The New Horizon: A Viewpoint of Novel Drugs, Biomarkers, Artificial Intelligence, and Self-Management in Improving Kidney Transplant Outcomes
Abstract
1. Introduction
2. Innovative Pharmacological Strategies in Kidney Transplantation
3. Causes of Allograft Failure
4. Biomarkers
5. Artificial Intelligence Integration into Healthcare
6. Artificial Intelligence
- ✔
- Increase the proportion of patients maintaining stable kidney function by 42.8% (GFR > 60 mL/min).
- ✔
- Reduce the progression to ESRD by 13%.
- ✔
- Lower the incidence of mortality by 7.8%.
7. Self-Management
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ABMR | antibody-mediated rejection |
ACEis | angiotensin-converting enzyme inhibitors |
ACR | acute T-cell-mediated rejection |
AI | artificial intelligence |
AR | acute rejection |
ARBs | angiotensin II receptor blockers |
CAD | chronic allograft dysfunction |
CDSSs | clinical decision support systems |
CKD | chronic kidney disease |
CNIs | calcineurin inhibitors |
CNPq | National Council for Scientific and Technological Development |
CR | chronic rejection |
CV | cardiovascular |
ddcfDNA | donor-derived cell-free DNA |
DGF | delayed graft function |
DM | diabetes mellitus |
DSAs | donor-specific antibodies |
eGFR | estimated glomerular filtration rate |
HERs | electronic health records |
EndMT | endothelial to Mesenchymal Transition |
ESKD | end-stage kidney disease |
EV | extracellular vesicles |
GDF-15 | growth differentiation factor-15 |
HF | heart failure |
IF/TA | interstitial fibrosis/tubular atrophy |
IL-6 | interleukin-6 |
IRI | ischemia–reperfusion injury |
KIM-1 | kidney injury molecule |
KTx | kidney transplantation |
MCP-1 | monocyte chemoattractant protein-1 |
MFI | mean fluorescence intensity |
MRA | mineralocorticoid receptor antagonist |
NGAL | neutrophil gelatinase-associated lipocalin |
Pmp | per million population |
RRT | renal replacement therapy |
SGLT2is | sodium-glucose transport 2 inhibitors |
suPAR | soluble receptor of urokinase plasminogen activator |
TLR-4 | soluble Toll-like receptor 4 |
TNFR-1 | Tumor necrosis factor receptor 1 |
TNFR-2 | Tumor necrosis factor receptor 2 |
T2DM | type 2 Diabetes Mellitus |
USA | United States of America |
UACR | urine albumin-to-creatinine ratio |
uNAG | urinary N-acetyl-β-D-glucosaminidase |
References
- Wang, T.; Xi, Y.; Lubwama, R.; Hannanchi, H.; Iglay, K.; Koro, C. Chronic kidney disease among US adults with type 2 diabetes and cardiovascular diseases: A national estimate of prevalence by KDIGO 2012 classification. Diabetes Metab. Syndr. Clin. Res. Rev. 2019, 13, 612–615. [Google Scholar] [CrossRef] [PubMed]
- Stel, S.V.; Boenink, R.; Astley, E.M.; Boerstra, A.B.; Radunovic, D.; Skrunes, R.; Millán, S.R.C.J.; Roblero, S.F.M.; Bell, S.; Mingo, U.P.; et al. A comparison of the epidemiology of kidney replacement therapy between Europe and the United States: 2021 data of the ERA Registry and the USRDS. Nephrol. Dial. Transplant. 2024, 39, 1593–1603. [Google Scholar] [CrossRef] [PubMed]
- Nerbass, B.F.; Lima, N.D.H.; Moura-Neto, A.J.; Lugon, R.J.; Sesso, R. Brazilian Dialysis Survey 2022. Braz. J. Nephrol. 2024, 46, e20230062. [Google Scholar] [CrossRef] [PubMed]
- Foley, N.R.; Collins, J.A. The USRDS. Clin. J. Am. Soc. Nephrol. 2013, 8, 845–851. [Google Scholar] [CrossRef] [PubMed]
- Ryu, J.-H.; Koo, Y.T.; Ro, H.; Cho, J.-H.; Kim, M.-G.; Huh, H.K.; Park, B.J.; Lee, S.; Han, S.; Kim, J.; et al. Better health-related quality of life in kidney transplant patients compared to chronic kidney disease patients with similar renal function. PLoS ONE 2021, 16, e0257981. [Google Scholar] [CrossRef] [PubMed]
- Luyckx, A.V.; Tonelli, M.; Stanifer, W.J. The global burden of kidney disease and the sustainable development goals. Bull. World Health Organ. 2018, 96, 414–422D. [Google Scholar] [CrossRef] [PubMed]
- Bragg-Gresham, J.; Licon, L.A.; Kiryakos, J.; Saran, R.; Roberts, P.J. Rate of Deceased Kidney Donation From Potential In-Hospital Deaths in the US, 2003–2021. JAMA Netw. Open 2024, 7, e241865. [Google Scholar] [CrossRef] [PubMed]
- Matas, A.J.; Smith, J.M.; Skeans, M.A.; Thompson, B.; Gustafson, S.K.; Schnitzler, M.A.; Stewart, D.E.; Cherikh, W.S.; Wainright, J.L.; Snyder, J.J.; et al. OPTN/SRTR 2012 Annual Data Report: Kidney. Am. J. Transplant. 2014, 14, 11–44. [Google Scholar] [CrossRef] [PubMed]
- U.S. Department of Health and Human Services, Health Resources and Services Administration. OPTN/SRTR 2022 Annual Data Report; U.S. Department of Health and Human Services, Health Resources and Services Administratio: North Bethesda, MD, USA, 2024. [Google Scholar]
- Baethge, C.; Goldbeck-Wood, S.; Mertens, S. SANRA—A scale for the quality assessment of narrative review articles. Res. Integr. Peer Rev. 2019, 4, 5. [Google Scholar] [CrossRef] [PubMed]
- Mavrakanas, A.T.; Tsoukas, A.M.; Brophy, M.J.; Sharma, A.; Gariani, K. SGLT-2 inhibitors improve cardiovascular and renal outcomes in patients with CKD: A systematic review and meta-analysis. Sci. Rep. 2023, 13, 15922. [Google Scholar] [CrossRef] [PubMed]
- Ujjawal, A.; Schreiber, B.; Verma, A. Sodium-glucose cotransporter-2 inhibitors (SGLT2i) in kidney transplant recipients: What is the evidence? Ther. Adv. Endocrinol. Metab. 2022, 13, 204201882210900. [Google Scholar] [CrossRef] [PubMed]
- Wanner, C.; Inzucchi, E.S.; Lachin, M.J.; Fitchett, D.; Eynatten, V.M.; Mattheus, M.; Johansen, E.O.; Woerle, J.H.; Broedl, C.U.; Zinman, B. Empagliflozin and Progression of Kidney Disease in Type 2 Diabetes. N. Engl. J. Med. 2016, 375, 323–334. [Google Scholar] [CrossRef] [PubMed]
- Perkovic, V.; Zeeuw, D.D.; Mahaffey, W.K.; Fulcher, G.; Erondu, N.; Shaw, W.; Barrett, D.T.; Weidner-Wells, M.; Deng, H.; Matthews, R.D.; et al. Canagliflozin and renal outcomes in type 2 diabetes: Results from the CANVAS Program randomised clinical trials. Lancet Diabetes Endocrinol. 2018, 6, 691–704. [Google Scholar] [CrossRef] [PubMed]
- Kleinova, P.; Granak, K.; Vnucak, M.; Beliancinova, M.; Blichova, T.; Dedinska, I. The sodium-glucose cotransporter-2 inhibitors in patients with chronic kidney disease with or without kidney transplantation—A single centre study. Bratisl. Med. J. 2024, 125, 759–765. [Google Scholar] [CrossRef] [PubMed]
- Sheu, J.-Y.; Chang, L.-Y.; Chen, J.-Y.; Pan, H.-C.; Tseng, C.-S.; Chueh, S.J.; Wu, V.-C. The outcomes of SGLT-2 inhibitor utilization in diabetic kidney transplant recipients. Nat. Commun. 2024, 15, 10043. [Google Scholar] [CrossRef] [PubMed]
- Bellos, I.; Lagiou, P.; Benetou, V.; Marinaki, S. Safety and Efficacy of Sodium-Glucose Transport Protein 2 Inhibitors and Glucagon-like Peptide-1 Receptor Agonists in Diabetic Kidney Transplant Recipients: Synthesis of Evidence. J. Clin. Med. 2024, 13, 6181. [Google Scholar] [CrossRef] [PubMed]
- Alkindi, F.; Al-Omary, L.H.; Hussain, Q.; Hakim, A.M.; Chaaban, A.; Boobes, Y. Outcomes of SGLT2 Inhibitors Use in Diabetic Renal Transplant Patients. Transplant. Proc. 2020, 52, 175–178. [Google Scholar] [CrossRef] [PubMed]
- Mahling, M.; Schork, A.; Nadalin, S.; Fritsche, A.; Heyne, N.; Guthoff, M. Sodium-Glucose Cotransporter 2 (SGLT2) Inhibition in Kidney Transplant Recipients with Diabetes Mellitus. Kidney Blood Press. Res. 2019, 44, 984–992. [Google Scholar] [CrossRef] [PubMed]
- Halden, S.A.T.; Kvitne, E.K.; Midtvedt, K.; Rajakumar, L.; Robertsen, I.; Brox, J.; Bollerslev, J.; Hartmann, A.; Åsberg, A.; Jenssen, T. Efficacy and Safety of Empagliflozin in Renal Transplant Recipients with Posttransplant Diabetes Mellitus. Diabetes Care 2019, 42, 1067–1074. [Google Scholar] [CrossRef] [PubMed]
- Stegall, M.D.; Cornell, L.D.; Park, W.D.; Smith, B.H.; Cosio, F.G. Renal Allograft Histology at 10 Years After Transplantation in the Tacrolimus Era: Evidence of Pervasive Chronic Injury. Am. J. Transplant. 2018, 18, 180–188. [Google Scholar] [CrossRef] [PubMed]
- Naesens, M.; Lerut, E.; Emonds, M.-P.; Herelixka, A.; Evenepoel, P.; Claes, K.; Bammens, B.; Sprangers, B.; Meijers, B.; Jochmans, I.; et al. Proteinuria as a Noninvasive Marker for Renal Allograft Histology and Failure. J. Am. Soc. Nephrol. 2016, 27, 281–292. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, R.; Joseph, A.; Anker, D.S.; Filippatos, G.; Rossing, P.; Ruilope, M.L.; Pitt, B.; Kolkhof, P.; Scott, C.; Lawatscheck, R.; et al. Hyperkalemia Risk with Finerenone: Results from the FIDELIO-DKD Trial. J. Am. Soc. Nephrol. 2022, 33, 225–237. [Google Scholar] [CrossRef] [PubMed]
- ClinicalTrials.gov. The Effect of Finerenone in Kidney Transplantion Recipients: The EFFEKTOR Study; National Institutes of Health (NIH): Bethesda, MD, USA, 2025.
- Zilbermint, M.; Hannah-Shmouni, F.; Stratakis, A.C. Genetics of Hypertension in African Americans and Others of African Descent. Int. J. Mol. Sci. 2019, 20, 1081. [Google Scholar] [CrossRef] [PubMed]
- Laveist, A.T.; Pérez-Stable, J.E.; Richard, P.; Anderson, A.; Isaac, A.L.; Santiago, R.; Okoh, C.; Breen, N.; Farhat, T.; Assenov, A.; et al. The Economic Burden of Racial, Ethnic, and Educational Health Inequities in the US. JAMA 2023, 329, 1682. [Google Scholar] [CrossRef] [PubMed]
- Yakubu, I.; Moinuddin, I.; Brown, A.; Sterling, S.; Sinhmar, P.; Kumar, D. Costimulation blockade: The next generation. Curr. Opin. Organ Transplant. 2025, 30, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, D.; Stegall, D.M.; Marin, P.E.; Gaber, O.A.; Srinivas, T.; Stites, E.; Busque, S.; Mai, L.M.; Cooper, M.; Crowley, S.; et al. Interim Update of the MDR-101-MLK Phase 3 Trial: MERCURY Study. J. Am. Soc. Nephrol. 2020, 31, 28. [Google Scholar] [CrossRef]
- Issa, F.; Strober, S.; Leventhal, R.J.; Kawai, T.; Kaufman, B.D.; Levitsky, J.; Sykes, M.; Mas, V.; Wood, J.K.; Bridges, N.; et al. The Fourth International Workshop on Clinical Transplant Tolerance. Am. J. Transplant. 2021, 21, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Merzkani, A.M.; Bentall, J.A.; Smith, H.B.; Lopez, B.X.; D’Costa, R.M.; Park, D.W.; Kremers, K.W.; Issa, N.; Rule, D.A.; Chakkera, H.; et al. Death with Function and Graft Failure After Kidney Transplantation: Risk Factors at Baseline Suggest New Approaches to Management. Transplant. Direct 2022, 8, e1273. [Google Scholar] [CrossRef] [PubMed]
- Mayrdorfer, M.; Liefeldt, L.; Wu, K.; Rudolph, B.; Zhang, Q.; Friedersdorff, F.; Lachmann, N.; Schmidt, D.; Osmanodja, B.; Naik, G.M.; et al. Exploring the Complexity of Death-Censored Kidney Allograft Failure. J. Am. Soc. Nephrol. 2021, 32, 1513–1526. [Google Scholar] [CrossRef] [PubMed]
- Sellarés, J.; Freitas, D.D.G.; Mengel, M.; Reeve, J.; Einecke, G.; Sis, B.; Hidalgo, L.G.; Famulski, K.; Matas, A.; Halloran, P.F. Understanding the Causes of Kidney Transplant Failure: The Dominant Role of Antibody-Mediated Rejection and Nonadherence. Am. J. Transplant. 2012, 12, 388–399. [Google Scholar] [CrossRef] [PubMed]
- Gonzales, M.M.; Bentall, A.; Kremers, K.W.; Stegall, D.M.; Borrows, R. Predicting Individual Renal Allograft Outcomes Using Risk Models with 1-Year Surveillance Biopsy and Alloantibody Data. J. Am. Soc. Nephrol. 2016, 27, 3165–3174. [Google Scholar] [CrossRef] [PubMed]
- Nankivell, J.B.; Alexander, I.S. Rejection of the Kidney Allograft. N. Engl. J. Med. 2010, 363, 1451–1462. [Google Scholar] [CrossRef] [PubMed]
- Diebold, M.; Mayer, A.K.; Hidalgo, L.; Kozakowski, N.; Budde, K.; Böhmig, A.G. Chronic Rejection After Kidney Transplantation. Transplantation 2025, 109, 610–621. [Google Scholar] [CrossRef] [PubMed]
- Gaston, S.R.; Fieberg, A.; Helgeson, S.E.; Eversull, J.; Hunsicker, L.; Kasiske, L.B.; Leduc, R.; Rush, D.; Matas, J.A. Late Graft Loss After Kidney Transplantation: Is “Death with Function” Really Death with a Functioning Allograft? Transplantation 2020, 104, 1483–1490. [Google Scholar] [CrossRef] [PubMed]
- Mayrdorfer, M.; Liefeldt, L.; Osmanodja, B.; Naik, G.M.; Schmidt, D.; Duettmann, W.; Hammett, C.; Schrezenmeier, E.; Friedersdorff, F.; Wu, K.; et al. A single centre in-depth analysis of death with a functioning kidney graft and reasons for overall graft failure. Nephrol. Dial. Transplant. 2023, 38, 1857–1866. [Google Scholar] [CrossRef] [PubMed]
- Quaglia, M.; Merlotti, G.; Guglielmetti, G.; Castellano, G.; Cantaluppi, V. Recent Advances on Biomarkers of Early and Late Kidney Graft Dysfunction. Int. J. Mol. Sci. 2020, 21, 5404. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, J.R.; Weng, L.F.; Kandula, P. Acute and Chronic Allograft Dysfunction in Kidney Transplant Recipients. Med. Clin. N. Am. 2016, 100, 487–503. [Google Scholar] [CrossRef] [PubMed]
- D’Costa, R.M.; Bentall, A.; Denic, A.; Schinstock, A.C.; Merzkani, A.M.; Park, D.W.; Ryan, S.M.; Alexander, P.M.; Smith, H.B.; Gandhi, J.M.; et al. Chronic Histologic Changes Are Present Regardless of HLA Mismatches: Evidence from HLA-Identical Living Donor Kidney Transplants. Transplantation 2021, 105, e244–e256. [Google Scholar] [CrossRef] [PubMed]
- Wiebe, C.; Nickerson, P. Strategic Use of Epitope Matching to Improve Outcomes. Transplantation 2016, 100, 2048–2052. [Google Scholar] [CrossRef] [PubMed]
- Nickerson, W.P. What have we learned about how to prevent and treat antibody-mediated rejection in kidney transplantation? Am. J. Transplant. 2020, 20, 12–22. [Google Scholar] [CrossRef] [PubMed]
- Wiebe, C.; Nickerson, P. Acceptable mismatching at the class II epitope level. Curr. Opin. Organ Transplant. 2014, 19, 442–446. [Google Scholar] [CrossRef] [PubMed]
- Califf, M.R. Biomarker definitions and their applications. Exp. Biol. Med. 2018, 243, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Naesens, M.; Anglicheau, D. Precision Transplant Medicine: Biomarkers to the Rescue. J. Am. Soc. Nephrol. 2018, 29, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Liu, Q.; Meng, H.; Duan, H.; Liu, X.; Wu, J.; Gao, F.; Wang, S.; Tan, R.; Yuan, J. Ischemia-reperfusion injury: Molecular mechanisms and therapeutic targets. Signal Transduct. Target. Ther. 2024, 9, 12. [Google Scholar] [CrossRef] [PubMed]
- Reese, P.P.; Hall, E.I.; Weng, L.F.; Schröppel, B.; Doshi, D.M.; Hasz, D.R.; Thiessen-Philbrook, H.; Ficek, J.; Rao, V.; Murray, P.; et al. Associations between Deceased-Donor Urine Injury Biomarkers and Kidney Transplant Outcomes. J. Am. Soc. Nephrol. 2016, 27, 1534–1543. [Google Scholar] [CrossRef] [PubMed]
- Maslauskiene, R.; Vaiciuniene, R.; Tretjakovs, P.; Gersone, G.; Radzeviciene, A.; Bura, A.; Stankevicius, E.; Bumblyte, A.I. Deceased Kidney Donor Biomarkers: Relationship between Delayed Kidney Function and Graft Function Three Years after Transplantation. Diagnostics 2024, 14, 717. [Google Scholar] [CrossRef] [PubMed]
- Mao, Y.-J.; Xu, D.-S.; Liu, S.-D.; Yan, J.-K.; Liu, X.-L.; Zhang, X.-F.; Pan, W.-G.; Tian, C. An analysis of the relationship between donor and recipient biomarkers and kidney graft function, dysfunction, and rejection. Transpl. Immunol. 2023, 81, 101934. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, C.E.; Smith, H.B.; Liang, Y.; Park, D.W.; Bentall, J.A.; Dhala, F.A.; Waterman, D.A.; Kennedy, C.C.; Hickson, J.L.; Rule, D.A.; et al. Increased Pretransplant Inflammatory Biomarkers Predict Death with Function After Kidney Transplantation. Transplantation 2024, 108, 2434–2445. [Google Scholar] [CrossRef] [PubMed]
- Stapleton, P.C.; Conlon, J.P.; Phelan, J.P. Using omics to explore complications of kidney transplantation. Transpl. Int. 2018, 31, 251–262. [Google Scholar] [CrossRef] [PubMed]
- Schröppel, B.; Heeger, S.P.; Thiessen-Philbrook, H.; Hall, E.I.; Doshi, D.M.; Weng, L.F.; Reese, P.P.; Parikh, R.C. Donor Urinary C5a Levels Independently Correlate with Posttransplant Delayed Graft Function. Transplantation 2019, 103, e29–e35. [Google Scholar] [CrossRef] [PubMed]
- Hirt-Minkowski, P.; Schaub, S. Urine CXCL10 as a biomarker in kidney transplantation. Curr. Opin. Organ Transplant. 2024, 29, 138–143. [Google Scholar] [CrossRef] [PubMed]
- Bloom, D.R.; Bromberg, S.J.; Poggio, D.E.; Bunnapradist, S.; Langone, J.A.; Sood, P.; Matas, J.A.; Mehta, S.; Mannon, B.R.; Sharfuddin, A.; et al. Cell-Free DNA and Active Rejection in Kidney Allografts. J. Am. Soc. Nephrol. 2017, 28, 2221–2232. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Khush, K.; Hsieh, S.-C.; Ying, L.; Luikart, H.; Sigdel, T.; Roedder, S.; Yang, A.; Valantine, H.; Sarwal, M.M. Identification of Common Blood Gene Signatures for the Diagnosis of Renal and Cardiac Acute Allograft Rejection. PLoS ONE 2013, 8, e82153. [Google Scholar] [CrossRef] [PubMed]
- Friedewald, J.J.; Kurian, M.S.; Heilman, L.R.; Whisenant, C.T.; Poggio, D.E.; Marsh, C.; Baliga, P.; Odim, J.; Brown, M.M.; Ikle, N.D.; et al. Development and clinical validity of a novel blood-based molecular biomarker for subclinical acute rejection following kidney transplant. Am. J. Transplant. 2019, 19, 98–109. [Google Scholar] [CrossRef] [PubMed]
- Suthanthiran, M.; Schwartz, E.J.; Ding, R.; Abecassis, M.; Dadhania, D.; Samstein, B.; Knechtle, J.S.; Friedewald, J.; Becker, T.Y.; Sharma, K.V.; et al. Urinary-Cell mRNA Profile and Acute Cellular Rejection in Kidney Allografts. N. Engl. J. Med. 2013, 369, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Lok, U.-W.; Zhang, J.; Zhu, Y.X.; Krier, D.J.; Stern, A.; Knoll, M.K.; Petersen, E.K.; Robinson, A.K.; Hesley, K.G.; et al. Optimizing in vivo data acquisition for robust clinical microvascular imaging using ultrasound localization microscopy. Phys. Med. Biol. 2025, 70, 075017. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, K.; Nadkarni, N.G.; Fleming, F.; Mccullough, J.; He, J.C.; Quackenbush, J.; Murphy, B.; Donovan, J.M.; Coca, G.S.; Bonventre, V.J. Initial Validation of a Machine Learning-Derived Prognostic Test (KidneyIntelX) Integrating Biomarkers and Electronic Health Record Data to Predict Longitudinal Kidney Outcomes. Kidney360 2020, 1, 731–739. [Google Scholar] [CrossRef] [PubMed]
- Nelson, G.R.; Grams, E.M.; Ballew, H.S.; Sang, Y.; Azizi, F.; Chadban, J.S.; Chaker, L.; Dunning, C.S.; Fox, C.; Hirakawa, Y.; et al. Development of Risk Prediction Equations for Incident Chronic Kidney Disease. JAMA 2019, 322, 2104. [Google Scholar] [CrossRef] [PubMed]
- Heerspink, J.L.H.; Inker, A.L.; Tighiouart, H.; Collier, H.W.; Haaland, B.; Luo, J.; Appel, B.G.; Chan, M.T.; Estacio, O.R.; Fervenza, F.; et al. Change in Albuminuria and GFR Slope as Joint Surrogate End Points for Kidney Failure: Implications for Phase 2 Clinical Trials in CKD. J. Am. Soc. Nephrol. 2023, 34, 955–968. [Google Scholar] [CrossRef] [PubMed]
- Choi, I.A.; Rodriguez, A.R.; Bacchetti, P.; Bertenthal, D.; Hernandez, T.G.; O’Hare, M.A. White/Black Racial Differences in Risk of End-stage Renal Disease and Death. Am. J. Med. 2009, 122, 672–678. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Quinn, R.R.; Karim, E.M.; Bello, A.; Tam-Tham, H.; Weaver, R.; Ronksley, E.P.; Quan, H.; Strippoli, F.M.G.; Manns, B.; et al. Nephrology consultation and mortality in people with stage 4 chronic kidney disease: A population-based study. Can. Med. Assoc. J. 2019, 191, E274–E282. [Google Scholar] [CrossRef] [PubMed]
- Nayak, A.; Vakili, S.; Nayak, K.; Nikolov, M.; Chiu, M.; Sosseinheimer, P.; Talamantes, S.; Testa, S.; Palanisamy, S.; Giri, V.; et al. Use of Voice-Based Conversational Artificial Intelligence for Basal Insulin Prescription Management Among Patients with Type 2 Diabetes. JAMA Netw. Open 2023, 6, e2340232. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.R.; Horn, D.S.; Hurdle, F.J.; Goldfarb-Rumyantzev, S.A. Single and multiple time-point prediction models in kidney transplant outcomes. J. Biomed. Inform. 2008, 41, 944–952. [Google Scholar] [CrossRef] [PubMed]
- Loupy, A.; Aubert, O.; Orandi, J.B.; Naesens, M.; Bouatou, Y.; Raynaud, M.; Divard, G.; Jackson, M.A.; Viglietti, D.; Giral, M.; et al. Prediction system for risk of allograft loss in patients receiving kidney transplants: International derivation and validation study. BMJ 2019, 366, l4923. [Google Scholar] [CrossRef] [PubMed]
- Badrouchi, S.; Bacha, M.M.; Ahmed, A.; Abdallah, B.T.; Abderrahim, E. Predicting long-term outcomes of kidney transplantation in the era of artificial intelligence. Sci. Rep. 2023, 13, 21273. [Google Scholar] [CrossRef] [PubMed]
- Senanayake, S.; White, N.; Graves, N.; Healy, H.; Baboolal, K.; Kularatna, S. Machine learning in predicting graft failure following kidney transplantation: A systematic review of published predictive models. Int. J. Med. Inform. 2019, 130, 103957. [Google Scholar] [CrossRef] [PubMed]
- Javanbakht, M.; Mashayekhi, A.; Baradaran, R.H.; Haghdoost, A.; Afshin, A. Projection of Diabetes Population Size and Associated Economic Burden through 2030 in Iran: Evidence from Micro-Simulation Markov Model and Bayesian Meta-Analysis. PLoS ONE 2015, 10, e0132505. [Google Scholar] [CrossRef] [PubMed]
- Sguanci, M.; Mancin, S.; Gazzelloni, A.; Diamanti, O.; Ferrara, G.; Palomares, M.S.; Parozzi, M.; Petrelli, F.; Cangelosi, G. The Internet of Things in the Nutritional Management of Patients with Chronic Neurological Cognitive Impairment: A Scoping Review. Healthcare 2024, 13, 23. [Google Scholar] [CrossRef] [PubMed]
- Wayda, B.; Clemons, A.; Givens, C.R.; Takeda, K.; Takayama, H.; Latif, F.; Restaino, S.; Naka, Y.; Farr, A.M.; Colombo, C.P.; et al. Socioeconomic Disparities in Adherence and Outcomes After Heart Transplant. Circ. Heart Fail. 2018, 11, e004173. [Google Scholar] [CrossRef] [PubMed]
- Park, C.; Jones, M.-M.; Kaplan, S.; Koller, L.F.; Wilder, M.J.; Boulware, E.L.; Mcelroy, M.L. A scoping review of inequities in access to organ transplant in the United States. Int. J. Equity Health 2022, 21, 22. [Google Scholar] [CrossRef] [PubMed]
- Kayler, K.L. Candidate Comprehension of Key Concepts in Kidney Transplantation. Ann. Transplant. 2015, 20, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Taylor, M.D.; Bradley, A.J.; Bradley, C.; Draper, H.; Dudley, C.; Fogarty, D.; Fraser, S.; Johnson, R.; Leydon, M.G.; Metcalfe, W.; et al. Limited health literacy is associated with reduced access to kidney transplantation. Kidney Int. 2019, 95, 1244–1252. [Google Scholar] [CrossRef] [PubMed]
- Basiri, A.; Taheri, M.; Khoshdel, A.; Golshan, S.; Mohseni-Rad, H.; Borumandnia, N.; Simforoosh, N.; Nafar, M.; Aliasgari, M.; Nourbala, H.M.; et al. Living or deceased-donor kidney transplant: The role of psycho-socioeconomic factors and outcomes associated with each type of transplant. Int. J. Equity Health 2020, 19, 79. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Alfafara, C.; Kraus, B.M.; Buckner-Petty, S.; Bonner, T.; Youssef, R.M.; Poterack, A.K.; Mour, G.; Mathur, K.A.; Milam, J.A. Individual- and Community-Level Socioeconomic Status and Deceased Donor Renal Transplant Outcomes. J. Racial Ethn. Health Disparities 2025, 12, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Thongprayoon, C.; Miao, J.; Jadlowiec, C.; Mao, A.S.; Mao, M.; Leeaphorn, N.; Kaewput, W.; Pattharanitima, P.; Valencia, G.A.O.; Tangpanithandee, S.; et al. Distinct clinical profiles and post-transplant outcomes among kidney transplant recipients with lower education levels: Uncovering patterns through machine learning clustering. Ren. Fail. 2023, 45, 2292163. [Google Scholar] [CrossRef] [PubMed]
- Narva, S.A.; Norton, M.J.; Boulware, E.L. Educating Patients about CKD. Clin. J. Am. Soc. Nephrol. 2016, 11, 694–703. [Google Scholar] [CrossRef] [PubMed]
- Mancin, S.; Palomares, M.S.; Sguanci, M.; Palmisano, A.; Gazineo, D.; Parozzi, M.; Ricco, M.; Savini, S.; Ferrara, G.; Anastasi, G.; et al. Relational skills of nephrology and dialysis nurses in clinical care settings: A scoping review and stakeholder consultation. Nurse Educ. Pract. 2025, 82, 104229. [Google Scholar] [CrossRef] [PubMed]
- Bosworth, B.H.; Granger, B.B.; Mendys, P.; Brindis, R.; Burkholder, R.; Czajkowski, M.S.; Daniel, G.J.; Ekman, I.; Ho, M.; Johnson, M.; et al. Medication adherence: A call for action. Am. Heart J. 2011, 162, 412–424. [Google Scholar] [CrossRef] [PubMed]
- Mour, K.G.; Kukla, A.; Jaramillo, A.; Ramon, S.D.; Wadei, M.H.; Stegall, D.M. Renal Disease and Kidney Transplantation in Hispanic American Persons. Kidney360 2024, 5, 1763–1770. [Google Scholar] [CrossRef] [PubMed]
- Langworthy, B.; Wu, Y.; Wang, M. An overview of propensity score matching methods for clustered data. Stat. Methods Med. Res. 2023, 32, 641–655. [Google Scholar] [CrossRef] [PubMed]
Biomarker Category | Definition | Example(s) |
---|---|---|
Susceptibility or Risk Biomarker | Estimates the risk of developing a condition in a stable graft without clinical signs of dysfunction | Acute rejection (AR) |
Diagnostic Biomarker | Identifies patients with a disease or a subset of it | AR type |
Prognostic Biomarker | Estimates the likelihood of a clinical event or disease progression, staging disease severity | Severe rejection with risk of graft loss |
Predictive Biomarker | Estimates the likelihood of achieving a favorable response to a therapy | Eculizumab for complement-fixing donor-specific antibodies (DSAs) |
Monitoring Biomarker | Serially measured to detect disease evolution, drug toxicity, or exposure to immunosuppressive drugs | Tacrolimus levels |
Pharmacodynamic/Response Biomarker | Verifies that a biological response has occurred following drug exposure | DSA mean fluorescence intensity (MFI) after ABMR treatment |
Safety Biomarker | Estimates the presence and severity of drug-related toxicity | Calcineurin inhibitor nephrotoxicity |
Biomarkers | Comment |
---|---|
Damage vs. stress biomarkers to predict AKI | Damage biomarkers had better predictive ability for AKI than the stress biomarker in various clinical settings. |
NGAL/Cr urinary and serum/urinary NGAL | Serum NGAL and urinary NGAL are the most utilized biomarkers for AKI, both demonstrating high diagnostic accuracy regardless of whether they are adjusted for urinary creatinine. Among critically ill patients, various biomarkers exhibited comparable predictive performance for AKI. However, in non-critical patients, NGAL, NGAL/Cr, and serum NGAL showed superior diagnostic accuracy. In medical patients, NGAL demonstrated the highest diagnostic accuracy, whereas in surgical patients, NGAL/Cr was the most accurate biomarker for AKI diagnosis [47]. |
KIM-1 | KIM-1 correlated with donor serum creatinine, while urinary KIM-1 was associated with delayed graft function [48]. |
OMICs | Encompassing different disciplines, such as the following: genomics (the study of the complete genome), transcriptomics (the analysis of gene transcripts—RNA), proteomics (the study of proteins expressed in a biological system), metabolomics (the analysis of metabolites present in cells and tissues), and epigenomics (the study of epigenetic modifications that regulate gene expression) [51]. |
Gene signatures | Gene signatures are specific sets of genes whose differential expression is associated with a particular biological condition, disease, or therapeutic response. For example, genes related to fibrosis, such as mRNA for vimentin, can be used to assess tissue remodeling and disease progression [38]. |
TLR-4 surface expression | It is reduced in DGF and associated with poor graft function at follow-up [38]. |
Non-HLA DSA | Pretransplant levels associated with acute and chronic antibody-mediated rejection, the severity of microvascular inflammation, graft dysfunction, and graft loss [38]. |
Fascin and Vimentin | Expression of these EndMT biomarkers on microvasculature correlated with long-term graft function after delayed graft function [38]. |
Mitochondrial DNA | It predicts DGF in donation after cardiac death donors [38]. |
Plasma and Urinary Endothelial EVs | EV levels and their procoagulant activity progressively decrease after KTx, paralleling renal function recovery [52]. |
Serum CXCL10 | CXCL10 is involved in developing renal diseases through the chemoattraction of inflammatory cells and facilitating cell growth and angiostatic effects. Several studies have demonstrated that urinary CXCL10 expression is significantly elevated during AKI. The pretransplant elevation of serum CXCL10 concentration in patients with acute rejection shows an association with the risk of graft failure. Urinary CXCL10 levels increase in patients experiencing acute rejection [53]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quintiliano, A.; Bentall, A.J. The New Horizon: A Viewpoint of Novel Drugs, Biomarkers, Artificial Intelligence, and Self-Management in Improving Kidney Transplant Outcomes. J. Clin. Med. 2025, 14, 5077. https://doi.org/10.3390/jcm14145077
Quintiliano A, Bentall AJ. The New Horizon: A Viewpoint of Novel Drugs, Biomarkers, Artificial Intelligence, and Self-Management in Improving Kidney Transplant Outcomes. Journal of Clinical Medicine. 2025; 14(14):5077. https://doi.org/10.3390/jcm14145077
Chicago/Turabian StyleQuintiliano, Artur, and Andrew J. Bentall. 2025. "The New Horizon: A Viewpoint of Novel Drugs, Biomarkers, Artificial Intelligence, and Self-Management in Improving Kidney Transplant Outcomes" Journal of Clinical Medicine 14, no. 14: 5077. https://doi.org/10.3390/jcm14145077
APA StyleQuintiliano, A., & Bentall, A. J. (2025). The New Horizon: A Viewpoint of Novel Drugs, Biomarkers, Artificial Intelligence, and Self-Management in Improving Kidney Transplant Outcomes. Journal of Clinical Medicine, 14(14), 5077. https://doi.org/10.3390/jcm14145077