Targeting CX3CR1 Signaling Dynamics: A Critical Determinant in the Temporal Regulation of Post-Stroke Neurorepair
Abstract
1. Introduction
2. Spatiotemporal Dynamics and Dual Regulatory Roles of the CX3CR1/CX3CL1 Signaling Axis in Post-Stroke Pathology
2.1. Hyperacute Phase: Injury Perception and Emergency Response
2.2. Acute Phase: Dual-Phase Regulation of Neuroinflammation
2.3. Subacute Phase: Neural Repair Activation
2.4. Chronic Phase: Perpetuating Inflammation and Secondary Degeneration
3. Phase-Adapted Therapeutic Strategies Targeting CX3CR1
3.1. Timeliness Challenges of Existing Intervention Strategies
3.2. Biomarkers Drive Precision Staging
3.3. Cutting-Edge Technologies Enable Precise Interventions
3.4. Clinical Translation: Triple Precision Strategy
3.4.1. Hyperacute Phase: sCX3CL1/MMP-9 + Vascular Recanalization/Immune Regulation
3.4.2. Acute Phase: sTREM2/CD36 + rCX3CL1 Nanocarrier Delivery
3.4.3. Subacute Phase: PET-MRI PBR28/P2RY12 + FKN-Fc/MSCs
3.4.4. Chronic Phase: sTREM2/NfL + AAV Delivery of CRISPR-Cas9
4. Challenges and Future Directions
4.1. Bottlenecks in Clinical Translation
4.2. Breakthroughs in Cutting-Edge Technologies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yu, C.C.; Liu, L.B.; Chen, S.Y.; Wang, X.F.; Wang, L.; Du, Y.J. Ancient Chinese Herbal Recipe Huanglian Jie Du Decoction for Ischemic Stroke: An Overview of Current Evidence. Aging Dis. 2022, 13, 1733–1744. [Google Scholar] [CrossRef]
- Majumder, D. Ischemic Stroke: Pathophysiology and Evolving Treatment Approaches. Neurosci. Insights 2024, 19, 26331055241292600. [Google Scholar] [CrossRef] [PubMed]
- Qin, C.; Yang, S.; Chu, Y.H.; Zhang, H.; Pang, X.W.; Chen, L.; Zhou, L.Q.; Chen, M.; Tian, D.S.; Wang, W. Signaling pathways involved in ischemic stroke: Molecular mechanisms and therapeutic interventions. Signal Transduct. Target. Ther. 2022, 7, 215. [Google Scholar] [CrossRef] [PubMed]
- Lian, L.; Zhang, Y.; Liu, L.; Yang, L.; Cai, Y.; Zhang, J.; Xu, S. Neuroinflammation in Ischemic Stroke: Focus on MicroRNA-mediated Polarization of Microglia. Front. Mol. Neurosci. 2020, 13, 612439. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; He, L.; Chen, M.; Yang, H.; Cao, X.; Liu, X.; Hao, Q.; Chen, Z.; Liu, T.; Wei, X.E.; et al. PSD-93 mediates the crosstalk between neuron and microglia and facilitates acute ischemic stroke injury by binding to CX3CL1. J. Neurochem. 2021, 157, 2145–2157. [Google Scholar] [CrossRef]
- Ge, Y.; Wang, L.; Wang, C.; Chen, J.; Dai, M.; Yao, S.; Lin, Y. CX3CL1 inhibits NLRP3 inflammasome-induced microglial pyroptosis and improves neuronal function in mice with experimentally-induced ischemic stroke. Life Sci. 2022, 300, 120564. [Google Scholar] [CrossRef]
- Cao, X.W.; Yang, H.; Liu, X.M.; Lou, S.Y.; Kong, L.P.; Rong, L.Q.; Shan, J.J.; Xu, Y.; Zhang, Q.X. Blocking postsynaptic density-93 binding to C-X3-C motif chemokine ligand 1 promotes microglial phenotypic transformation during acute ischemic stroke. Neural Regen. Res. 2023, 18, 1033–1039. [Google Scholar] [CrossRef]
- Pawelec, P.; Ziemka-Nalecz, M.; Sypecka, J.; Zalewska, T. The Impact of the CX3CL1/CX3CR1 Axis in Neurological Disorders. Cells 2020, 9, 2277. [Google Scholar] [CrossRef]
- Psychogios, M.; Brehm, A.; López-Cancio, E.; Marco De Marchis, G.; Meseguer, E.; Katsanos, A.H.; Kremer, C.; Sporns, P.; Zedde, M.; Kobayashi, A.; et al. European Stroke Organisation guidelines on treatment of patients with intracranial atherosclerotic disease. Eur. Stroke J. 2022, 7, XLII–LXXX. [Google Scholar] [CrossRef]
- Strbian, D.; Tsivgoulis, G.; Ospel, J.; Räty, S.; Cimflova, P.; Georgiopoulos, G.; Ullberg, T.; Arquizan, C.; Gralla, J.; Zeleňák, K.; et al. European Stroke Organisation and European Society for Minimally Invasive Neurological Therapy guideline on acute management of basilar artery occlusion. Eur. Stroke J. 2024, 9, 835–884. [Google Scholar] [CrossRef]
- Mead, G.E.; Sposato, L.A.; Sampaio Silva, G.; Yperzeele, L.; Wu, S.; Kutlubaev, M.; Cheyne, J.; Wahab, K.; Urrutia, V.C.; Sharma, V.K.; et al. A systematic review and synthesis of global stroke guidelines on behalf of the World Stroke Organization. Int. J. Stroke 2023, 18, 499–531. [Google Scholar] [CrossRef]
- Bernardo-Castro, S.; Sousa, J.A.; Martins, E.; Donato, H.; Nunes, C.; d’Almeida, O.C.; Castelo-Branco, M.; Abrunhosa, A.; Ferreira, L.; Sargento-Freitas, J. The evolution of blood-brain barrier permeability changes after stroke and its implications on clinical outcome: A systematic review and meta-analysis. Int. J. Stroke 2023, 18, 783–794. [Google Scholar] [CrossRef]
- Wen, X.; Shu, Z.; Li, Y.; Hu, X.; Gong, X. Developing a model for estimating infarction onset time based on computed tomography radiomics in patients with acute middle cerebral artery occlusion. BMC Med. Imaging 2021, 21, 147. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Witchalls, J.; Preston, E.; Pan, L.; Zhang, G.; Waddington, G.; Adams, R.; Han, J. Proprioception After Unilateral Stroke: Changes in the Affected and Unaffected Lower Limbs over Time. Physiother. Res. Int. 2025, 30, e70027. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, S.; Weissenfels, M.; Krummer, N.; Michalski, D.; Weise, G.; Branzan, D.; Pelz, J.O. Long-Term Course of Circulating Elastin, Collagen Type I, and Collagen Type III in Patients with Spontaneous Cervical Artery Dissection: A Prospective Multicenter Study. Transl. Stroke Res. 2025, 16, 238–247. [Google Scholar] [CrossRef] [PubMed]
- Robba, C.; Aspide, R.; Pegoli, M.; Kondratyeva, E.; Gritti, P.; Fustini, M.F.; Battaglini, D.; Pelosi, P.; Hutchinson, P.J.; Helmy, A.; et al. Pituitary Dysfunction After Aneurysmal Subarachnoid Hemorrhage: A Prospective Cohort Study. J. Neurosurg. Anesthesiol. 2022, 34, 44–50. [Google Scholar] [CrossRef]
- Dai, S.; Lemaire, C.; Piscicelli, C.; Perennou, D. Lateropulsion Prevalence After Stroke: A Systematic Review and Meta-analysis. Neurology 2022, 98, e1574–e1584. [Google Scholar] [CrossRef]
- Zhou, C.; Yang, Y.; Lin, X.; Fang, N.; Chen, L.; Jiang, J.; Deng, H.; Deng, Y.; Wan, M.; Qiu, G.; et al. Proposed clinical phases for the improvement of personalized treatment of checkpoint inhibitor-related pneumonitis. Front. Immunol. 2022, 13, 935779. [Google Scholar] [CrossRef]
- Inoue, K. Potential significance of CX3CR1 dynamics in stress resilience against neuronal disorders. Neural Regen. Res. 2022, 17, 2153–2156. [Google Scholar] [CrossRef]
- Kim, S.; Lee, W.; Jo, H.; Sonn, S.K.; Jeong, S.J.; Seo, S.; Suh, J.; Jin, J.; Kweon, H.Y.; Kim, T.K.; et al. The antioxidant enzyme Peroxiredoxin-1 controls stroke-associated microglia against acute ischemic stroke. Redox Biol. 2022, 54, 102347. [Google Scholar] [CrossRef]
- Luczak-Sobotkowska, Z.M.; Rosa, P.; Lopez, M.B.; Ochocka, N.; Kiryk, A.; Lenkiewicz, A.M.; Furhmann, M.; Jankowski, A.; Kaminska, B. Tracking changes in functionality and morphology of repopulated microglia in young and old mice. J. Neuroinflamm. 2024, 21, 248. [Google Scholar] [CrossRef]
- Yang, L.; Geng, Y.; Qian, Y.; Zong, N.; Xia, S.; Yang, H.; Bao, X.; Chen, J.; Xu, Y. Loss of Plxdc2 exacerbates microglia-mediated neuroinflammation and ischemic brain injury. Exp. Neurol. 2025, 391, 115302. [Google Scholar] [CrossRef] [PubMed]
- Healy, L.M.; Zia, S.; Plemel, J.R. Towards a definition of microglia heterogeneity. Commun. Biol. 2022, 5, 1114. [Google Scholar] [CrossRef] [PubMed]
- Kubickova, L.; Dubovy, P. Dynamics of Cellular Regulation of Fractalkine/CX3CL1 and Its Receptor CX3CR1 in the Rat Trigeminal Subnucleus Caudalis after Unilateral Infraorbital Nerve Lesion-Extended Cellular Signaling of the CX3CL1/CX3CR1 Axis in the Development of Trigeminal Neuropathic Pain. Int. J. Mol. Sci. 2024, 25, 6069. [Google Scholar] [CrossRef]
- Brett, C.A.; Carroll, J.B.; Gabriele, M.L. Compromised fractalkine signaling delays microglial occupancy of emerging modules in the multisensory midbrain. Glia 2022, 70, 697–711. [Google Scholar] [CrossRef] [PubMed]
- Bolos, M.; Perea, J.R.; Terreros-Roncal, J.; Pallas-Bazarra, N.; Jurado-Arjona, J.; Avila, J.; Llorens-Martin, M. Absence of microglial CX3CR1 impairs the synaptic integration of adult-born hippocampal granule neurons. Brain Behav. Immun. 2018, 68, 76–89. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Zhang, M.; Cui, S.; Liang, W.; Jia, Z.; Guo, F.; Ou, W.; Wu, Y.; Zhang, S. The core of maintaining neuropathic pain: Crosstalk between glial cells and neurons (neural cell crosstalk at spinal cord). Brain Behav. 2023, 13, e2868. [Google Scholar] [CrossRef] [PubMed]
- Urban, J.; Suchankova, M.; Ganovska, M.; Leksa, V.; Sandor, F.; Tedlova, E.; Konig, B.; Bucova, M. The Role of CX3CL1 and ADAM17 in Pathogenesis of Diffuse Parenchymal Lung Diseases. Diagnostics 2021, 11, 1074. [Google Scholar] [CrossRef]
- Ye, J.; Shan, F.; Xu, X.; Liang, C.; Zhang, N.; Hu, H.; Li, J.; Ouyang, F.; Wang, J.; Zhao, Y.; et al. Centripetal migration and prolonged retention of microglia promotes spinal cord injury repair. J. Neuroinflamm. 2025, 22, 77. [Google Scholar] [CrossRef]
- Wang, X.; Xie, Y.; Niu, Y.; Wan, B.; Lu, Y.; Luo, Q.; Zhu, L. CX3CL1/CX3CR1 signal mediates M1-type microglia and accelerates high-altitude-induced forgetting. Front. Cell. Neurosci. 2023, 17, 1189348. [Google Scholar] [CrossRef]
- Murai, N.; Mitalipova, M.; Jaenisch, R. Functional analysis of CX3CR1 in human induced pluripotent stem (iPS) cell-derived microglia-like cells. Eur. J. Neurosci. 2020, 52, 3667–3678. [Google Scholar] [CrossRef]
- Olveda, G.E.; Barasa, M.N.; Hill, R.A. Microglial phagocytosis of single dying oligodendrocytes is mediated by CX3CR1 but not MERTK. Cell Rep. 2024, 43, 114385. [Google Scholar] [CrossRef]
- Lu, J.; Wang, C.; Cheng, X.; Wang, R.; Yan, X.; He, P.; Chen, H.; Yu, Z. A breakdown in microglial metabolic reprogramming causes internalization dysfunction of alpha-synuclein in a mouse model of Parkinson’s disease. J. Neuroinflamm. 2022, 19, 113. [Google Scholar] [CrossRef]
- Mukai, T.; Di Martino, E.; Tsuji, S.; Blomgren, K.; Nagamura-Inoue, T.; Aden, U. Umbilical cord-derived mesenchymal stromal cells immunomodulate and restore actin dynamics and phagocytosis of LPS-activated microglia via PI3K/Akt/Rho GTPase pathway. Cell Death Discov. 2021, 7, 46. [Google Scholar] [CrossRef] [PubMed]
- Lombardozzi, G.; Castelli, V.; Giorgi, C.; Cimini, A.; d’Angelo, M. Neuroinflammation strokes the brain: A double-edged sword in ischemic stroke. Neural Regen. Res. 2025, 24, 1456. [Google Scholar] [CrossRef] [PubMed]
- Subbarayan, M.S.; Joly-Amado, A.; Bickford, P.C.; Nash, K.R. CX3CL1/CX3CR1 signaling targets for the treatment of neurodegenerative diseases. Pharmacol. Ther. 2022, 231, 107989. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Zhao, W.; Han, S.; Lin, X.; Xu, T.; Tan, Q.; Wang, M.; Yi, C.; Chu, X.; Yang, W.; et al. Activation of the human chemokine receptor CX3CR1 regulated by cholesterol. Sci. Adv. 2022, 8, eabn8048. [Google Scholar] [CrossRef]
- Zhan, L.; Qiu, M.; Zheng, J.; Lai, M.; Lin, K.; Dai, J.; Sun, W.; Xu, E. Fractalkine/CX3CR1 axis is critical for neuroprotection induced by hypoxic postconditioning against cerebral ischemic injury. Cell Commun. Signal. 2024, 22, 457. [Google Scholar] [CrossRef]
- von Beek, C.; Fahlgren, A.; Geiser, P.; Di Martino, M.L.; Lindahl, O.; Prensa, G.I.; Mendez-Enriquez, E.; Eriksson, J.; Hallgren, J.; Fallman, M.; et al. A two-step activation mechanism enables mast cells to differentiate their response between extracellular and invasive enterobacterial infection. Nat. Commun. 2024, 15, 904. [Google Scholar] [CrossRef]
- Qian, X.; Zheng, Y.; Xu, L.; Liu, Z.; Chen, M.; Tong, F.; Fan, P.; Chen, Z.; Dong, N.; Zhang, C.; et al. Deciphering the role of CX3CL1-CX3CR1 in aortic aneurysm pathogenesis: Insights from Mendelian randomization and transcriptomic analyses. Front. Immunol. 2024, 15, 1383607. [Google Scholar] [CrossRef]
- Park, S.H.; Lee, Y.S.; Yang, H.J.; Song, G.J. Fluoxetine Potentiates Phagocytosis and Autophagy in Microglia. Front. Pharmacol. 2021, 12, 770610. [Google Scholar] [CrossRef]
- Zhu, L.; Sun, S.; Wu, W.; Zhang, Y.; Lin, C.; Ji, L. Xanthotoxol alleviates secondary brain injury after intracerebral hemorrhage by inhibiting microglia-mediated neuroinflammation and oxidative stress. Neurochirurgie 2023, 69, 101426. [Google Scholar] [CrossRef]
- Babendreyer, A.; Molls, L.; Dreymueller, D.; Uhlig, S.; Ludwig, A. Shear Stress Counteracts Endothelial CX3CL1 Induction and Monocytic Cell Adhesion. Mediators Inflamm. 2017, 2017, 1515389. [Google Scholar] [CrossRef]
- Jia, M.; Li, Q.; Guo, J.; Shi, W.; Zhu, L.; Huang, Y.; Li, Y.; Wang, L.; Ma, S.; Zhuang, T.; et al. Deletion of BACH1 Attenuates Atherosclerosis by Reducing Endothelial Inflammation. Circ. Res. 2022, 130, 1038–1055. [Google Scholar] [CrossRef]
- Buscemi, L.; Price, M.; Bezzi, P.; Hirt, L. Spatio-temporal overview of neuroinflammation in an experimental mouse stroke model. Sci. Rep. 2019, 9, 507. [Google Scholar] [CrossRef] [PubMed]
- Lecordier, S.; Menet, R.; Allain, A.S.; ElAli, A. Non-classical monocytes promote neurovascular repair in cerebral small vessel disease associated with microinfarctions via CX3CR1. J. Cereb. Blood Flow Metab. 2023, 43, 1873–1890. [Google Scholar] [CrossRef] [PubMed]
- Brandi, E.; Torres-Garcia, L.; Svanbergsson, A.; Haikal, C.; Liu, D.; Li, W.; Li, J.Y. Brain region-specific microglial and astrocytic activation in response to systemic lipopolysaccharides exposure. Front. Aging Neurosci. 2022, 14, 910988. [Google Scholar] [CrossRef] [PubMed]
- Chamera, K.; Kotarska, K.; Szuster-Gluszczak, M.; Trojan, E.; Skorkowska, A.; Pomierny, B.; Krzyzanowska, W.; Bryniarska, N.; Basta-Kaim, A. The prenatal challenge with lipopolysaccharide and polyinosinic:polycytidylic acid disrupts CX3CL1-CX3CR1 and CD200-CD200R signalling in the brains of male rat offspring: A link to schizophrenia-like behaviours. J. Neuroinflamm. 2020, 17, 247. [Google Scholar] [CrossRef]
- Mou, K.J.; Shen, K.F.; Li, Y.L.; Wu, Z.F.; Duan, W. Adenosine A(2A) Receptor in Bone Marrow-Derived Cells Mediated Macrophages M2 Polarization via PPARgamma-P65 Pathway in Chronic Hypoperfusion Situation. Front. Aging Neurosci. 2021, 13, 792733. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, T.; Liu, W.; Xiong, J.; Jiang, L.; Liu, M. Paeonol accelerates skin wound healing by regulating macrophage polarization and inflammation in diabetic rats. Korean J. Physiol. Pharmacol. 2023, 27, 437–448. [Google Scholar] [CrossRef]
- Tutrow, K.; Harkin, J.; Hernandez, M.; Huang, K.-C.S.; Bissel, S.J.; Puntambekar, S.S.; Lamb, B.T.; Meyer, J.S. A human induced pluripotent stem cell model of Alzheimer’s Disease-associated fractalkine receptor polymorphism to assess AD-related microglial dysfunction. Alzheimer Dement. 2024, 20, e089429. [Google Scholar] [CrossRef]
- Park, J.; Kim, J.Y.; Kim, Y.R.; Huang, M.; Chang, J.Y.; Sim, A.Y.; Jung, H.; Lee, W.T.; Hyun, Y.M.; Lee, J.E. Reparative System Arising from CCR2(+) Monocyte Conversion Attenuates Neuroinflammation Following Ischemic Stroke. Transl. Stroke Res. 2021, 12, 879–893. [Google Scholar] [CrossRef]
- Zhang, C.; Li, K.; Zhu, H.; Cheng, M.; Chen, S.; Ling, R.; Wang, C.; Chen, D. ITGB6 modulates resistance to anti-CD276 therapy in head and neck cancer by promoting PF4(+) macrophage infiltration. Nat. Commun. 2024, 15, 7077. [Google Scholar] [CrossRef]
- Zhong, W.; Kokhaei, P.; Mulder, T.A.; Ghaderi, A.; Moshfegh, A.; Lundin, J.; Palma, M.; Schultz, J.; Olin, T.; Osterborg, A.; et al. A Small Molecule Antagonist of CX3CR1 (KAND567) Inhibited the Tumor Growth-Promoting Effect of Monocytes in Chronic Lymphocytic Leukemia (CLL). Cancers 2024, 16, 3821. [Google Scholar] [CrossRef] [PubMed]
- Church, K.A.; Rodriguez, D.; Vanegas, D.; Gutierrez, I.L.; Cardona, S.M.; Madrigal, J.L.M.; Kaur, T.; Cardona, A.E. Models of microglia depletion and replenishment elicit protective effects to alleviate vascular and neuronal damage in the diabetic murine retina. J. Neuroinflamm. 2022, 19, 300. [Google Scholar] [CrossRef]
- Bordeleau, M.; Lacabanne, C.; Fernandez de Cossio, L.; Vernoux, N.; Savage, J.C.; Gonzalez-Ibanez, F.; Tremblay, M.E. Microglial and peripheral immune priming is partially sexually dimorphic in adolescent mouse offspring exposed to maternal high-fat diet. J. Neuroinflamm. 2020, 17, 264. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Lo, H.; Hong, Z.; Zheng, J.; Yan, Y.; Ye, Z.; Chen, X.; Pan, X. Microglial LRRK2-mediated NFATc1 attenuates alpha-synuclein immunotoxicity in association with CX3CR1-induced migration and the lysosome-initiated degradation. Glia 2023, 71, 2266–2284. [Google Scholar] [CrossRef]
- Popescu, A.S.; Butler, C.A.; Allendorf, D.H.; Piers, T.M.; Mallach, A.; Roewe, J.; Reinhardt, P.; Cinti, A.; Redaelli, L.; Boudesco, C.; et al. Alzheimer’s disease-associated R47H TREM2 increases, but wild-type TREM2 decreases, microglial phagocytosis of synaptosomes and neuronal loss. Glia 2023, 71, 974–990. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Prieto, M.; Gutierrez, I.L.; Garcia-Bueno, B.; Caso, J.R.; Leza, J.C.; Ortega-Hernandez, A.; Gomez-Garre, D.; Madrigal, J.L.M. Microglial CX3CR1 production increases in Alzheimer’s disease and is regulated by noradrenaline. Glia 2021, 69, 73–90. [Google Scholar] [CrossRef]
- Greve, H.J.; Mumaw, C.L.; Messenger, E.J.; Kodavanti, P.R.S.; Royland, J.L.; Kodavanti, U.P.; Block, M.L. Diesel exhaust impairs TREM2 to dysregulate neuroinflammation. J. Neuroinflamm. 2020, 17, 351. [Google Scholar] [CrossRef]
- Delizannis, A.T.; Nonneman, A.; Tsering, W.; De Bondt, A.; Van den Wyngaert, I.; Zhang, B.; Meymand, E.; Olufemi, M.F.; Koivula, P.; Maimaiti, S.; et al. Effects of microglial depletion and TREM2 deficiency on Abeta plaque burden and neuritic plaque tau pathology in 5XFAD mice. Acta Neuropathol. Commun. 2021, 9, 150. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Dai, J.; Lin, Y.; Li, M. Isobavachalcone alleviates ischemic stroke by suppressing HDAC1 expression and improving M2 polarization. Brain Res. Bull. 2024, 211, 110944. [Google Scholar] [CrossRef]
- Ge, Y.; Yang, J.; Chen, J.; Dai, M.; Dou, X.; Yao, S.; Yao, C.; Lin, Y. Absence in CX3CR1 receptor signaling promotes post-ischemic stroke cognitive function recovery through suppressed microglial pyroptosis in mice. CNS Neurosci. Ther. 2024, 30, e14551. [Google Scholar] [CrossRef]
- Bivona, G.; Iemmolo, M.; Ghersi, G. CX3CL1 Pathway as a Molecular Target for Treatment Strategies in Alzheimer’s Disease. Int. J. Mol. Sci. 2023, 24, 8230. [Google Scholar] [CrossRef]
- Fritze, J.; Muralidharan, C.; Stamp, E.; Ahlenius, H. Microglia undergo disease-associated transcriptional activation and CX3C motif chemokine receptor 1 expression regulates neurogenesis in the aged brain. Dev. Neurobiol. 2024, 84, 128–141. [Google Scholar] [CrossRef]
- Ge, Y.; Dou, X.; Chen, P.; Chen, J.; Dai, M.; Yao, S.; Lin, Y. Treadmill Exercise Enhances Post-Stroke Functional Recovery in Mice via the CX3CL1/CX3CR1 Signaling Pathway. Mol. Neurobiol. 2025, 62, 591–603. [Google Scholar] [CrossRef]
- Chen, W.; Su, G.; Chai, M.; An, Y.; Song, J.; Zhang, Z. Astrogliosis and glial scar in ischemic stroke—Focused on mechanism and treatment. Exp. Neurol. 2025, 385, 115131. [Google Scholar] [CrossRef]
- Ren, Z.L.; Zhang, C.X.; Zheng, Y.X.; Chen, C.A.; Dan, C.; Lan, X.; Yan, X.; Liu, Y.; He, Y.H.; Cheng, J.L.; et al. Refined qingkailing attenuates reactive astrocytes and glial scar formation after ischemia stroke via the EGFR/PLCgamma pathway. Phytomedicine 2025, 142, 156696. [Google Scholar] [CrossRef]
- Williamson, M.R.; Fuertes, C.J.A.; Dunn, A.K.; Drew, M.R.; Jones, T.A. Reactive astrocytes facilitate vascular repair and remodeling after stroke. Cell Rep. 2021, 35, 109048. [Google Scholar] [CrossRef]
- Kijima, C.; Inaba, T.; Hira, K.; Miyamoto, N.; Yamashiro, K.; Urabe, T.; Hattori, N.; Ueno, Y. Astrocytic Extracellular Vesicles Regulated by Microglial Inflammatory Responses Improve Stroke Recovery. Mol. Neurobiol. 2024, 61, 1002–1021. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, L.; Jin, X.; Li, Z.; Wang, C.; Teng, L.; Li, Y.; Zhang, Y.; Wang, D. Structure characterisation of polysaccharides purified from Boletus aereus Bull. and its improvement on AD-like behaviours via reliving neuroinflammation in APP/PS1 mice. Int. J. Biol. Macromol. 2024, 258, 128819. [Google Scholar] [CrossRef] [PubMed]
- Hata, M.; Hata, M.; Dejda, A.; Pilon, F.; Diaz-Marin, R.; Fournier, F.; Joyal, J.S.; Cagnone, G.; Ochi, Y.; Crespo-Garcia, S.; et al. Corticosteroids reduce pathological angiogenesis yet compromise reparative vascular remodeling in a model of retinopathy. Proc. Natl. Acad. Sci. USA 2024, 121, e2411640121. [Google Scholar] [CrossRef] [PubMed]
- Choi, B.R.; Johnson, K.R.; Maric, D.; McGavern, D.B. Monocyte-derived IL-6 programs microglia to rebuild damaged brain vasculature. Nat. Immunol. 2023, 24, 1110–1123. [Google Scholar] [CrossRef] [PubMed]
- Raffaele, S.; Thougaard, E.; Laursen, C.C.H.; Gao, H.; Andersen, K.M.; Nielsen, P.V.; Orti-Casan, N.; Blichfeldt-Eckhardt, M.; Koch, S.; Deb-Chatterji, M.; et al. Microglial TNFR2 signaling regulates the inflammatory response after CNS injury in a sex-specific fashion. Brain Behav. Immun. 2024, 116, 269–285. [Google Scholar] [CrossRef]
- Zhang, X.; Li, H.; Gu, Y.; Ping, A.; Chen, J.; Zhang, Q.; Xu, Z.; Wang, J.; Tang, S.; Wang, R.; et al. Repair-associated macrophages increase after early-phase microglia attenuation to promote ischemic stroke recovery. Nat. Commun. 2025, 16, 3089. [Google Scholar] [CrossRef]
- Park, K.W.; Ju, H.; Kim, I.D.; Cave, J.W.; Guo, Y.; Wang, W.; Wu, Z.; Cho, S. Delayed Infiltration of Peripheral Monocyte Contributes to Phagocytosis and Transneuronal Degeneration in Chronic Stroke. Stroke 2022, 53, 2377–2388. [Google Scholar] [CrossRef]
- Gu, H.J.; Zuo, S.; Liu, H.Y.; Gu, L.L.; Yang, X.W.; Liao, J.; Wang, Q.Q.; Zhao, R.; Feng, X.S.; Li, H.Y. CX3CR1 participates in pulmonary angiogenesis in experimental hepatopulmonary syndrome mice through inhibiting AKT/ERK signaling pathway and regulating NO/NOS release. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 6645–6656. [Google Scholar] [CrossRef]
- Chen, P.; Zhao, W.; Guo, Y.; Xu, J.; Yin, M. CX3CL1/CX3CR1 in Alzheimer’s Disease: A Target for Neuroprotection. BioMed Res. Int. 2016, 2016, 8090918. [Google Scholar] [CrossRef]
- Madrigal, J.L.; Caso, J.R.; Garcia-Bueno, B.; Gutierrez, I.L.; Leza, J.C. Noradrenaline induces CX3CL1 production and release by neurons. Neuropharmacology 2017, 114, 146–155. [Google Scholar] [CrossRef]
- Collar, A.L.; Swamydas, M.; O’Hayre, M.; Sajib, M.S.; Hoffman, K.W.; Singh, S.P.; Mourad, A.; Johnson, M.D.; Ferre, E.M.; Farber, J.M.; et al. The homozygous CX3CR1-M280 mutation impairs human monocyte survival. JCI Insight 2018, 3, e95417. [Google Scholar] [CrossRef]
- Fan, Q.; He, W.; Gayen, M.; Benoit, M.R.; Luo, X.; Hu, X.; Yan, R. Activated CX3CL1/Smad2 Signals Prevent Neuronal Loss and Alzheimer’s Tau Pathology-Mediated Cognitive Dysfunction. J. Neurosci. 2020, 40, 1133–1144. [Google Scholar] [CrossRef]
- Watroba, M.; Grabowska, A.D.; Szukiewicz, D. Chemokine CX3CL1 (Fractalkine) Signaling and Diabetic Encephalopathy. Int. J. Mol. Sci. 2024, 25, 7527. [Google Scholar] [CrossRef]
- He, H.Y.; Ren, L.; Guo, T.; Deng, Y.H. Neuronal autophagy aggravates microglial inflammatory injury by downregulating CX3CL1/fractalkine after ischemic stroke. Neural Regen. Res. 2019, 14, 280–288. [Google Scholar] [CrossRef]
- O’Sullivan, S.A.; Gasparini, F.; Mir, A.K.; Dev, K.K. Fractalkine shedding is mediated by p38 and the ADAM10 protease under pro-inflammatory conditions in human astrocytes. J. Neuroinflamm. 2016, 13, 189. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Y.; Liu, X.; Li, S.; Cheng, C.; Chen, S.; Le, W. Dynamic changes of CX3CL1/CX3CR1 axis during microglial activation and motor neuron loss in the spinal cord of ALS mouse model. Transl. Neurodegener. 2018, 7, 35. [Google Scholar] [CrossRef] [PubMed]
- van der Maten, G.; Henck, V.; Wieloch, T.; Ruscher, K. CX(3)C chemokine receptor 1 deficiency modulates microglia morphology but does not affect lesion size and short-term deficits after experimental stroke. BMC Neurosci. 2017, 18, 11. [Google Scholar] [CrossRef] [PubMed]
- Ikezu, T. Microglia and extracellular vesicle-mediated spread of Tau pathology. Alzheimer’s Dement. 2024, 20, e087779. [Google Scholar] [CrossRef]
- Wang, L.; Ling, H.; He, H.; Hu, N.; Xiao, L.; Zhang, Y.; Xie, L.; You, Z. Dysfunctional synaptic pruning by microglia correlates with cognitive impairment in sleep-deprived mice: Involvement of CX3CR1 signaling. Neurobiol. Stress 2023, 25, 100553. [Google Scholar] [CrossRef]
- Cornell, J.; Salinas, S.; Huang, H.Y.; Zhou, M. Microglia regulation of synaptic plasticity and learning and memory. Neural Regen. Res. 2022, 17, 705–716. [Google Scholar] [CrossRef]
- Liu, H.; Jiang, M.; Chen, Z.; Li, C.; Yin, X.; Zhang, X.; Wu, M. The Role of the Complement System in Synaptic Pruning after Stroke. Aging Dis. 2024, 16, 1452–1470. [Google Scholar] [CrossRef]
- Wang, J.; Gan, Y.; Han, P.; Yin, J.; Liu, Q.; Ghanian, S.; Gao, F.; Gong, G.; Tang, Z. Ischemia-induced Neuronal Cell Death Is Mediated by Chemokine Receptor CX3CR1. Sci. Rep. 2018, 8, 556. [Google Scholar] [CrossRef]
- Faustino, J.; Chip, S.; Derugin, N.; Jullienne, A.; Hamer, M.; Haddad, E.; Butovsky, O.; Obenaus, A.; Vexler, Z.S. CX3CR1-CCR2-dependent monocyte-microglial signaling modulates neurovascular leakage and acute injury in a mouse model of childhood stroke. J. Cereb. Blood Flow Metab. 2019, 39, 1919–1935. [Google Scholar] [CrossRef]
- Puntambekar, S.S.; Moutinho, M.; Lin, P.B.; Jadhav, V.; Tumbleson-Brink, D.; Balaji, A.; Benito, M.A.; Xu, G.; Oblak, A.; Lasagna-Reeves, C.A.; et al. CX3CR1 deficiency aggravates amyloid driven neuronal pathology and cognitive decline in Alzheimer’s disease. Mol. Neurodegener. 2022, 17, 47. [Google Scholar] [CrossRef]
- Hickman, S.E.; Allison, E.K.; Coleman, U.; Kingery-Gallagher, N.D.; El Khoury, J. Heterozygous CX3CR1 Deficiency in Microglia Restores Neuronal beta-Amyloid Clearance Pathways and Slows Progression of Alzheimer’s Like-Disease in PS1-APP Mice. Front. Immunol. 2019, 10, 2780. [Google Scholar] [CrossRef]
- Sakai, M.; Takeuchi, H.; Yu, Z.; Kikuchi, Y.; Ono, C.; Takahashi, Y.; Ito, F.; Matsuoka, H.; Tanabe, O.; Yasuda, J.; et al. Polymorphisms in the microglial marker molecule CX3CR1 affect the blood volume of the human brain. Psychiatry Clin. Neurosci. 2018, 72, 409–422. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Lopez, A.; Gelpi, E.; Lopategui, D.M.; Vidal-Taboada, J.M. Association of the CX3CR1-V249I Variant with Neurofibrillary Pathology Progression in Late-Onset Alzheimer’s Disease. Mol. Neurobiol. 2018, 55, 2340–2349. [Google Scholar] [CrossRef] [PubMed]
- Du, B.; Liang, M.; Zheng, H.; Fan, C.; Zhang, H.; Lu, X.; Du, Z.; Lian, Y.; Zhang, Y.; Bi, X. Anti-mouse CX3CR1 Antibody Alleviates Cognitive Impairment, Neuronal Loss and Myelin Deficits in an Animal Model of Brain Ischemia. Neuroscience 2020, 438, 169–181. [Google Scholar] [CrossRef] [PubMed]
- Lv, J.; Shen, X.; Shen, X.; Zhao, S.; Xu, R.; Yan, Q.; Lu, J.; Zhu, D.; Zhao, Y.; Dong, J.; et al. NPLC0393 from Gynostemma pentaphyllum ameliorates Alzheimer’s disease-like pathology in mice by targeting protein phosphatase magnesium-dependent 1A phosphatase. Phytother. Res. 2023, 37, 4771–4790. [Google Scholar] [CrossRef]
- Jiang, L.; Zhang, X.; Wang, S.; Zhang, J.; Chen, J.; Lu, J.; Yao, L.; Jin, W.; Li, N.; Li, Q. Functional Monomers Equipped Microgel System for Managing Parkinson’s Disease by Intervening Chemokine Axis-mediated Nerve Cell Communications. Adv. Sci. 2025, 12, e2410070. [Google Scholar] [CrossRef]
- Huang, M.; Wan, Y.; Mao, L.; He, Q.W.; Xia, Y.P.; Li, M.; Li, Y.N.; Jin, H.J.; Hu, B. Inhibiting the Migration of M1 Microglia at Hyperacute Period Could Improve Outcome of tMCAO Rats. CNS Neurosci. Ther. 2017, 23, 222–232. [Google Scholar] [CrossRef]
- Ye, S.Y.; Apple, J.E.; Ren, X.; Tang, F.L.; Yao, L.L.; Wang, Y.G.; Mei, L.; Zhou, Y.G.; Xiong, W.C. Microglial VPS35 deficiency regulates microglial polarization and decreases ischemic stroke-induced damage in the cortex. J. Neuroinflamm. 2019, 16, 235. [Google Scholar] [CrossRef]
- Rayasam, A.; Faustino, J.; Lecuyer, M.; Vexler, Z.S. Neonatal Stroke and TLR1/2 Ligand Recruit Myeloid Cells through the Choroid Plexus in a CX3CR1-CCR2- and Context-Specific Manner. J. Neurosci. 2020, 40, 3849–3861. [Google Scholar] [CrossRef]
- Guo, X.; Liu, R.; Jia, M.; Wang, Q.; Wu, J. Ischemia Reperfusion Injury Induced Blood Brain Barrier Dysfunction and the Involved Molecular Mechanism. Neurochem. Res. 2023, 48, 2320–2334. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.F.; Li, Y.N.; Jin, H.J.; Wu, J.H.; He, Q.W.; Wang, X.X.; Lei, H.; Hu, B. Sema4D/PlexinB1 inhibition ameliorates blood-brain barrier damage and improves outcome after stroke in rats. FASEB J. 2018, 32, 2181–2196. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Mu, H.; Liu, L.; Jiang, X.; Wu, D.; Shi, Y.; Leak, R.K.; Ji, X. Transient selective brain cooling confers neurovascular and functional protection from acute to chronic stages of ischemia/reperfusion brain injury. J. Cereb. Blood Flow Metab. 2019, 39, 1215–1231. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yao, F.; Li, Z.; Jiang, Y.; Li, J.; Yu, S.; Hu, X.; Ouyang, F.; Zheng, M.; Cheng, L.; et al. Dynamic phosphorylation of Fascin-1 orchestrates microglial phagocytosis and neurological recovery after spinal cord injury. J. Neuroinflamm. 2025, 22, 121. [Google Scholar] [CrossRef]
- Brown, G.C. Neuronal Loss after Stroke Due to Microglial Phagocytosis of Stressed Neurons. Int. J. Mol. Sci. 2021, 22, 13442. [Google Scholar] [CrossRef]
- Doust, Y.V.; Bindoff, A.; Holloway, O.G.; Wilson, R.; King, A.E.; Ziebell, J.M. Temporal changes in the microglial proteome of male and female mice after a diffuse brain injury using label-free quantitative proteomics. Glia 2023, 71, 880–903. [Google Scholar] [CrossRef]
- Zhao, A.; Ding, Y.; Zhong, M.; Niu, M.; Wang, L.; Jiao, Y.; Liu, J.; Li, Y. Neuronal DJ-1 regulates microglial activation in Parkinson’s disease. Neural Regen. Res. 2025, 24, 1047. [Google Scholar] [CrossRef]
- Chen, X.; He, X.; Xu, F.; Xu, N.; Sharifi, N.H.; Zhang, P.; Flores, J.J.; Wu, L.; He, Q.; Kanamaru, H.; et al. Fractalkine Enhances Hematoma Resolution and Improves Neurological Function via CX3CR1/AMPK/PPARgamma Pathway after GMH. Stroke 2023, 54, 2420–2433. [Google Scholar] [CrossRef]
- Yang, H.; Yang, J.; Park, N.; Hwang, D.S.; Park, S.Y.; Kim, S.; Bae, H. Adoptive Transfer of CX3CR1-Transduced Tregs Homing to the Forebrain in Lipopolysaccharide-Induced Neuroinflammation and 3xTg Alzheimer’s Disease Models. Int. J. Mol. Sci. 2024, 25, 13682. [Google Scholar] [CrossRef]
- Camacho-Hernández, N.P.; Peña-Ortega, F. Fractalkine/CX3CR1-Dependent Modulation of Synaptic and Network Plasticity in Health and Disease. Neural Plast. 2023, 2023, 4637073. [Google Scholar] [CrossRef]
- Li, Z.; Qiang, Y.; Chen, D.; Hu, D.; Gao, D.; Xu, X.; Sun, L.; Li, Y.; Qiu, W.; Sheng, Z. Dual-modal super-resolution ultrasound and NIR-II fluorescence imaging of ischemic stroke with ICG-doped porous PLGA microspheres. Mater. Today Bio 2025, 31, 101513. [Google Scholar] [CrossRef] [PubMed]
- Alkhiri, A.; Alturki, F.; Alansari, N.M.; Almaghrabi, A.A.; Alghamdi, B.A.; Alamri, A.F.; Alghamdi, S.; Makkawi, S. Prognosis and distribution of ischemic stroke with negative diffusion-weighted imaging: A systematic review and meta-analysis. Front. Neurol. 2024, 15, 1376439. [Google Scholar] [CrossRef] [PubMed]
- Chavva, I.R.; Crawford, A.L.; Mazurek, M.H.; Yuen, M.M.; Prabhat, A.M.; Payabvash, S.; Sze, G.; Falcone, G.J.; Matouk, C.C.; de Havenon, A.; et al. Deep Learning Applications for Acute Stroke Management. Ann. Neurol. 2022, 92, 574–587. [Google Scholar] [CrossRef]
- Protzmann, J.; Jung, F.; Jakobsson, L.; Fredriksson, L. Analysis of ischemic stroke-mediated effects on blood-brain barrier properties along the arteriovenous axis assessed by intravital two-photon imaging. Fluids Barriers CNS 2024, 21, 35. [Google Scholar] [CrossRef]
- Zhao, Y.H.; Liang, Y.; Wang, K.J.; Jin, S.N.; Yu, X.M.; Zhang, Q.; Wei, J.Y.; Liu, H.; Fang, W.G.; Zhao, W.D.; et al. Endothelial lincRNA-p21 alleviates cerebral ischemia/reperfusion injury by maintaining blood-brain barrier integrity. J. Cereb. Blood Flow Metab. 2024, 44, 1532–1550. [Google Scholar] [CrossRef]
- Du, L.D.; Fang, C.; Wang, Y.Q.; Feng, Z.Y.; Abiola, O.F.; Gao, Z.L.; Huang, J.Y.; Ma, Y.Z. MMP-9 inhibitor SB-3CT improves neurological outcomes in ischemic stroke mice by modulation of astrocytic lipid metabolism. Acta Pharmacol. Sin. 2025, 25, 1505. [Google Scholar] [CrossRef]
- Ji, Y.; Gao, Q.; Ma, Y.; Wang, F.; Tan, X.; Song, D.; Hoo, R.L.C.; Wang, Z.; Ge, X.; Han, H.; et al. An MMP-9 exclusive neutralizing antibody attenuates blood-brain barrier breakdown in mice with stroke and reduces stroke patient-derived MMP-9 activity. Pharmacol. Res. 2023, 190, 106720. [Google Scholar] [CrossRef]
- Foley, K.E.; Weekman, E.M.; Wilcock, D.M. Understanding the cellular responses to anti-Abeta antibodies to gain insights into mechanisms of ARIA. Alzheimer’s Dement. 2024, 20, e085573. [Google Scholar] [CrossRef]
- Guo, P.; Li, H.; Zhang, X.; Liu, Y.; Xue, S.; Yong, V.W.; Xue, M. Matrix metalloproteinase-9 in hemorrhagic transformation after acute ischemic stroke (Review). Mol. Med. Rep. 2025, 32, 13590. [Google Scholar] [CrossRef]
- Schauer, S.P.; Cho, C.H.; Novikova, G.; Roth, G.A.; Lee, J.; Sharma, A.D.; Foley, A.R.; Ng, C.; Shen, P.; Choi, M.; et al. Primate cerebrospinal fluid CHI3L1 reflects brain TREM2 agonism. Alzheimer’s Dement. 2024, 20, 5861–5888. [Google Scholar] [CrossRef]
- Yi, L.; Liang, Y.; Zhao, Q.; Wang, H.; Dong, J. CX3CL1 Induces Vertebral Microvascular Barrier Dysfunction via the Src/P115-RhoGEF/ROCK Signaling Pathway. Front. Cell. Neurosci. 2020, 14, 96. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Wang, X.; Kang, C.; Liu, J.; Ma, C.; Yang, L.; Hu, J.; Zhao, N. TREM2 regulates BV2 microglia activation and influences corticosterone-induced neuroinflammation in depressive disorders. Brain Res. 2024, 1822, 148664. [Google Scholar] [CrossRef] [PubMed]
- Xie, M.; Liu, Y.U.; Zhao, S.; Zhang, L.; Bosco, D.B.; Pang, Y.P.; Zhong, J.; Sheth, U.; Martens, Y.A.; Zhao, N.; et al. TREM2 interacts with TDP-43 and mediates microglial neuroprotection against TDP-43-related neurodegeneration. Nat. Neurosci. 2022, 25, 26–38. [Google Scholar] [CrossRef] [PubMed]
- Ulland, T.K.; Song, W.M.; Huang, S.C.; Ulrich, J.D.; Sergushichev, A.; Beatty, W.L.; Loboda, A.A.; Zhou, Y.; Cairns, N.J.; Kambal, A.; et al. TREM2 Maintains Microglial Metabolic Fitness in Alzheimer’s Disease. Cell 2017, 170, 649–663.e13. [Google Scholar] [CrossRef]
- Hwang, M.; Savarin, C.; Kim, J.; Powers, J.; Towne, N.; Oh, H.; Bergmann, C.C. Trem2 deficiency impairs recovery and phagocytosis and dysregulates myeloid gene expression during virus-induced demyelination. J. Neuroinflamm. 2022, 19, 267. [Google Scholar] [CrossRef]
- Zhou, W.; He, J.; Shen, G.; Liu, Y.; Zhao, P.; Li, J. TREM2-dependent activation of microglial cell protects photoreceptor cell during retinal degeneration via PPARgamma and CD36. Cell Death Dis. 2024, 15, 623. [Google Scholar] [CrossRef]
- Kurisu, K.; Zheng, Z.; Kim, J.Y.; Shi, J.; Kanoke, A.; Liu, J.; Hsieh, C.L.; Yenari, M.A. Triggering receptor expressed on myeloid cells-2 expression in the brain is required for maximal phagocytic activity and improved neurological outcomes following experimental stroke. J. Cereb. Blood Flow Metab. 2019, 39, 1906–1918. [Google Scholar] [CrossRef]
- Zhang, X.; Tang, L.; Yang, J.; Meng, L.; Chen, J.; Zhou, L.; Wang, J.; Xiong, M.; Zhang, Z. Soluble TREM2 ameliorates tau phosphorylation and cognitive deficits through activating transgelin-2 in Alzheimer’s disease. Nat. Commun. 2023, 14, 6670. [Google Scholar] [CrossRef]
- D’Anna, L.; Searle, G.; Harvey, K.; Matthews, P.M.; Veltkamp, R. Time course of neuroinflammation after human stroke—A pilot study using co-registered PET and MRI. BMC Neurol. 2023, 23, 193. [Google Scholar] [CrossRef]
- Villa, A.; Klein, B.; Janssen, B.; Pedragosa, J.; Pepe, G.; Zinnhardt, B.; Vugts, D.J.; Gelosa, P.; Sironi, L.; Beaino, W.; et al. Identification of new molecular targets for PET imaging of the microglial anti-inflammatory activation state. Theranostics 2018, 8, 5400–5418. [Google Scholar] [CrossRef] [PubMed]
- Cadiz, M.P.; Jensen, T.D.; Sens, J.P.; Zhu, K.; Song, W.M.; Zhang, B.; Ebbert, M.; Chang, R.; Fryer, J.D. Culture shock: Microglial heterogeneity, activation, and disrupted single-cell microglial networks in vitro. Mol. Neurodegener. 2022, 17, 26. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; Feng, B.; You, Y.; Yu, J.; Xu, C.; Dai, H.; Trapp, B.D.; Shi, P.; Chen, Z.; Hu, W. Microglial Displacement of GABAergic Synapses Is a Protective Event during Complex Febrile Seizures. Cell Rep. 2020, 33, 108346. [Google Scholar] [CrossRef] [PubMed]
- Zhou, K.; Han, J.; Lund, H.; Boggavarapu, N.R.; Lauschke, V.M.; Goto, S.; Cheng, H.; Wang, Y.; Tachi, A.; Xie, C.; et al. An overlooked subset of Cx3cr1(wt/wt) microglia in the Cx3cr1(CreER-Eyfp/wt) mouse has a repopulation advantage over Cx3cr1(CreER-Eyfp/wt) microglia following microglial depletion. J. Neuroinflamm. 2022, 19, 20. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, K.; Sun, Q.; Qi, Y.; Li, F.; Su, X.; Song, M.; Lv, R.; Sui, H.; Shi, Y.; et al. Collagenase Degradable Biomimetic Nanocages Attenuate Porphyromonas gingivalis Mediated Neurocognitive Dysfunction via Targeted Intracerebral Antimicrobial Photothermal and Gas Therapy. ACS Nano 2025, 19, 16448–16468. [Google Scholar] [CrossRef]
- Li, N.; Wang, H.; Hu, C.; Qie, S.; Liu, Z. Regulatory T Cells for Stroke Recovery: A Promising Immune Therapeutic Strategy. CNS Neurosci. Ther. 2025, 31, e70248. [Google Scholar] [CrossRef]
- Wicks, E.E.; Ran, K.R.; Kim, J.E.; Xu, R.; Lee, R.P.; Jackson, C.M. The Translational Potential of Microglia and Monocyte-Derived Macrophages in Ischemic Stroke. Front. Immunol. 2022, 13, 897022. [Google Scholar] [CrossRef]
- Tauil, C.B.; Rocha-Lima, A.D.; Ferrari, B.B.; Silva, F.M.D.; Machado, L.A.; Ramari, C.; Brandao, C.O.; Santos, L.; Santos-Neto, L.L.D. Depression and anxiety disorders in patients with multiple sclerosis: Association with neurodegeneration and neurofilaments. Braz. J. Med. Biol. Res. 2021, 54, e10428. [Google Scholar] [CrossRef]
- Rauchmann, B.S.; Sadlon, A.; Perneczky, R. Soluble TREM2 and Inflammatory Proteins in Alzheimer’s Disease Cerebrospinal Fluid. J. Alzheimer’s Dis. 2020, 73, 1615–1626. [Google Scholar] [CrossRef]
- Li, Y.; Wang, K.; Shi, G.; Qi, A.; Li, Y.; Jiao, Y.; Hu, R.; Hu, G.; Li, Y.; Shen, Z.; et al. Metal exposure is associated with cognitive function and plasma sTrem2 levels in coal miners: A cross-sectional study. Environ. Res. 2025, 279, 121726. [Google Scholar] [CrossRef]
- Gisslen, M.; Heslegrave, A.; Veleva, E.; Yilmaz, A.; Andersson, L.M.; Hagberg, L.; Spudich, S.; Fuchs, D.; Price, R.W.; Zetterberg, H. CSF concentrations of soluble TREM2 as a marker of microglial activation in HIV-1 infection. Neurol. Neuroimmunol. Neuroinflamm. 2019, 6, e512. [Google Scholar] [CrossRef] [PubMed]
- Jay, T.R.; von Saucken, V.E.; Munoz, B.; Codocedo, J.F.; Atwood, B.K.; Lamb, B.T.; Landreth, G.E. TREM2 is required for microglial instruction of astrocytic synaptic engulfment in neurodevelopment. Glia 2019, 67, 1873–1892. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Wang, H.; Wu, C.; Liu, G.; He, M.; Zhang, H.; Hou, F.; Liao, H. Enhancing Neuron Activity Promotes Functional Recovery by Inhibiting Microglia-Mediated Synapse Elimination After Stroke. Stroke 2025, 56, 505–516. [Google Scholar] [CrossRef] [PubMed]
- Teter, O.M.; McQuade, A.; Hagan, V.; Liang, W.; Drager, N.M.; Sattler, S.M.; Holmes, B.B.; Castillo, V.C.; Papakis, V.; Leng, K.; et al. CRISPRi-based screen of autism spectrum disorder risk genes in microglia uncovers roles of ADNP in microglia endocytosis and synaptic pruning. Mol. Psychiatry 2025, 25, 2997. [Google Scholar] [CrossRef]
- Zhang, M.M.; Guo, M.X.; Zhang, Q.P.; Chen, X.Q.; Li, N.Z.; Liu, Q.; Cheng, J.; Wang, S.L.; Xu, G.H.; Li, C.F.; et al. IL-1R/C3aR signaling regulates synaptic pruning in the prefrontal cortex of depression. Cell Biosci. 2022, 12, 90. [Google Scholar] [CrossRef]
- Pichla, M.; Bartosz, G.; Stefaniuk, I.; Sadowska-Bartosz, I. pH-Responsive Redox Nanoparticles Protect SH-SY5Y Cells at Lowered pH in a Cellular Model of Parkinson’s Disease. Molecules 2021, 26, 543. [Google Scholar] [CrossRef]
- Cheng, Y.; Cheng, A.; Jia, Y.; Yang, L.; Ning, Y.; Xu, L.; Zhong, Y.; Zhuang, Z.; Guan, J.; Zhang, X.; et al. pH-Responsive Multifunctional Theranostic Rapamycin-Loaded Nanoparticles for Imaging and Treatment of Acute Ischemic Stroke. ACS Appl. Mater. Interfaces 2021, 13, 56909–56922. [Google Scholar] [CrossRef]
- Li, T.; Ashrafizadeh, M.; Shang, Y.; Nuri Ertas, Y.; Orive, G. Chitosan-functionalized bioplatforms and hydrogels in breast cancer: Immunotherapy, phototherapy and clinical perspectives. Drug Discov. Today 2024, 29, 103851. [Google Scholar] [CrossRef]
- Xu, M.; Qin, H.; Zheng, Y.; Chen, J.; Liang, X.; Huang, J.; Luo, W.; Yang, R.; Guan, Y.Q. Construction of a double-responsive modified guar gum nanoparticles and its application in oral insulin administration. Colloids Surf. B Biointerfaces 2022, 220, 112858. [Google Scholar] [CrossRef]
- Sun, S.; Lv, W.; Li, S.; Zhang, Q.; He, W.; Min, Z.; Teng, C.; Chen, Y.; Liu, L.; Yin, J.; et al. Smart Liposomal Nanocarrier Enhanced the Treatment of Ischemic Stroke through Neutrophil Extracellular Traps and Cyclic Guanosine Monophosphate-Adenosine Monophosphate Synthase-Stimulator of Interferon Genes (cGAS-STING) Pathway Inhibition of Ischemic Penumbra. ACS Nano 2023, 17, 17845–17857. [Google Scholar] [CrossRef] [PubMed]
- Pourradi, N.M.A.; Babaei, H.; Hamishehkar, H.; Baradaran, B.; Shokouhi-Gogani, B.; Shanehbandi, D.; Ghorbani, M.; Azarmi, Y. Targeted delivery of doxorubicin by Thermo/pH-responsive magnetic nanoparticles in a rat model of breast cancer. Toxicol. Appl. Pharmacol. 2022, 446, 116036. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Zhu, Z.; Hong, L.; Qian, Z.; Wang, F.; Mao, Z. ROS-responsive 18beta-glycyrrhetic acid-conjugated polymeric nanoparticles mediate neuroprotection in ischemic stroke through HMGB1 inhibition and microglia polarization regulation. Bioact. Mater. 2023, 19, 38–49. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Lin, J.; Chen, Y.; Liu, J.; Zheng, Q.; Deng, M.; Wang, R.; Zhang, Y.; Feng, S.; Xu, Z.; et al. An ultra-compact promoter drives widespread neuronal expression in mouse and monkey brains. Cell Rep. 2023, 42, 113348. [Google Scholar] [CrossRef]
- Zhang, B.; Zou, J.; Han, L.; Beeler, B.; Friedman, J.L.; Griffin, E.; Piao, Y.S.; Rensing, N.R.; Wong, M. The specificity and role of microglia in epileptogenesis in mouse models of tuberous sclerosis complex. Epilepsia 2018, 59, 1796–1806. [Google Scholar] [CrossRef]
- Cisbani, G.; Le Behot, A.; Plante, M.M.; Prefontaine, P.; Lecordier, M.; Rivest, S. Role of the chemokine receptors CCR2 and CX3CR1 in an experimental model of thrombotic stroke. Brain Behav. Immun. 2018, 70, 280–292. [Google Scholar] [CrossRef]
- Chaudhri, A.; Bu, X.; Wang, Y.; Gomez, M.; Torchia, J.A.; Hua, P.; Hung, S.H.; Davies, M.A.; Lizee, G.A.; von Andrian, U.; et al. The CX3CL1-CX3CR1 chemokine axis can contribute to tumor immune evasion and blockade with a novel CX3CR1 monoclonal antibody enhances response to anti-PD-1 immunotherapy. Front. Immunol. 2023, 14, 1237715. [Google Scholar] [CrossRef]
- Chen, H.; Ye, Z.; Korpershoek, J.V.; Creemers, L.B.; Weinans, H.; Rios, J.L. Antibody and aptamer-based therapies for osteoarthritis: Application of antibodies and promise of aptamers. Mol. Ther. Nucleic Acids 2025, 36, 102552. [Google Scholar] [CrossRef]
- Shoemaker, R.L.; Larsen, R.J.; Larsen, P.A. Single-domain antibodies and aptamers drive new opportunities for neurodegenerative disease research. Front. Immunol. 2024, 15, 1426656. [Google Scholar] [CrossRef]
- Doherty, C.; Wilbanks, B.; Khatua, S.; Maher, L.J., 3rd. Aptamers in neuro-oncology: An emerging therapeutic modality. Neuro-Oncology 2024, 26, 38–54. [Google Scholar] [CrossRef]
- Sharma, R.; Lee, K. Advances in treatments for acute ischemic stroke. BMJ 2025, 389, e076161. [Google Scholar] [CrossRef]
- Kim, H.J.; Roh, H.G. Imaging in Acute Anterior Circulation Ischemic Stroke: Current and Future. Neurointervention 2022, 17, 2–17. [Google Scholar] [CrossRef]
- Broocks, G.; Rajput, F.; Hanning, U.; Faizy, T.D.; Leischner, H.; Schon, G.; Gellissen, S.; Sporns, P.; Deb-Chatterji, M.; Thomalla, G.; et al. Highest Lesion Growth Rates in Patients with Hyperacute Stroke: When Time Is Brain Particularly Matters. Stroke 2019, 50, 189–192. [Google Scholar] [CrossRef]
- Lambertsen, K.L.; Finsen, B.; Clausen, B.H. Post-stroke inflammation-target or tool for therapy? Acta Neuropathol. 2019, 137, 693–714. [Google Scholar] [CrossRef] [PubMed]
- Malone, K.; Amu, S.; Moore, A.C.; Waeber, C. Immunomodulatory Therapeutic Strategies in Stroke. Front. Pharmacol. 2019, 10, 630. [Google Scholar] [CrossRef] [PubMed]
- Veltkamp, R.; Gill, D. Clinical Trials of Immunomodulation in Ischemic Stroke. Neurotherapeutics 2016, 13, 791–800. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Li, J.; Hu, L.; Yu, J.; Fu, X.; Liang, F.; Yan, F.; Chen, G. Soluble Trem2 is a negative regulator of erythrophagocytosis after intracerebral hemorrhage in a CD36 receptor recycling manner. J. Adv. Res. 2023, 44, 185–199. [Google Scholar] [CrossRef]
- Huang, X.; Guo, M.; Zhang, Y.; Xie, J.; Huang, R.; Zuo, Z.; Saw, P.E.; Cao, M. Microglial IL-1RA ameliorates brain injury after ischemic stroke by inhibiting astrocytic CXCL1-mediated neutrophil recruitment and microvessel occlusion. Glia 2023, 71, 1607–1625. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, S.; Luo, Q.; Shu, H.; Xu, W.; Zhu, X.; Hu, P.; Wu, Y.; Shu, L.; Liu, J.; et al. A pH-responsive guanidino-based covalent organic framework nanodrugs for enhanced neuroprotection against subarachnoid hemorrhage by targeting NLRP3 inflammasome. Biomaterials 2025, 324, 123467. [Google Scholar] [CrossRef]
- Zhang, L.; Li, W.; Xu, Z.; Mao, Z.; Yang, M.; Wang, C.; Liu, Z. Promoting transcellular traversal of the blood-brain barrier by simultaneously improving cellular uptake and accelerating lysosomal escape. Nanoscale 2025, 17, 6780–6792. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Wang, X.; Zhao, N.; Chen, H.; Guo, G. Advancements in pH-responsive nanocarriers: Enhancing drug delivery for tumor therapy. Expert Opin. Drug Deliv. 2023, 20, 1623–1642. [Google Scholar] [CrossRef]
- Ji, P.; Xu, Q.; Li, J.; Wang, Z.; Mao, W.; Yan, P. Advances in nanoparticle-based therapeutics for ischemic stroke: Enhancing drug delivery and efficacy. Biomed. Pharmacother. 2024, 180, 117564. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, M.; Chaudhari, S.; Gupta, T.; Kalyane, D.; Sirsat, B.; Kathar, U.; Sengupta, P.; Tekade, R.K. Stimuli-Responsive Nanotherapeutics for Treatment and Diagnosis of Stroke. Pharmaceutics 2023, 15, 1036. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Pu, W.; Hu, K.; Hu, Y.; Feng, Z.; Cai, J.; Li, C.; Li, L.; Zhou, Z.; Zhang, J. Reactive Oxygen Species-Responsive Transformable and Triple-Targeting Butylphthalide Nanotherapy for Precision Treatment of Ischemic Stroke by Normalizing the Pathological Microenvironment. ACS Nano 2023, 17, 4813–4833. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Q.; Wang, W.; Lin, F.; Wang, S.; Zhao, J. Mesenchymal stem cell therapy for ischemic stroke: A look into treatment mechanism and therapeutic potential. J. Neurol. 2021, 268, 4095–4107. [Google Scholar] [CrossRef]
- Zhao, Y.H. Essential Role of Chinese Medicines in Mesenchymal Stem Cells Transplantation for Treatment of Ischemic Stroke. Chin. J. Integr. Med. 2019, 25, 723–727. [Google Scholar] [CrossRef]
- Jaillard, A.; Hommel, M.; Moisan, A.; Zeffiro, T.A.; Favre-Wiki, I.M.; Barbieux-Guillot, M.; Vadot, W.; Marcel, S.; Lamalle, L.; Grand, S.; et al. Autologous Mesenchymal Stem Cells Improve Motor Recovery in Subacute Ischemic Stroke: A Randomized Clinical Trial. Transl. Stroke Res. 2020, 11, 910–923. [Google Scholar] [CrossRef]
- Wang, K.; Rong, L.; Wei, X.; Zhang, Q.; Xiao, L. The effectiveness of various cytotherapeutic strategies for the treatment of ischemic stroke: A Bayesian network meta-analysis of randomized controlled trials. Neurol. Sci. 2020, 41, 1705–1717. [Google Scholar] [CrossRef]
- Riopel, M.; Seo, J.B.; Bandyopadhyay, G.K.; Li, P.; Wollam, J.; Chung, H.; Jung, S.R.; Murphy, A.; Wilson, M.; de Jong, R.; et al. Chronic fractalkine administration improves glucose tolerance and pancreatic endocrine function. J. Clin. Investig. 2018, 128, 1458–1470. [Google Scholar] [CrossRef]
- Yang, Y.; Ding, T.; Xiao, G.; Huang, J.; Luo, D.; Yue, M.; Su, Y.; Jiang, S.; Zeng, J.; Liu, Y. Anti-Inflammatory Effects of Allocryptopine via the Target on the CX3CL1-CX3CR1 axis/GNB5/AKT/NF-kappaB/Apoptosis in Dextran Sulfate-Induced Mice. Biomedicines 2023, 11, 464. [Google Scholar] [CrossRef]
- Lehner, C.; Spitzer, G.; Gehwolf, R.; Wagner, A.; Weissenbacher, N.; Deininger, C.; Emmanuel, K.; Wichlas, F.; Tempfer, H.; Traweger, A. Tenophages: A novel macrophage-like tendon cell population expressing CX3CL1 and CX3CR1. Dis. Model. Mech. 2019, 12, dmm041384. [Google Scholar] [CrossRef]
- Li, Y.; Cheng, Q.; Hu, G.; Deng, T.; Wang, Q.; Zhou, J.; Su, X. Extracellular vesicles in mesenchymal stromal cells: A novel therapeutic strategy for stroke. Exp. Ther. Med. 2018, 15, 4067–4079. [Google Scholar] [CrossRef] [PubMed]
- Meilandt, W.J.; Ngu, H.; Gogineni, A.; Lalehzadeh, G.; Lee, S.H.; Srinivasan, K.; Imperio, J.; Wu, T.; Weber, M.; Kruse, A.J.; et al. Trem2 Deletion Reduces Late-Stage Amyloid Plaque Accumulation, Elevates the Abeta42:Abeta40 Ratio, and Exacerbates Axonal Dystrophy and Dendritic Spine Loss in the PS2APP Alzheimer’s Mouse Model. J. Neurosci. 2020, 40, 1956–1974. [Google Scholar] [CrossRef] [PubMed]
- Pawlitzki, M.; Schreiber, S.; Bittner, D.; Kreipe, J.; Leypoldt, F.; Rupprecht, K.; Carare, R.O.; Meuth, S.G.; Vielhaber, S.; Kortvelyessy, P. CSF Neurofilament Light Chain Levels in Primary Progressive MS: Signs of Axonal Neurodegeneration. Front. Neurol. 2018, 9, 1037. [Google Scholar] [CrossRef] [PubMed]
- Mendez-Salcido, F.A.; Torres-Flores, M.I.; Ordaz, B.; Pena-Ortega, F. Abnormal innate and learned behavior induced by neuron-microglia miscommunication is related to CA3 reconfiguration. Glia 2022, 70, 1630–1651. [Google Scholar] [CrossRef]
- Shah, S.; Wong, L.M.; Ellis, K.; Bodnar, B.; Saribas, S.; Ting, J.; Wei, Z.; Tang, Y.; Wang, X.; Wang, H.; et al. Microglia-Specific Promoter Activities of HEXB Gene. Front. Cell. Neurosci. 2022, 16, 808598. [Google Scholar] [CrossRef]
- Lin, R.; Zhou, Y.; Yan, T.; Wang, R.; Li, H.; Wu, Z.; Zhang, X.; Zhou, X.; Zhao, F.; Zhang, L.; et al. Directed evolution of adeno-associated virus for efficient gene delivery to microglia. Nat. Methods 2022, 19, 976–985. [Google Scholar] [CrossRef]
- Masuda, T.; Amann, L.; Sankowski, R.; Staszewski, O.; Lenz, M.; Paolo, D.E.; Snaidero, N.; Costa Jordao, M.J.; Bottcher, C.; Kierdorf, K.; et al. Novel Hexb-based tools for studying microglia in the CNS. Nat. Immunol. 2020, 21, 802–815. [Google Scholar] [CrossRef]
- Tanaka, Y.; Hoshino-Negishi, K.; Kuboi, Y.; Tago, F.; Yasuda, N.; Imai, T. Emerging Role of Fractalkine in the Treatment of Rheumatic Diseases. Immunotargets Ther. 2020, 9, 241–253. [Google Scholar] [CrossRef]
- Chidambaram, H.; Das, R.; Chinnathambi, S. Interaction of Tau with the chemokine receptor, CX3CR1 and its effect on microglial activation, migration and proliferation. Cell Biosci. 2020, 10, 109. [Google Scholar] [CrossRef]
- Bedolla, A.M.; McKinsey, G.L.; Ware, K.; Santander, N.; Arnold, T.D.; Luo, Y. A comparative evaluation of the strengths and potential caveats of the microglial inducible CreER mouse models. Cell Rep. 2024, 43, 113660. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Karschnia, P.; von Mucke-Heim, I.A.; Mulazzani, M.; Zhou, X.; Blobner, J.; Mueller, N.; Teske, N.; Dede, S.; Xu, T.; et al. In vivo two-photon characterization of tumor-associated macrophages and microglia (TAM/M) and CX3CR1 during different steps of brain metastasis formation from lung cancer. Neoplasia 2021, 23, 1089–1100. [Google Scholar] [CrossRef] [PubMed]
- Maduka, C.V.; Schmitter-Sanchez, A.D.; Makela, A.V.; Ural, E.; Stivers, K.B.; Pope, H.; Kuhnert, M.M.; Habeeb, O.M.; Tundo, A.; Alhaj, M.; et al. Immunometabolic cues recompose and reprogram the microenvironment around implanted biomaterials. Nat. Biomed. Eng. 2024, 8, 1308–1321. [Google Scholar] [CrossRef] [PubMed]
- Qiao, H.; Xu, Q.; Xu, Y.; Zhao, Y.; He, N.; Tang, J.; Zhao, J.; Liu, Y. Molecular chaperones in stroke-induced immunosuppression. Neural Regen. Res. 2023, 18, 2638–2644. [Google Scholar] [CrossRef]
- Xie, W.; Simats, A.; Guo, Y.; Huang, T.; Sun, X.; Chen, W.; Lin, Y.; Wang, X.; Lai, Z.; Yu, W.; et al. Perspective Review of Myeloid Immune Cell Responses and Poststroke Immunosuppression. Stroke 2023, 54, 1920–1929. [Google Scholar] [CrossRef]
- Faura, J.; Bustamante, A.; Miro-Mur, F.; Montaner, J. Stroke-induced immunosuppression: Implications for the prevention and prediction of post-stroke infections. J. Neuroinflamm. 2021, 18, 127. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, J.; Ye, Y.; Xu, Q.; Li, Y.; Feng, S.; Xiong, X.; Jian, Z.; Gu, L. Peripheral Organ Injury After Stroke. Front. Immunol. 2022, 13, 901209. [Google Scholar] [CrossRef]
- Holl, D.; Hau, W.F.; Julien, A.; Banitalebi, S.; Kalkitsas, J.; Savant, S.; Llorens-Bobadilla, E.; Herault, Y.; Pavlovic, G.; Amiry-Moghaddam, M.; et al. Distinct origin and region-dependent contribution of stromal fibroblasts to fibrosis following traumatic injury in mice. Nat. Neurosci. 2024, 27, 1285–1298. [Google Scholar] [CrossRef]
- Kwon, H.R.; Olson, L.E. Imatinib on target in stroke recovery. J. Clin. Investig. 2025, 135, e190024. [Google Scholar] [CrossRef]
- Rivas-Fuentes, S.; Salgado-Aguayo, A.; Arratia-Quijada, J.; Gorocica-Rosete, P. Regulation and biological functions of the CX3CL1-CX3CR1 axis and its relevance in solid cancer: A mini-review. J. Cancer 2021, 12, 571–583. [Google Scholar] [CrossRef] [PubMed]
- Iwahashi, Y.; Ishida, Y.; Mukaida, N.; Kondo, T. Pathophysiological Roles of the CX3CL1-CX3CR1 Axis in Renal Disease, Cardiovascular Disease, and Cancer. Int. J. Mol. Sci. 2025, 26, 5352. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Kitago, T. Pharmacological Enhancement of Stroke Recovery. Curr. Neurol. Neurosci. Rep. 2019, 19, 43. [Google Scholar] [CrossRef] [PubMed]
- Zwijnenburg, A.J.; Pokharel, J.; Varnaite, R.; Zheng, W.; Hoffer, E.; Shryki, I.; Comet, N.R.; Ehrstrom, M.; Gredmark-Russ, S.; Eidsmo, L.; et al. Graded expression of the chemokine receptor CX3CR1 marks differentiation states of human and murine T cells and enables cross-species interpretation. Immunity 2023, 56, 1955–1974.e1910. [Google Scholar] [CrossRef]
- Zhang, Z.; Yuan, Z.; Wang, Y.; Zhang, Y.H.; Li, Q.; Zeng, X.; Guan, Z.; Bahabayi, A.; Wang, P.; Liu, C. Upregulation of granzyme B and C-X3-C motif receptor 1 in circulating plasmablasts was negatively regulated by Notch signal in patients with systemic lupus erythematosus. J. Leukoc. Biol. 2024, 116, 1061–1071. [Google Scholar] [CrossRef]
- Yu, H.; Shen, B.; Han, R.; Zhang, Y.; Xu, S.; Zhang, Y.; Guo, Y.; Huang, P.; Huang, S.; Zhong, Y. CX3CL1-CX3CR1 axis protects retinal ganglion cells by inhibiting microglia activation in a distal optic nerve trauma model. Inflamm. Regen. 2024, 44, 30. [Google Scholar] [CrossRef]
- Hiddingh, S.; Pandit, A.; Verhagen, F.; Rijken, R.; Servaas, N.H.; Wichers, R.; Loon, N.; Imhof, S.M.; Radstake, T.; de Boer, J.H.; et al. Transcriptome network analysis implicates CX3CR1-positive type 3 dendritic cells in non-infectious uveitis. eLife 2023, 12, e74913. [Google Scholar] [CrossRef]
- Lee, S.; Latha, K.; Manyam, G.; Yang, Y.; Rao, A.; Rao, G. Role of CX3CR1 signaling in malignant transformation of gliomas. Neuro-Oncology 2020, 22, 1463–1473. [Google Scholar] [CrossRef]
- Chen, X.; Jiang, M.; Li, H.; Wang, Y.; Shen, H.; Li, X.; Zhang, Y.; Wu, J.; Yu, Z.; Chen, G. CX3CL1/CX3CR1 axis attenuates early brain injury via promoting the delivery of exosomal microRNA-124 from neuron to microglia after subarachnoid hemorrhage. J. Neuroinflamm. 2020, 17, 209. [Google Scholar] [CrossRef]
- Kong, J.; Wen, S.; Cao, W.; Yue, P.; Xu, X.; Zhang, Y.; Luo, L.; Chen, T.; Li, L.; Wang, F.; et al. Lung organoids, useful tools for investigating epithelial repair after lung injury. Stem Cell Res. Ther. 2021, 12, 95. [Google Scholar] [CrossRef]
- Frydrychowicz, M.; Telec, M.; Aniola, J.; Kazmierski, R.; Chowaniec, H.; Dworacki, G.; Wojtasz, I.; Kozubski, W.; Lukasik, M. The Alteration of Circulating Invariant Natural Killer T, gammadeltaT, and Natural Killer Cells after Ischemic Stroke in Relation to Clinical Outcomes: A Prospective Case-Control Study. Cells 2024, 13, 1401. [Google Scholar] [CrossRef] [PubMed]
- Durham, P.G.; Butnariu, A.; Alghorazi, R.; Pinton, G.; Krishna, V.; Dayton, P.A. Current clinical investigations of focused ultrasound blood-brain barrier disruption: A review. Neurotherapeutics 2024, 21, e00352. [Google Scholar] [CrossRef] [PubMed]
- Ji, R.; Karakatsani, M.E.; Burgess, M.; Smith, M.; Murillo, M.F.; Konofagou, E.E. Cavitation-modulated inflammatory response following focused ultrasound blood-brain barrier opening. J. Control. Release 2021, 337, 458–471. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Hu, H.; Zhou, H.; Zhang, J.; Wang, L.; Wang, R. Reactive oxygen signaling molecule inducible regulation of CRISPR-Cas9 gene editing. Cell Biol. Toxicol. 2023, 39, 2421–2429. [Google Scholar] [CrossRef]
- Zhang, Y.; Ling, X.; Su, X.; Zhang, S.; Wang, J.; Zhang, P.; Feng, W.; Zhu, Y.Y.; Liu, T.; Tang, X. Optical Control of a CRISPR/Cas9 System for Gene Editing by Using Photolabile crRNA. Angew. Chem. Int. Ed. Engl. 2020, 59, 20895–20899. [Google Scholar] [CrossRef]
- Bonowicz, K.; Jerka, D.; Piekarska, K.; Olagbaju, J.; Stapleton, L.; Shobowale, M.; Bartosinski, A.; Lapot, M.; Bai, Y.; Gagat, M. CRISPR-Cas9 in Cardiovascular Medicine: Unlocking New Potential for Treatment. Cells 2025, 14, 131. [Google Scholar] [CrossRef]
- Salomonsson, S.E.; Clelland, C.D. Building CRISPR Gene Therapies for the Central Nervous System: A Review. JAMA Neurol. 2024, 81, 283–290. [Google Scholar] [CrossRef]
- Mavroudakis, L.; Golubova, A.; Lanekoff, I. Spatial metabolomics platform combining mass spectrometry imaging and in-depth chemical characterization with capillary electrophoresis. Talanta 2025, 286, 127460. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, D.; Li, T.; Wang, X.; Zhao, L.; Yang, X.; Dang, M.; Li, Y.; Wu, Y.; Lu, Z.; et al. Detection of acute ischemic stroke and backtracking stroke onset time via machine learning analysis of metabolomics. Biomed. Pharmacother. 2022, 155, 113641. [Google Scholar] [CrossRef]
- Zhang, B.; Li, F.; Shi, Y.; Ji, C.; Kong, Q.; Sun, K.; Sun, X. Single-cell RNA sequencing integrated with bulk RNA sequencing analysis reveals the protective effects of lactate-mediated lactylation of microglia-related proteins on spinal cord injury. CNS Neurosci. Ther. 2024, 30, e70028. [Google Scholar] [CrossRef]
- Xu, W.; Lin, J.; Gao, M.; Chen, Y.; Cao, J.; Pu, J.; Huang, L.; Zhao, J.; Qian, K. Rapid Computer-Aided Diagnosis of Stroke by Serum Metabolic Fingerprint Based Multi-Modal Recognition. Adv. Sci. 2020, 7, 2002021. [Google Scholar] [CrossRef]
- Choi, Y.A.; Park, S.J.; Jun, J.A.; Pyo, C.S.; Cho, K.H.; Lee, H.S.; Yu, J.H. Deep Learning-Based Stroke Disease Prediction System Using Real-Time Bio Signals. Sensors 2021, 21, 4269. [Google Scholar] [CrossRef]
- Gellner, A.K.; Reis, J.; Fiebich, B.L.; Fritsch, B. Cx3cr1 deficiency interferes with learning- and direct current stimulation-mediated neuroplasticity of the motor cortex. Eur. J. Neurosci. 2024, 59, 177–191. [Google Scholar] [CrossRef]
- Lechtenberg, K.J.; Meyer, S.T.; Doyle, J.B.; Peterson, T.C.; Buckwalter, M.S. Augmented beta2-adrenergic signaling dampens the neuroinflammatory response following ischemic stroke and increases stroke size. J. Neuroinflamm. 2019, 16, 112. [Google Scholar] [CrossRef]
Phase | CX3CL1 Source | CX3CR1 Dynamics | Beneficial Functions | Detrimental Functions |
---|---|---|---|---|
Hyperacute | Damaged core neurons [7,28] | Rapid upregulation in peri-infarct microglia [5,8] | Mediates microglial migration [33,34] and debris clearance [5,8] | Exacerbates oxidative stress and neuroinflammation [41,42] |
Acute | Vascular endothelium [43,44,45] | Overexpression in Ly6C+ monocytes [52,53]/microglia [49,50,51] | Induces IL-10+ anti-inflammatory polarization [49,50,51] | Drives monocytes infiltration [52,53] → cytokine storm [47,48] |
Subacute | Peri-infarct astrocytes [5,71] | Sustained overexpression in microglia/MDMs [6,66] | Phagocytic clearance [6,66], angiogenesis [77], neurogenesis [64,65,81] | Insufficient signaling → glial scarring [67,68,69,70] |
Chronic | Neurons and astrocytes [24,83,84] | Stable overexpression in microglia [85,86] | Early phase: Continues repair [4] | Long-term: Pathological synaptic pruning [88,89,90], chronic neuroinflammation [51,91,92], Aβ acceleration [93,94] |
Phase | Biomarkers | Targeted Interventions |
---|---|---|
Hyperacute | Serum: sCX3CL1↑ + MMP-9↑ [7,118,119] | 1. Avoid CX3CR1-targeted therapy [100,101,102,103,104,105]. 2. Core therapy: Intravenous thrombolysis (≤4.5 h)/thrombectomy (≤6 h) [161,162,163]. 3. Adjunct: Short-term non-CX3CR1 immunomodulation [164,165,166]. |
Acute | CSF: sTREM2↓ + CD36↓ [127,128] | pH-responsive nanocarriers delivering rCX3CL1 to penumbra [169,170,171,172,173,174]. |
Subacute | PET-MRI: [11C]PBR28↑ + microglial P2RY12↑ [131,132] | Intravenous FKN-Fc fusion protein + MSCs [175,176,177,178,179]. |
Chronic | CSF: sTREM2↑ + NfL↑ [139,140,141,142] | 1. AAV-HEXB promoter-driven CRISPR-Cas9 CX3CR1 knockout [186,187,188]. 2. Tamoxifen-inducible regulation [188]. |
Key Challenges/Breakthrough Areas | Critical Issues/Technical Innovations | Future Directions |
---|---|---|
Biomarkers Translation Barriers | 1. Clinically validated standard definitions and testing thresholds remain unavailable 2. Unresolved core regulatory and upstream mechanisms governing the CX3CR1 signaling axis [8] | 1. Large-scale clinical studies to validate biomarker utility 2. Mechanistic dissection of CX3CR1 regulatory networks (transcriptional control, signaling preferences) |
Immunosuppression Risk | Imprecise systemic cytokine modulation compromises host defense [194,195,196,197] | Integrate dynamic CD4+/CD8+ ratio monitoring [210] |
Delivery Hurdles | Fibrotic scarring impairs penetration [198,199] | Develop novel BBB-opening tech (e.g., ultrasound-mediated) [211,212] |
Gene Editing Ethics | Ethical implications of irreversible editing | Implement reversible systems (e.g., degron-tagged Cas9) [213,214] + Ban germline editing [215,216] |
Cross-Species Temporal Scale Discrepancies | Rodent neural repair windows mismatch human disease progression complexity [205] | Humanized model systems (e.g., brain organoids integrated with in vivo imaging) development for precise human brain repair window definition [209] |
Spatial Metabolomics Implementation | In situ mass spectrometry imaging with metabolic flux analysis enables 3D microenvironmental mapping [217,218] | Spatiotemporal logic decoding of lactate/HIF-1α/CX3CR1 signaling axis driving microglial phenotypic conversion [219] |
Deep Learning-Driven Multi-Omics Integration | Heterogeneous data synthesis via graph neural networks/transformers establishes “neuroimmune clock” frameworks [220,221] | AI-powered prediction of individualized CX3CR1 activity trajectories and optimal intervention windows, defining critical kinetic nodes [222,223] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Q.; Zhou, T.; He, Q. Targeting CX3CR1 Signaling Dynamics: A Critical Determinant in the Temporal Regulation of Post-Stroke Neurorepair. Brain Sci. 2025, 15, 759. https://doi.org/10.3390/brainsci15070759
He Q, Zhou T, He Q. Targeting CX3CR1 Signaling Dynamics: A Critical Determinant in the Temporal Regulation of Post-Stroke Neurorepair. Brain Sciences. 2025; 15(7):759. https://doi.org/10.3390/brainsci15070759
Chicago/Turabian StyleHe, Quan, Tong Zhou, and Quanwei He. 2025. "Targeting CX3CR1 Signaling Dynamics: A Critical Determinant in the Temporal Regulation of Post-Stroke Neurorepair" Brain Sciences 15, no. 7: 759. https://doi.org/10.3390/brainsci15070759
APA StyleHe, Q., Zhou, T., & He, Q. (2025). Targeting CX3CR1 Signaling Dynamics: A Critical Determinant in the Temporal Regulation of Post-Stroke Neurorepair. Brain Sciences, 15(7), 759. https://doi.org/10.3390/brainsci15070759