HR-pQCT and 3D Printing for Forensic and Orthopaedic Analysis of Gunshot-Induced Bone Damage
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Autopsy
- Skin and subcutaneous tissue: Fibrin deposits, inflammatory exudate, necrosis, and tissue discolouration.
- Fascial layers: Structural integrity, tissue separation, and signs of enzymatic degradation.
- Muscular structures: Degree of muscle fibre disruption, haemorrhaging, and evidence of cavitation effects.
- Bone examination: Cross-sectional cortical and trabecular bone analysis for fractures, marrow involvement, and early osteomyelitis indicators.
2.3. Computed Tomography Imaging
2.4. HR-pQCT Scan Acquisition
2.5. Magnetic Resonance Imaging (MRI) Data Acquisition and Processing
2.6. Three-Dimensional Printing Methods
- Surface congruency analysis;
- Wall thickness deviation mapping;
- Quantitative dimensional error assessment using 3D engineering software (Analyze 14.0, Mayo Foundation, USA).
2.7. Application of Quantification Methods for Image Analyses
2.8. Three-Dimensional (3D) Measurement Method
2.9. Histological and Molecular Analysis
2.10. Statistical Analysis
3. Results
3.1. Gross Examination and Dissection Findings
3.2. Morphological Analysis via CT, HR-pQCT and MRI
3.3. Histological and Molecular Analysis of Infected Bone Tissue
3.4. HR-pQCT Imaging, 3D Volumetric Reconstruction, and Anatomical Dissection
3.5. Accuracy and Performance Evaluation of 3D Printing Technologies
3.5.1. Dimensional Accuracy and Surface Deviation Analysis
3.5.2. Statistical Analysis of Dimensional Deviations
3.5.3. Benchmarking of 3D Printing Technologies
3.5.4. Three-Dimensional Deviation Mapping for Dimensional Accuracy Assessment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Akundi, A.; Euresti, D.; Luna, S.; Ankobiah, W.; Lopes, A.; Edinbarough, I. State of Industry 5.0—Analysis and Identification of Current Research Trends. Appl. Syst. Innov. 2022, 5, 27. [Google Scholar]
- Andrés-Cano, P.; Calvo-Haro, J.A.; Fillat-Gomà, F.; Andrés-Cano, I.; Perez-Mañanes, R. Role of the orthopaedic surgeon in 3D printing: Current applications and legal issues for a personalized medicine. Rev. Esp. Cir. Ortop. Traumatol. (Engl. ed.) 2021, 65, 138–151. [Google Scholar] [CrossRef]
- Tack, P.; Victor, J.; Gemmel, P.; Annemans, L. 3D-printing techniques in a medical setting: A systematic literature review. Biomed. Eng. Online 2016, 15, 115. [Google Scholar] [CrossRef]
- Jeyaraman, M.; Nallakumarasamy, A.; Jeyaraman, N. Industry 5.0 in Orthopaedics. Indian J. Orthop. 2022, 56, 1694–1702. [Google Scholar] [CrossRef] [PubMed]
- Auricchio, F.; Marconi, S. 3D printing: Clinical applications in orthopaedics and traumatology. EFORT Open Rev. 2016, 1, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Weidert, S.; Andress, S.; Suero, E.; Becker, C.; Hartel, M.; Behle, M.; Willy, C. 3D printing in orthopedic and trauma surgery education and training: Possibilities and fields of application. Unfallchirurg 2019, 122, 444–451. [Google Scholar] [CrossRef]
- Perera, K.; Ivone, R.; Natekin, E.; Wilga, C.A.; Shen, J.; Menon, J.U. 3D Bioprinted Implants for Cartilage Repair in Intervertebral Discs and Knee Menisci. Front. Bioeng. Biotechnol. 2021, 9, 754113. [Google Scholar] [CrossRef]
- Muller, A.; Ruegsegger, E.; Ruegsegger, P. Peripheral QCT: A low-risk procedure to identify women predisposed to osteoporosis. Phys. Med. Biol. 1989, 34, 741. [Google Scholar] [CrossRef]
- Bolotin, H.H.; Sievänen, H. Inaccuracies Inherent in Dual-Energy X-Ray Absorptiometry In Vivo Bone Mineral Density Can Seriously Mislead Diagnostic/Prognostic Interpretations of Patient-Specific Bone Fragility. J. Bone Miner. Res. 2001, 16, 799–805. [Google Scholar] [CrossRef]
- Force, U.S.P.S.T.; Curry, S.J.; Krist, A.H.; Owens, D.K.; Barry, M.J.; Caughey, A.B.; Davidson, K.W.; Doubeni, C.A.; Epling, J.W., Jr.; Kemper, A.R.; et al. Screening for Osteoporosis to Prevent Fractures: US Preventive Services Task Force Recommendation Statement. JAMA 2018, 319, 2521–2531. [Google Scholar] [CrossRef]
- Borah, B.; Dufresne, T.E.; Chmielewski, P.A.; Johnson, T.D.; Chines, A.; Manhart, M.D. Risedronate preserves bone architecture in postmenopausal women with osteoporosis as measured by three-dimensional microcomputed tomography. Bone 2004, 34, 736–746. [Google Scholar] [CrossRef]
- Borah, B.; Dufresne, T.E.; Ritman, E.L.; Jorgensen, S.M.; Liu, S.; Chmielewski, P.A.; Phipps, R.J.; Zhou, X.; Sibonga, J.D.; Turner, R.T. Long-term risedronate treatment normalizes mineralization and continues to preserve trabecular architecture: Sequential triple biopsy studies with micro-computed tomography. Bone 2006, 39, 345–352. [Google Scholar] [CrossRef]
- Boutroy, S.; Khosla, S.; Sornay-Rendu, E.; Zanchetta, M.B.; McMahon, D.J.; Zhang, C.A.; Chapurlat, R.D.; Zanchetta, J.; Stein, E.M.; Bogado, C.; et al. Microarchitecture and Peripheral BMD are Impaired in Postmenopausal White Women With Fracture Independently of Total Hip T-Score: An International Multicenter Study. J. Bone Miner. Res. 2016, 31, 1158–1166. [Google Scholar] [CrossRef]
- Du, J.; Brooke-Wavell, K.; Paggiosi, M.A.; Hartley, C.; Walsh, J.S.; Silberschmidt, V.V.; Li, S. Characterising variability and regional correlations of microstructure and mechanical competence of human tibial trabecular bone: An in-vivo HR-pQCT study. Bone 2019, 121, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Pan, F.; Wu, F.; Squibb, K.; Thomson, R.; Winzenberg, T.; Jones, G. Familial resemblance in trabecular and cortical volumetric bone mineral density and bone microarchitecture as measured by HRpQCT. Bone 2018, 110, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Whittier, D.E.; Boyd, S.K.; Burghardt, A.J.; Paccou, J.; Ghasem-Zadeh, A.; Chapurlat, R.; Engelke, K.; Bouxsein, M.L. Guidelines for the assessment of bone density and microarchitecture in vivo using high-resolution peripheral quantitative computed tomography. Osteoporos. Int. 2020, 31, 1607–1627. [Google Scholar] [CrossRef] [PubMed]
- MacNeil, J.A.; Boyd, S.K. Improved reproducibility of high-resolution peripheral quantitative computed tomography for measurement of bone quality. Med. Eng. Phys. 2008, 30, 792–799. [Google Scholar] [CrossRef]
- van den Bergh, J.P.; Szulc, P.; Cheung, A.M.; Bouxsein, M.; Engelke, K.; Chapurlat, R. The clinical application of high-resolution peripheral computed tomography (HR-pQCT) in adults: State of the art and future directions. Osteoporos. Int. 2021, 32, 1465–1485. [Google Scholar] [CrossRef]
- Michalak, G.J.; Walker, R.; Boyd, S.K. Concurrent Assessment of Cartilage Morphology and Bone Microarchitecture in the Human Knee Using Contrast-Enhanced HR-pQCT Imaging. J. Clin. Densitom. 2019, 22, 74–85. [Google Scholar] [CrossRef]
- Goetzen, M.; Hofmann-Fliri, L.; Arens, D.; Zeiter, S.; Eberli, U.; Richards, G.; Blauth, M. Subchondral screw abutment: Does it harm the joint cartilage? An in vivo study on sheep tibiae. Int. Orthop. 2017, 41, 1607–1615. [Google Scholar] [CrossRef]
- Haase, A.; Frahm, J.; Matthaei, D.; Hänicke, W.; Merboldt, K.D. FLASH imaging: Rapid NMR imaging using low flip-angle pulses. 1986. J. Magn. Reson. 2011, 213, 533–541. [Google Scholar] [CrossRef]
- Grodzki, D.M.; Jakob, P.M.; Heismann, B. Ultrashort echo time imaging using pointwise encoding time reduction with radial acquisition (PETRA). Magn. Reson. Med. 2012, 67, 510–518. [Google Scholar] [CrossRef]
3D Printing Technology | Printer Model | Material Used | Layer Thickness | Post-Processing |
---|---|---|---|---|
PolyJet | J35 (Stratasys) | VeroContactClear | 18.75 µm | Waterjet cleaning |
Fused Deposition Modeling (FDM) | Fortus 450MC (Stratasys) | ABS Thermoplastic | 0.254 mm | Chemical bath support removal |
RAISE3D E2 | PLA | 0.2 mm | Water-soluble support | |
Prusa XL | PLA + BVOH Support | 0.2 mm | Support dissolved in water | |
Bambu Lab A1 Mini | PLA | 0.2 mm | Manual support removal | |
WASP (Delta Printer) | PLA | Variable | Manual support removal | |
Stereolithography (SLA) | envisionOne | E-RigidForm Char | 50 µm | UV post-curing and mechanical support removal |
Printer Model | Technology | Mean Deviation (µm) | Std Dev (µm) | Minimum (µm) | Maximum (µm) |
---|---|---|---|---|---|
Bambulab A1 Mini | FDM | −15.62 | 569.41 | −3793 | 3652 |
envisionOne | SLA | −10.31 | 452.16 | −2897 | 3205 |
Fortus 450MC | FDM | 12.06 | 510.85 | −2998 | 3528 |
J35 Stratasys | PolyJet | −84.20 | 521.80 | −3812 | 3456 |
PrusaXL | FDM | −209.77 | 971.15 | −3211 | 3665 |
Delta WASP | FDM | −98.53 | 672.90 | −4078 | 3985 |
Raise3D | FDM | −46.49 | 554.16 | −2779 | 3525 |
Printer Model | Technology | Layer Thickness (µm) | Print Time (h) | Material Used (g) | Post-Processing Time (h) | Sterilisation Suitability | |
---|---|---|---|---|---|---|---|
Bambulab A1 Mini | FDM | 200 | 6.40 | 84 | Pla Overture Matte Blue | 0.5 | Not specified |
envisionOne | SLA | 50 | 4.15 | Not specified | E-RigidForm Char | Not specified | Not specified |
Fortus 450MC | FDM | 254 | 9.24 | 89 | ABS-M30i | 1–4 | Gamma, EtO |
J35 Stratasys | PolyJet | 18.75 | 9.53 | 196 | VeroContactClear | 0.08 | Gamma, Steam |
PrusaXL | FDM | 200 | 12.00 | 81 | Pla Premium 1.75 mm Arctic White Polydissolve S1 water-soluble support | 2 | Not specified |
Delta WASP | FDM | Variable | Not specified | Not specified | FILOALFA® ABS | Not specified | Not specified |
Raise3D | FDM | 200 | 31.00 | 67.8 | Pla Premium 1.75 mm Arctic White Polydissolve S1 water-soluble support | 96 (water-soluble) | Not specified |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lindtner, R.A.; Kampik, L.; Schmölz, W.; Enzenberg, M.; Putzer, D.; Arora, R.; Zelger, B.; Wöss, C.; Degenhart, G.; Kremser, C.; et al. HR-pQCT and 3D Printing for Forensic and Orthopaedic Analysis of Gunshot-Induced Bone Damage. Biomedicines 2025, 13, 1742. https://doi.org/10.3390/biomedicines13071742
Lindtner RA, Kampik L, Schmölz W, Enzenberg M, Putzer D, Arora R, Zelger B, Wöss C, Degenhart G, Kremser C, et al. HR-pQCT and 3D Printing for Forensic and Orthopaedic Analysis of Gunshot-Induced Bone Damage. Biomedicines. 2025; 13(7):1742. https://doi.org/10.3390/biomedicines13071742
Chicago/Turabian StyleLindtner, Richard Andreas, Lukas Kampik, Werner Schmölz, Mateus Enzenberg, David Putzer, Rohit Arora, Bettina Zelger, Claudia Wöss, Gerald Degenhart, Christian Kremser, and et al. 2025. "HR-pQCT and 3D Printing for Forensic and Orthopaedic Analysis of Gunshot-Induced Bone Damage" Biomedicines 13, no. 7: 1742. https://doi.org/10.3390/biomedicines13071742
APA StyleLindtner, R. A., Kampik, L., Schmölz, W., Enzenberg, M., Putzer, D., Arora, R., Zelger, B., Wöss, C., Degenhart, G., Kremser, C., Lackner, M., Pallua, A. K., Schirmer, M., & Pallua, J. D. (2025). HR-pQCT and 3D Printing for Forensic and Orthopaedic Analysis of Gunshot-Induced Bone Damage. Biomedicines, 13(7), 1742. https://doi.org/10.3390/biomedicines13071742