From Rare Genetic Variants to Polygenic Risk: Understanding the Genetic Basis of Cardiomyopathies
Abstract
1. Introduction
2. Rare High-Impact Variants: Monogenic Basis of Cardiomyopathies
3. Intermediate Variants: Bridging the Gap in Genetic Risk
4. Polygenic Risk: Common Variations and Genetic Susceptibility
5. Overlap in Cardiomyopathies
6. Additional Risk Modulators
7. Future Directions
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- García-Hernández, S.; de la Higuera Romero, L.; Ochoa, J.P.; McKenna, W.J. Emerging Themes in Genetics of Hypertrophic Cardiomyopathy: Current Status and Clinical Application. Can. J. Cardiol. 2024, 40, 742–753. [Google Scholar] [CrossRef] [PubMed]
- Pujades-Rodriguez, M.; Guttmann, O.P.; Gonzalez-Izquierdo, A.; Duyx, B.; O’Mahony, C.; Elliott, P.; Hemingway, H. Identifying Unmet Clinical Need in Hypertrophic Cardiomyopathy Using National Electronic Health Records. PLoS ONE 2018, 13, e0191214. [Google Scholar] [CrossRef] [PubMed]
- Mazzarotto, F.; Tayal, U.; Buchan, R.J.; Midwinter, W.; Wilk, A.; Whiffin, N.; Govind, R.; Mazaika, E.; de Marvao, A.; Dawes, T.J.W.; et al. Reevaluating the Genetic Contribution of Monogenic Dilated Cardiomyopathy. Circulation 2020, 141, 387–398. [Google Scholar] [CrossRef] [PubMed]
- Walsh, R.; Offerhaus, J.A.; Tadros, R.; Bezzina, C.R. Minor Hypertrophic Cardiomyopathy Genes, Major Insights into the Genetics of Cardiomyopathies. Nat. Rev. Cardiol. 2022, 19, 151–167. [Google Scholar] [CrossRef] [PubMed]
- Corrado, D.; Anastasakis, A.; Basso, C.; Bauce, B.; Blomström-Lundqvist, C.; Bucciarelli-Ducci, C.; Cipriani, A.; De Asmundis, C.; Gandjbakhch, E.; Jiménez-Jáimez, J.; et al. Proposed Diagnostic Criteria for Arrhythmogenic Cardiomyopathy: European Task Force Consensus Report. Int. J. Cardiol. 2024, 395, 131447. [Google Scholar] [CrossRef] [PubMed]
- Ho, C.Y.; Day, S.M.; Ashley, E.A.; Michels, M.; Pereira, A.C.; Jacoby, D.; Cirino, A.L.; Fox, J.C.; Lakdawala, N.K.; Ware, J.S.; et al. Genotype and Lifetime Burden of Disease in Hypertrophic Cardiomyopathy: Insights from the Sarcomeric Human Cardiomyopathy Registry (SHaRe). Circulation 2018, 138, 1387–1398. [Google Scholar] [CrossRef] [PubMed]
- Hathaway, J.; Heliö, K.; Saarinen, I.; Tallila, J.; Seppälä, E.H.; Tuupanen, S.; Turpeinen, H.; Kangas-Kontio, T.; Schleit, J.; Tommiska, J.; et al. Diagnostic Yield of Genetic Testing in a Heterogeneous Cohort of 1376 HCM Patients. BMC Cardiovasc. Disord. 2021, 21, 126. [Google Scholar] [CrossRef] [PubMed]
- Harper, A.R.; Goel, A.; Grace, C.; Thomson, K.L.; Petersen, S.E.; Xu, X.; Waring, A.; Ormondroyd, E.; Kramer, C.M.; Ho, C.Y.; et al. Common Genetic Variants and Modifiable Risk Factors Underpin Hypertrophic Cardiomyopathy Susceptibility and Expressivity. Nat. Genet. 2021, 53, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Tadros, R.; Zheng, S.L.; Grace, C.; Jordà, P.; Francis, C.; Jurgens, S.J.; Thomson, K.L.; Harper, A.R.; Ormondroyd, E.; West, D.M.; et al. Large Scale Genome-Wide Association Analyses Identify Novel Genetic Loci and Mechanisms in Hypertrophic Cardiomyopathy. Nat. Genet. 2025, 57, 530–538. [Google Scholar] [CrossRef] [PubMed]
- Meisner, J.K.; Renberg, A.; Smith, E.D.; Tsan, Y.C.; Elder, B.; Bullard, A.; Merritt, O.L.; Zheng, S.L.; Lakdawala, N.K.; Owens, A.T.; et al. Low Penetrance Sarcomere Variants Contribute to Additive Risk in Hypertrophic Cardiomyopathy. Circulation 2025, 151, 783–798. [Google Scholar] [CrossRef] [PubMed]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef] [PubMed]
- Perkins, M.J.; Van Driest, S.L.; Ellsworth, E.G.; Will, M.L.; Gersh, B.J.; Ommen, S.R.; Ackerman, M.J. Gene-Specific Modifying Effects of Pro-LVH Polymorphisms Involving the Renin–Angiotensin–Aldosterone System among 389 Unrelated Patients with Hypertrophic Cardiomyopathy. Eur. Heart J. 2005, 26, 2457–2462. [Google Scholar] [CrossRef] [PubMed]
- Topriceanu, C.C.; Pereira, A.C.; Moon, J.C.; Captur, G.; Ho, C.Y. Meta-Analysis of Penetrance and Systematic Review on Transition to Disease in Genetic Hypertrophic Cardiomyopathy. Circulation 2024, 149, 107–123. [Google Scholar] [CrossRef] [PubMed]
- Cabrera-Romero, E.; Ochoa, J.P.; Barriales-Villa, R.; Bermúdez-Jiménez, F.J.; Climent-Payá, V.; Zorio, E.; Espinosa, M.A.; Gallego-Delgado, M.; Navarro-Peñalver, M.; Arana-Achaga, X.; et al. Penetrance of Dilated Cardiomyopathy in Genotype-Positive Relatives. J. Am. Coll. Cardiol. 2024, 83, 1640–1651. [Google Scholar] [CrossRef] [PubMed]
- Hasselberg, N.E.; Haland, T.F.; Saberniak, J.; Brekke, P.H.; Berge, K.E.; Leren, T.P.; Edvardsen, T.; Haugaa, K.H. Lamin A/C Cardiomyopathy: Young Onset, High Penetrance, and Frequent Need for Heart Transplantation. Eur. Heart J. 2018, 39, 853–860. [Google Scholar] [CrossRef] [PubMed]
- Parikh, V.N.; Caleshu, C.; Reuter, C.; Lazzeroni, L.C.; Ingles, J.; Garcia, J.; McCaleb, K.; Adesiyun, T.; Sedaghat-Hamedani, F.; Kumar, S.; et al. Regional Variation in RBM20 Causes a Highly Penetrant Arrhythmogenic Cardiomyopathy. Circ. Heart Fail. 2019, 12, e005371. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Genga, M.F.; Cuenca, S.; Dal Ferro, M.; Zorio, E.; Salgado-Aranda, R.; Climent, V.; Padrón-Barthe, L.; Duro-Aguado, I.; Jiménez-Jáimez, J.; Hidalgo-Olivares, V.M.; et al. Truncating FLNC Mutations Are Associated with High-Risk Dilated and Arrhythmogenic Cardiomyopathies. J. Am. Coll. Cardiol. 2016, 68, 2440–2451. [Google Scholar] [CrossRef] [PubMed]
- Dalal, D.; James, C.; Devanagondi, R.; Tichnell, C.; Tucker, A.; Prakasa, K.; Spevak, P.J.; Bluemke, D.A.; Abraham, T.; Russell, S.D.; et al. Penetrance of Mutations in Plakophilin-2 among Families with Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy. J. Am. Coll. Cardiol. 2006, 48, 1416–1424. [Google Scholar] [CrossRef] [PubMed]
- Verstraelen, T.E.; van Lint, F.H.M.; de Brouwer, R.; Proost, V.M.; van Drie, E.; Bosman, L.P.; Weverink, L.; Taha, K.; Bueren, T.; Zwinderman, A.H.; et al. Age-Related Penetrance of Phospholamban p.Arg14del Cardiomyopathy. Eur. J. Heart Fail. 2025; advance online publication. [Google Scholar] [CrossRef]
- Syrris, P.; Ward, D.; Asimaki, A.; Evans, A.; Sen-Chowdhry, S.; Hughes, S.E.; McKenna, W.J. Desmoglein-2 Mutations in Arrhythmogenic Right Ventricular Cardiomyopathy: A Genotype-Phenotype Characterization of Familial Disease. Eur. Heart J. 2007, 28, 581–588. [Google Scholar] [CrossRef] [PubMed]
- Marian, A.J.; Braunwald, E. Hypertrophic Cardiomyopathy: Genetics, Pathogenesis, Clinical Manifestations, Diagnosis, and Therapy. Circ. Res. 2017, 121, 749–770. [Google Scholar] [CrossRef] [PubMed]
- Carrier, L.; Mearini, G.; Stathopoulou, K.; Cuello, F. Cardiac Myosin-Binding Protein C (MYBPC3) in Cardiac Pathophysiology. Gene 2015, 573, 188–197. [Google Scholar] [CrossRef] [PubMed]
- Wood, K.A.; Ellingford, J.M.; Eden, J.; Thomas, H.B.; O’Keefe, R.T.; Hopton, C.; Newman, W.G. Pathogenic Intronic Splice-Affecting Variants in MYBPC3 in Three Patients with Hypertrophic Cardiomyopathy. Cardiogenetics 2021, 11, 73–83. [Google Scholar] [CrossRef]
- Spudich, J.A. Hypertrophic and Dilated Cardiomyopathy: Four Decades of Basic Research on Muscle Lead to Potential Therapeutic Approaches to These Devastating Genetic Diseases. Biophys. J. 2014, 106, 1236–1249. [Google Scholar] [CrossRef] [PubMed]
- Pasquale, F.; Syrris, P.; Kaski, J.P.; Mogensen, J.; McKenna, W.J.; Elliott, P. Long-Term Outcomes in Hypertrophic Cardiomyopathy Caused by Mutations in the Cardiac Troponin T Gene. Circ. Cardiovasc. Genet. 2012, 5, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Mogensen, J.; Kubo, T.; Duque, M.; Uribe, W.; Shaw, A.; Murphy, R.; Gimeno, J.R.; Elliott, P.; McKenna, W.J. Idiopathic Restrictive Cardiomyopathy Is Part of the Clinical Expression of Cardiac Troponin I Mutations. J. Clin. Investig. 2003, 111, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Cheawsamoot, C.; Phokaew, C.; Chetruengchai, W.; Chantranuwat, P.; Puwanant, S.; Tongsima, S.; Khongphatthanayothin, A.; Shotelersuk, V. A Pathogenic Variant in ALPK3 Is Associated with an Autosomal Dominant Adult-Onset Hypertrophic Cardiomyopathy. Circ. Genom. Precis. Med. 2020, 13, e003127. [Google Scholar] [CrossRef] [PubMed]
- Walsh, R.; Thomson, K.L.; Ware, J.S.; Funke, B.H.; Woodley, J.; McGuire, K.J.; Mazzarotto, F.; Blair, E.; Seller, A.; Taylor, J.C.; et al. Reassessment of Mendelian Gene Pathogenicity Using 7,855 Cardiomyopathy Cases and 60,706 Reference Samples. Genet. Med. 2017, 19, 192–203. [Google Scholar] [CrossRef] [PubMed]
- Jordan, E.; Peterson, L.; Ai, T.; Asatryan, B.; Bronicki, L.; Brown, E.; Celeghin, R.; Edwards, M.; Fan, J.; Ingles, J.; et al. Evidence-Based Assessment of Genes in Dilated Cardiomyopathy. Circulation 2021, 144, 7–19. [Google Scholar] [CrossRef] [PubMed]
- Peters, S.; Kumar, S.; Elliott, P.; Kalman, J.M.; Fatkin, D. Arrhythmic Genotypes in Familial Dilated Cardiomyopathy: Implications for Genetic Testing and Clinical Management. Heart Lung Circ. 2019, 28, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Crasto, S.; My, I.; Di Pasquale, E. The Broad Spectrum of LMNA Cardiac Diseases: From Molecular Mechanisms to Clinical Phenotype. Front. Physiol. 2020, 11, 761. [Google Scholar] [CrossRef] [PubMed]
- van den Hoogenhof, M.M.G.; Beqqali, A.; Amin, A.S.; van der Made, I.; Aufiero, S.; Khan, M.A.F.; Schumacher, C.A.; Jansweijer, J.A.; van Spaendonck-Zwarts, K.Y.; Remme, C.A.; et al. RBM20 Mutations Induce an Arrhythmogenic Dilated Cardiomyopathy Related to Disturbed Calcium Handling. Circulation 2018, 138, 1330–1342. [Google Scholar] [CrossRef] [PubMed]
- Begay, R.L.; Graw, S.L.; Sinagra, G.; Asimaki, A.; Rowland, T.J.; Slavov, D.B.; Gowan, K.; Jones, K.L.; Brun, F.; Merlo, M.; et al. Filamin C Truncation Mutations Are Associated with Arrhythmogenic Dilated Cardiomyopathy and Changes in the Cell-Cell Adhesion Structures. JACC Clin. Electrophysiol. 2018, 4, 504–514. [Google Scholar] [CrossRef] [PubMed]
- Pirruccello, J.P.; Bick, A.; Wang, M.; Chaffin, M.; Friedman, S.; Yao, J.; Guo, X.; Venkatesh, B.A.; Taylor, K.D.; Post, W.S.; et al. Analysis of Cardiac Magnetic Resonance Imaging in 36,000 Individuals Yields Genetic Insights into Dilated Cardiomyopathy. Nat. Commun. 2020, 11, 2254. [Google Scholar] [CrossRef] [PubMed]
- Vatta, M.; Regalado, E.; Parfenov, M.; Swartzlander, D.; Nagl, A.; Mannello, M.; Lewis, R.; Clemens, D.; Garcia, J.; Ellsworth, R.E.; et al. Analysis of TTN Truncating Variants in >74,000 Cases Reveals New Clinically Relevant Gene Regions. Circ. Genom. Precis. Med. 2025, 18, e004982. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.; Norton, N.; Bruno, K.A.; Cooper, L.T., Jr.; Atwal, P.S.; Fairweather, D. Sex Differences, Genetic and Environmental Influences on Dilated Cardiomyopathy. J. Clin. Med. 2021, 10, 2289. [Google Scholar] [CrossRef] [PubMed]
- Delmar, M.; McKenna, W.J. The Cardiac Desmosome and Arrhythmogenic Cardiomyopathies: From Gene to Disease. Circ. Res. 2010, 107, 700–714. [Google Scholar] [CrossRef] [PubMed]
- Towbin, J.A.; McKenna, W.J.; Abrams, D.J.; Ackerman, M.J.; Calkins, H.; Darrieux, F.C.C.; Daubert, J.P.; de Chillou, C.; DePasquale, E.C.; Desai, M.Y.; et al. 2019 HRS Expert Consensus Statement on Evaluation, Risk Stratification, and Management of Arrhythmogenic Cardiomyopathy. Heart Rhythm. 2019, 16, e301–e372. [Google Scholar] [CrossRef] [PubMed]
- Zorzi, A.; Cipriani, A.; Bariani, R.; Pilichou, K.; Corrado, D.; Bauce, B. Role of Exercise as a Modulating Factor in Arrhythmogenic Cardiomyopathy. Curr. Cardiol. Rep. 2021, 23, 57. [Google Scholar] [CrossRef] [PubMed]
- D’Elia, S.; Caputo, A.; Natale, F.; Pezzullo, E.; Limongelli, G.; Golino, P.; Cimmino, G.; Loffredo, F.S. The Desmoplakin Phenotype Spectrum: Is the Inflammation the “Fil Rouge” Linking Myocarditis, Arrhythmogenic Cardiomyopathy, and Uncommon Autoinflammatory Systemic Disease? Genes 2024, 15, 1234. [Google Scholar] [CrossRef] [PubMed]
- Manolio, T.A.; Collins, F.S.; Cox, N.J.; Goldstein, D.B.; Hindorff, L.A.; Hunter, D.J.; McCarthy, M.I.; Ramos, E.M.; Cardon, L.R.; Chakravarti, A.; et al. Finding the Missing Heritability of Complex Diseases. Nature 2009, 461, 747–753. [Google Scholar] [CrossRef] [PubMed]
- Chernogubova, E.; Strawbridge, R.; Mahdessian, H.; Mälarstig, A.; Krapivner, S.; Gigante, B.; Hellénius, M.L.; de Faire, U.; Franco-Cereceda, A.; Syvänen, A.C.; et al. Common and low-frequency genetic variants in the PCSK9 locus influence circulating PCSK9 levels. Arterioscler. Thromb. Vasc. Biol. 2012, 32, 1526–1534. [Google Scholar] [CrossRef] [PubMed]
- Hindorff, L.A.; Gillanders, E.M.; Manolio, T.A. Genetic Architecture of Cancer and Other Complex Diseases: Lessons Learned and Future Directions. Carcinogenesis 2011, 32, 945–954. [Google Scholar] [CrossRef] [PubMed]
- Walsh, R.; Mazzarotto, F.; Whiffin, N.; Buchan, R.; Midwinter, W.; Wilk, A.; Li, N.; Felkin, L.; Ingold, N.; Govind, R.; et al. Quantitative Approaches to Variant Classification Increase the Yield and Precision of Genetic Testing in Mendelian Diseases: The Case of Hypertrophic Cardiomyopathy. Genome Med. 2019, 11, 5. [Google Scholar] [CrossRef] [PubMed]
- Pua, C.J.; Tham, N.; Chin, C.W.L.; Walsh, R.; Khor, C.C.; Toepfer, C.N.; Repetti, G.G.; Garfinkel, A.C.; Ewoldt, J.F.; Cloonan, P.; et al. Genetic Studies of Hypertrophic Cardiomyopathy in Singaporeans Identify Variants in TNNI3 and TNNT2 That Are Common in Chinese Patients. Circ. Genom. Precis. Med. 2020, 13, 424–434. [Google Scholar] [CrossRef] [PubMed]
- Larrañaga-Moreira, J.M.; Ochoa, J.P.; Peteiro-Debén, R.; Martín-Álvarez, E.; Ripoll-Vera, T.; Álvarez-Rubio, J.; Peña-Peña, M.L.; Llamas-Gómez, H.; Fernández, A.; Gallego-Delgado, M.; et al. The p.Asn271Ile Variant in the TNNT2 Gene Is Associated with Low-Risk Late-Onset Hypertrophic Cardiomyopathy. J. Am. Coll. Cardiol. HF, 2025; in press. [Google Scholar] [CrossRef]
- McGurk, K.A.; Zhang, X.; Theotokis, P.; Thomson, K.; Harper, A.; Buchan, R.J.; Mazaika, E.; Ormondroyd, E.; Wright, W.T.; Macaya, D.; et al. The Penetrance of Rare Variants in Cardiomyopathy-Associated Genes: A Cross-Sectional Approach to Estimating Penetrance for Secondary Findings. Am. J. Hum. Genet. 2023, 110, 1482–1495. [Google Scholar] [CrossRef] [PubMed]
- Walsh, R.; Jurgens, S.J.; Erdmann, J.; Bezzina, C.R. Genome-Wide Association Studies of Cardiovascular Disease. Physiol. Rev. 2023, 103, 2039–2055. [Google Scholar] [CrossRef] [PubMed]
- Biddinger, K.J.; Jurgens, S.J.; Maamari, D.; Gaziano, L.; Choi, S.H.; Morrill, V.N.; Halford, J.L.; Khera, A.V.; Lubitz, S.A.; Ellinor, P.T.; et al. Rare and Common Genetic Variation Underlying the Risk of Hypertrophic Cardiomyopathy in a National Biobank. JAMA Cardiol. 2022, 7, 715–722. [Google Scholar] [CrossRef] [PubMed]
- Rigato, I.; Bauce, B.; Rampazzo, A.; Zorzi, A.; Pilichou, K.; Mazzotti, E.; Migliore, F.; Marra, M.P.; Lorenzon, A.; De Bortoli, M.; et al. Compound and digenic heterozygosity predicts lifetime arrhythmic outcome and sudden cardiac death in desmosomal gene-related arrhythmogenic right ventricular cardiomyopathy. Circ. Cardiovasc. Genet. 2013, 6, 533–542. [Google Scholar] [CrossRef] [PubMed]
Gene | Cardiomyopathy | Estimated Penetrance | Reference |
MYBPC3 | HCM | 50–60% | Topriceanu, C.C., Circulation, 2024 [13] |
MYH7 | HCM | 50–75% | Topriceanu, C.C., Circulation, 2024 [13] |
TNNT2 | HCM | 40–80% | Topriceanu, C.C., Circulation, 2024 [13] |
MYL2 | HCM | 30–90% | Topriceanu, C.C., Circulation, 2024 [13] |
MYL3 | HCM | 10–70% | Topriceanu, C.C., Circulation, 2024 [13] |
ALPK3 | HCM | 30–70% | Topriceanu, C.C., Circulation, 2024 [13] |
TTNtv | DCM | 13–17% (incidental finding) | Cabrera-Romero, E., JACC, 2024 [14] |
TTNtv | DCM | 40–60% (familial context) | Mazzarotto, F., Circulation, 2020 [3] |
LMNA | DCM/ACM | 70–100% | Hasselberg, N.E., Eur Heart J, 2018 [15] |
RBM20 | DCM | 60–90% | Parikh, V.N., Circ Heart Fail, 2019 [16] |
FLNCtv | DCM | 97% | Ortiz-Genga, M.F., JACC, 2016 [17] |
PKP2 | ACM | 50–80% | Dalal, D., JACC, 2006 [18] |
PLN (R14del) | DCM / ACM | 50–90% | Verstraelen, T.E., Eur J Heart Fail, 2025 [19] |
DSG2 | ACM | 58–75% | Syrris, P., Eur Heart J, 2007 [20] |
Gene | Genomic Variant | Protein Variant | Reference |
---|---|---|---|
MYBPC3 | c.2429G>A | p.Arg810His | Meisner, J. K., Circulation, 2025 [10] |
MYH7 | c.3981C>A | p.Asn1327Lys | Meisner, J. K., Circulation, 2025 [10] |
MYBPC3 | c.442G>A | p.Gly148Arg | Meisner, J. K., Circulation, 2025 [10] |
MYBPC3 | c.1224-52G>A | ---- | Meisner, J. K., Circulation, 2025 [10] |
MYH7 | c.976G>C | p.Ala326Pro | Meisner, J. K., Circulation, 2025 [10] |
TNNT2 | c.832C>T | p.Arg278Cys | Meisner, J. K., Circulation, 2025 [10] |
MYBPC3 | c.1828G>C | p.Asp610His | Meisner, J. K., Circulation, 2025 [10] |
MYL3 | c.170C>A | p.Ala57Asp | Meisner, J. K., Circulation, 2025 [10] |
MYBPC3 | c.3065G>C | p.Arg1022Pro | Meisner, J. K., Circulation, 2025 [10] |
MYBPC3 | c.2618C>A | p.Pro873His | Meisner, J. K., Circulation, 2025 [10] |
MYBPC3 | c.1321G>A | p.Glu441Lys | Meisner, J. K., Circulation, 2025 [10] |
MYBPC3 | c.1813G>A | p.Asp605Asn | Meisner, J. K., Circulation, 2025 [10] |
TNNT2 | c.887G>A | p.R286H | Pua, C. J., Circ, Genom. Precis. Med, 2020 [45] |
TNNI3 | c.235C>T | p.R79C | Pua, C. J., Circ, Genom. Precis. Med, 2020 [45] |
TNNT2 | c.842A>T | p.Asn271Ile | Larrañaga-Moreira, J.M., JACC HF, 2025 [46] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia-Ruano, A.B.; Sola-Garcia, E.; Martin-Istillarty, M.; Urbano-Moral, J.A. From Rare Genetic Variants to Polygenic Risk: Understanding the Genetic Basis of Cardiomyopathies. J. Cardiovasc. Dev. Dis. 2025, 12, 274. https://doi.org/10.3390/jcdd12070274
Garcia-Ruano AB, Sola-Garcia E, Martin-Istillarty M, Urbano-Moral JA. From Rare Genetic Variants to Polygenic Risk: Understanding the Genetic Basis of Cardiomyopathies. Journal of Cardiovascular Development and Disease. 2025; 12(7):274. https://doi.org/10.3390/jcdd12070274
Chicago/Turabian StyleGarcia-Ruano, Ana Belen, Elena Sola-Garcia, Maria Martin-Istillarty, and Jose Angel Urbano-Moral. 2025. "From Rare Genetic Variants to Polygenic Risk: Understanding the Genetic Basis of Cardiomyopathies" Journal of Cardiovascular Development and Disease 12, no. 7: 274. https://doi.org/10.3390/jcdd12070274
APA StyleGarcia-Ruano, A. B., Sola-Garcia, E., Martin-Istillarty, M., & Urbano-Moral, J. A. (2025). From Rare Genetic Variants to Polygenic Risk: Understanding the Genetic Basis of Cardiomyopathies. Journal of Cardiovascular Development and Disease, 12(7), 274. https://doi.org/10.3390/jcdd12070274