data centers operated by large companies like Google and OpenAI. However, the present cloud-based AI paradigm is being challenged by rapidly advancing software and hardware technologies. Open-source AI models now run on personal computers and devices, invisible to regulators and stripped of safety constraints. The capabilities of local-scale AI models now lag just months behind those of state-of-the-art proprietary models. Wider adoption of local AI promises significant benefits, such as ensuring privacy and autonomy. However, adopting local AI also threatens to undermine the current approach to AI safety. In this paper, we review how technical safeguards fail when users control the code, and regulatory frameworks cannot address decentralized systems as deployment becomes invisible. We further propose ways to harness local AI’s democratizing potential while managing its risks, aimed at guiding responsible technical development and informing community-led policy: (1) adapting technical safeguards for local AI, including content provenance tracking, configurable safe computing environments, and distributed open-source oversight; and (2) shaping AI policy for a decentralized ecosystem, including polycentric governance mechanisms, integrating community participation, and tailored safe harbors for liability. Full article
(This article belongs to the Section AI Systems: Theory and Applications)
Show Figures

Figure 1

49 pages, 3444 KiB  
Article
A Design-Based Research Approach to Streamline the Integration of High-Tech Assistive Technologies in Speech and Language Therapy
by Anna Lekova, Paulina Tsvetkova, Anna Andreeva, Georgi Dimitrov, Tanio Tanev, Miglena Simonska, Tsvetelin Stefanov, Vaska Stancheva-Popkostadinova, Gergana Padareva, Katia Rasheva, Adelina Kremenska and Detelina Vitanova
Technologies 2025, 13(7), 306; https://doi.org/10.3390/technologies13070306 - 16 Jul 2025
Abstract
Currently, high-tech assistive technologies (ATs), particularly Socially Assistive Robots (SARs), virtual reality (VR) and conversational AI (ConvAI), are considered very useful in supporting professionals in Speech and Language Therapy (SLT) for children with communication disorders. However, despite a positive public perception, therapists face [...] Read more.
Currently, high-tech assistive technologies (ATs), particularly Socially Assistive Robots (SARs), virtual reality (VR) and conversational AI (ConvAI), are considered very useful in supporting professionals in Speech and Language Therapy (SLT) for children with communication disorders. However, despite a positive public perception, therapists face difficulties when integrating these technologies into practice due to technical challenges and a lack of user-friendly interfaces. To address this gap, a design-based research approach has been employed to streamline the integration of SARs, VR and ConvAI in SLT, and a new software platform called “ATLog” has been developed for designing interactive and playful learning scenarios with ATs. ATLog’s main features include visual-based programming with graphical interface, enabling therapists to intuitively create personalized interactive scenarios without advanced programming skills. The platform follows a subprocess-oriented design, breaking down SAR skills and VR scenarios into microskills represented by pre-programmed graphical blocks, tailored to specific treatment domains, therapy goals, and language skill levels. The ATLog platform was evaluated by 27 SLT experts using the Technology Acceptance Model (TAM) and System Usability Scale (SUS) questionnaires, extended with additional questions specifically focused on ATLog structure and functionalities. According to the SUS results, most of the experts (74%) evaluated ATLog with grades over 70, indicating high acceptance of its usability. Over half (52%) of the experts rated the additional questions focused on ATLog’s structure and functionalities in the A range (90–100), while 26% rated them in the B range (80–89), showing strong acceptance of the platform for creating and running personalized interactive scenarios with ATs. According to the TAM results, experts gave high grades for both perceived usefulness (44% in the A range) and perceived ease of use (63% in the A range). Full article
Show Figures

Figure 1

20 pages, 3064 KiB  
Article
HR-pQCT and 3D Printing for Forensic and Orthopaedic Analysis of Gunshot-Induced Bone Damage
by Richard Andreas Lindtner, Lukas Kampik, Werner Schmölz, Mateus Enzenberg, David Putzer, Rohit Arora, Bettina Zelger, Claudia Wöss, Gerald Degenhart, Christian Kremser, Michaela Lackner, Anton Kasper Pallua, Michael Schirmer and Johannes Dominikus Pallua
Biomedicines 2025, 13(7), 1742; https://doi.org/10.3390/biomedicines13071742 - 16 Jul 2025
Abstract
Background/Objectives: Recent breakthroughs in three-dimensional (3D) printing and high-resolution imaging have opened up new possibilities in personalized medicine, surgical planning, and forensic reconstruction. This study breaks new ground by evaluating the integration of high-resolution peripheral quantitative computed tomography (HR-pQCT) with multimodal imaging and [...] Read more.
Background/Objectives: Recent breakthroughs in three-dimensional (3D) printing and high-resolution imaging have opened up new possibilities in personalized medicine, surgical planning, and forensic reconstruction. This study breaks new ground by evaluating the integration of high-resolution peripheral quantitative computed tomography (HR-pQCT) with multimodal imaging and additive manufacturing to assess a chronic, infected gunshot injury in the knee joint of a red deer. This unique approach serves as a translational model for complex skeletal trauma. Methods: Multimodal imaging—including clinical CT, MRI, and HR-pQCT—was used to characterise the extent of osseous and soft tissue damage. Histopathological and molecular analyses were performed to confirm the infectious agent. HR-pQCT datasets were segmented and processed for 3D printing using PolyJet, stereolithography (SLA), and fused deposition modelling (FDM). Printed models were quantitatively benchmarked through 3D surface deviation analysis. Results: Imaging revealed comminuted fractures, cortical and trabecular degradation, and soft tissue involvement, consistent with chronic osteomyelitis. Sphingomonas sp., a bacterium that forms biofilms, was identified as the pathogen. Among the printing methods, PolyJet and SLA demonstrated the highest anatomical accuracy, whereas FDM exhibited greater geometric deviation. Conclusions: HR-pQCT-guided 3D printing provides a powerful tool for the anatomical visualisation and quantitative assessment of complex bone pathology. This approach not only enhances diagnostic precision but also supports applications in surgical rehearsal and forensic analysis. It illustrates the potential of digital imaging and additive manufacturing to advance orthopaedic and trauma care, inspiring future research and applications in the field. Full article
(This article belongs to the Section Biomedical Engineering and Materials)
Show Figures

Figure 1

13 pages, 898 KiB  
Article
The Impact of Air Quality on Patient Mortality: A National Study
by Divya Periyakoil, Isabella Chu, Ndola Prata and Marie Diener-West
Int. J. Environ. Res. Public Health 2025, 22(7), 1123; https://doi.org/10.3390/ijerph22071123 - 16 Jul 2025
Abstract
Introduction: Air pollution is a risk factor for a variety of cardiopulmonary diseases and is a contributing factor to cancer, diabetes, and cognitive impairment. The impact on mortality is not clearly elucidated. Objectives: The goal of this study is to determine the impact [...] Read more.
Introduction: Air pollution is a risk factor for a variety of cardiopulmonary diseases and is a contributing factor to cancer, diabetes, and cognitive impairment. The impact on mortality is not clearly elucidated. Objectives: The goal of this study is to determine the impact (if any) of air pollution on the 5-year mortality of patients in the American Family Cohort (AFC) dataset. Methods: The AFC dataset is derived from the American Board of Family Medicine PRIME Registry electronic health record data. It includes longitudinal information from 6.6 million unique patients from an estimated 800 primary care practices across 47 states, with 40% coming from rural areas. The Environmental Protection Agency’s Air Quality Index (AQI) measures were downloaded for the study period (2016–2022). Using the Python library pandas, the AFC and EPA datasets were merged with respect to date, time, and location. Cox Regression Models were performed on the merged dataset to determine the impact (if any) of air quality on patients’ five-year survival. In the model, AQI was handled as a time-independent (time-fixed) covariate. Results: The group with AQI > 50 had an adjusted hazard of death that was 4.02 times higher than the hazard of death in the group with AQI ≤ 50 (95% CI: 3.36, 4.82, p < 0.05). The hazard of death was 6.73 times higher in persons older than 80 years of age (95% CI: 5.47, 8.28; p < 0.05) compared to those younger than 80 years of age. Black/African American patients had a 4.27 times higher hazard of death (95%CI: 3.47, 5.26; p < 0.05) compared to other races. We also found that regional effects played a role in survival. Conclusions: Poor air quality was associated with a higher hazard of mortality, and this phenomenon was particularly pronounced in Black/African American patients and patients older than 80 years of age. Air pollution is an important social determinant of health. Public health initiatives that improve air quality are necessary to improve health outcomes. Full article
(This article belongs to the Special Issue Air Pollution Exposure and Its Impact on Human Health)
Show Figures

Figure 1

17 pages, 554 KiB  
Review
Post-Concussion Syndrome and Functional Neurological Disorder: Diagnostic Interfaces, Risk Mechanisms, and the Functional Overlay Model
by Ioannis Mavroudis, Foivos Petridis, Eleni Karantali, Alin Ciobica, Sotirios Papagiannopoulos and Dimitrios Kazis
Brain Sci. 2025, 15(7), 755; https://doi.org/10.3390/brainsci15070755 - 16 Jul 2025
Abstract
Background: Post-concussion syndrome (PCS) and Functional Neurological Disorder (FND), including Functional Cognitive Disorder (FCD), are two frequently encountered but diagnostically complex conditions. While PCS is conceptualized as a sequela of mild traumatic brain injury (mTBI), FND/FCD encompasses symptoms incompatible with recognized neurological disease, [...] Read more.
Background: Post-concussion syndrome (PCS) and Functional Neurological Disorder (FND), including Functional Cognitive Disorder (FCD), are two frequently encountered but diagnostically complex conditions. While PCS is conceptualized as a sequela of mild traumatic brain injury (mTBI), FND/FCD encompasses symptoms incompatible with recognized neurological disease, often arising in the absence of structural brain damage. Yet, both conditions exhibit considerable clinical overlap—particularly in the domains of cognitive dysfunction, emotional dysregulation, and symptom persistence despite negative investigations. Objective: This review critically examines the shared and divergent features of PCS and FND/FCD. We explore their respective epidemiology, diagnostic criteria, and risk factors—including personality traits and trauma exposure—as well as emerging insights from neuroimaging and biomarkers. We propose the “Functional Overlay Model” as a clinical tool for navigating diagnostic ambiguity in patients with persistent post-injury symptoms. Results: PCS and FND/FCD frequently share features such as subjective cognitive complaints, fatigue, anxiety, and heightened somatic vigilance. High neuroticism, maladaptive coping, prior psychiatric history, and trauma exposure emerge as common risk factors. Neuroimaging studies show persistent network dysfunction in both PCS and FND, with overlapping disruption in fronto-limbic and default mode systems. The Functional Overlay Model helps to identify cases where functional symptomatology coexists with or replaces an initial organic insult—particularly in patients with incongruent symptoms and normal objective testing. Conclusions: PCS and FND/FCD should be conceptualized along a continuum of brain dysfunction, shaped by injury, psychology, and contextual factors. Early recognition of functional overlays and stratified psychological interventions may improve outcomes for patients with persistent, medically unexplained symptoms after head trauma. This review introduces the Functional Overlay Model as a novel framework to enhance diagnostic clarity and therapeutic planning in patients presenting with persistent post-injury symptoms. Full article
Show Figures

Figure 1

17 pages, 398 KiB  
Article
Turning Setbacks into Smiles: Exploring the Role of Self-Mocking Strategies in Consumers’ Recovery Satisfaction After E-Commerce Service Failures
by Yali Zhang, Jiale Huang and Qiwei Pang
J. Theor. Appl. Electron. Commer. Res. 2025, 20(3), 183; https://doi.org/10.3390/jtaer20030183 - 16 Jul 2025
Abstract
In today’s competitive environment of online service industries, particularly e-commerce, meeting consumer expectations is essential for service providers to ensure service quality. However, service failures are unavoidable, leading to unfavorable consequences for businesses. Understanding the mechanisms for customer recovery after negative service experiences [...] Read more.
In today’s competitive environment of online service industries, particularly e-commerce, meeting consumer expectations is essential for service providers to ensure service quality. However, service failures are unavoidable, leading to unfavorable consequences for businesses. Understanding the mechanisms for customer recovery after negative service experiences is crucial. Using cognitive–emotional personality systems theory and benign violation theory, this study constructed a theoretical model. A total of 351 samples were collected through a situational simulation experiment for a linear regression analysis. A self-mocking response strategy positively influenced brand trust through perceived brand authenticity regarding the dimensions of credibility, integrity, and symbolism. Simultaneously, brand trust was identified as a key driver of post-recovery satisfaction. This study proposes a chain mediation model, which incorporates perceived authenticity and brand trust, to fully comprehend the mechanisms underlying consumers’ satisfaction after service recovery. Our findings provide empirical evidence for the effects of self-mockery on post-recovery satisfaction, as well as suggestions for marketers seeking efficient means to meet consumers’ emotional and cognitive demands during service recovery situations. Full article
Show Figures

Figure 1

Back to TopTop