Clinical and Genetic Characteristics of Senior-Loken Syndrome Patients in Korea
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients and Clinical Data Collection
2.2. Genotyping
2.3. Statistical Analysis
3. Results
3.1. Demographic and Baseline Clinical Characteristics
3.2. Clinical Characteristics by Genotype
3.3. Age-Related Phenotypic Patterns
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BCVA | Best-Corrected Visual Acuity |
ERG | Electroretinogram |
ESRD | End-Stage Renal Disease |
GVF | Goldmann Visual Field |
LCA | Leber Congenital Amaurosis |
NPHP | Nephronophthisis |
OCT | Optical Coherence Tomography |
RP | Retinitis Pigmentosa |
SLS | Senior-Loken Syndrome |
VF | Visual Field |
WES | Whole-Exome Sequencing |
WGS | Whole-Genome Sequencing |
References
- Ronquillo, C.C.; Bernstein, P.S.; Baehr, W. Senior-Løken syndrome: A syndromic form of retinal dystrophy associated with nephronophthisis. Vis. Res. 2012, 75, 88–97. [Google Scholar] [CrossRef]
- Pretorius, D.H.; Reznik, V. Senior-Loken syndrome. J. Ultrasound Med. 2007, 26, 418. [Google Scholar] [CrossRef] [PubMed]
- Otto, E.A.; Loeys, B.; Khanna, H.; Hellemans, J.; Sudbrak, R.; Fan, S.; Muerb, U.; O’Toole, J.F.; Helou, J.; Attanasio, M.; et al. Nephrocystin-5, a ciliary IQ domain protein, is mutated in Senior-Loken syndrome and interacts with RPGR and calmodulin. Nat. Genet. 2005, 37, 282–288. [Google Scholar] [CrossRef] [PubMed]
- Hildebrandt, F.; Attanasio, M.; Otto, E. Nephronophthisis: Disease mechanisms of a ciliopathy. J. Am. Soc. Nephrol. 2009, 20, 23–35. [Google Scholar] [CrossRef]
- Warady, B.A.; Cibis, G.; Alon, U.; Blowey, D.; Hellerstein, S. Senior-Loken syndrome: Revisited. Pediatrics 1994, 94, 111–112. [Google Scholar] [CrossRef]
- Yahalom, C.; Volovelsky, O.; Macarov, M.; Altalbishi, A.; Alsweiti, Y.; Schneider, N.; Hanany, M.; Khan, M.I.; Cremers, F.P.; Anteby, I.; et al. Senior-Løken syndrome: A case series and review of the renoretinal phenotype and advances of molecular diagnosis. Retina 2021, 41, 2179–2187. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.G.; Lee, H.K.; Ahn, Y.H.; Joung, J.G.; Nam, J.; Kim, N.K.; Ko, J.M.; Cho, M.H.; Shin, J.I.; Kim, J.; et al. Targeted exome sequencing resolves allelic and the genetic heterogeneity in the genetic diagnosis of nephronophthisis-related ciliopathy. Exp. Mol. Med. 2016, 48, e251. [Google Scholar] [CrossRef]
- Marmor, M.F.; Fulton, A.B.; Holder, G.E.; Miyake, Y.; Brigell, M.; Bach, M. ISCEV Standard for full-field clinical electroretinography (2008 update). Doc. Ophthalmol. 2009, 118, 69–77. [Google Scholar] [CrossRef]
- Hood, D.C.; Bach, M.; Brigell, M.; Keating, D.; Kondo, M.; Lyons, J.S.; Marmor, M.F.; McCulloch, D.L.; Plamowski-Wolfe, A.M. ISCEV standard for clinical multifocal electroretinography (mfERG) (2011 edition). Doc. Ophthalmol. 2012, 124, 1–13. [Google Scholar] [CrossRef]
- McCulloch, D.L.; Marmor, M.F.; Brigell, M.G.; Hamilton, R.; Holder, G.E.; Tzekov, R.; Bach, M. ISCEV Standard for full-field clinical electroretinography (2015 update). Doc. Ophthalmol. 2015, 130, 1–12. [Google Scholar] [CrossRef]
- Robson, A.G.; Nilsson, J.; Li, S.; Jalali, S.; Fulton, A.B.; Tormene, A.P.; Holder, G.E.; Brodie, S.E. ISCEV guide to visual electrodiagnostic procedures. Doc. Ophthalmol. 2018, 136, 1–26. [Google Scholar] [CrossRef]
- Seo, G.H.; Kim, T.; Choi, I.H.; Park, J.Y.; Lee, J.; Kim, S.; Won, D.G.; Oh, A.; Lee, Y.; Choi, J.; et al. Diagnostic yield and clinical utility of whole exome sequencing using an automated variant prioritization system, EVIDENCE. Clin. Genet. 2020, 98, 562–570. [Google Scholar] [CrossRef]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Schulz-Trieglaff, O.; Shaw, R.; Barnes, B.; Schlesinger, F.; Källberg, M.; Cox, A.J.; Kruglyak, S.; Saunders, C.T. Manta: Rapid detection of structural variants and indels for germline and cancer sequencing applications. Bioinformatics 2016, 32, 1220–1222. [Google Scholar] [CrossRef] [PubMed]
- Gardner, E.J.; Lam, V.K.; Harris, D.N.; Chuang, N.T.; Scott, E.C.; Pittard, W.S.; Mills, R.E.; Devine, S.E. The Mobile Element Locator Tool (MELT): Population-scale mobile element discovery and biology. Genome Res. 2017, 27, 1916–1929. [Google Scholar] [CrossRef]
- Dolzhenko, E.; Deshpande, V.; Schlesinger, F.; Krusche, P.; Petrovski, R.; Chen, S.; Emig-Agius, D.; Gross, A.; Narzisi, G.; Bowman, B.; et al. ExpansionHunter: A sequence-graph-based tool to analyze variation in short tandem repeat regions. Bioinformatics 2019, 35, 4754–4756. [Google Scholar] [CrossRef] [PubMed]
- McLaren, W.; Gil, L.; Hunt, S.E.; Riat, H.S.; Ritchie, G.R.; Thormann, A.; Flicek, P.; Cunningham, F. The Ensembl Variant Effect Predictor. Genome Biol. 2016, 17, 122. [Google Scholar] [CrossRef]
- Quinodoz, M.; Peter, V.G.; Bedoni, N.; Royer Bertrand, B.; Cisarova, K.; Salmaninejad, A.; Sepahi, N.; Rodrigues, R.; Piran, M.; Mojarrad, M.; et al. AutoMap is a high performance homozygosity mapping tool using next-generation sequencing data. Nat. Commun. 2021, 12, 518. [Google Scholar] [CrossRef]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef]
- McCormick, E.M.; Lott, M.T.; Dulik, M.C.; Shen, L.; Attimonelli, M.; Vitale, O.; Karaa, A.; Bai, R.; Pineda-Alvarez, D.E.; Singh, L.N.; et al. Specifications of the ACMG/AMP standards and guidelines for mitochondrial DNA variant interpretation. Hum. Mutat. 2020, 41, 2028–2057. [Google Scholar] [CrossRef]
- Riggs, E.R.; Andersen, E.F.; Cherry, A.M.; Kantarci, S.; Kearney, H.; Patel, A.; Raca, G.; Ritter, D.I.; South, S.T.; Thorland, E.C.; et al. Technical standards for the interpretation and reporting of constitutional copy-number variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet. Med. 2020, 22, 245–257. [Google Scholar] [CrossRef] [PubMed]
- Koressaar, T.; Remm, M. Enhancements and modifications of primer design program Primer3. Bioinformatics 2007, 23, 1289–1291. [Google Scholar] [CrossRef] [PubMed]
- Untergasser, A.; Cutcutache, I.; Koressaar, T.; Ye, J.; Faircloth, B.C.; Remm, M.; Rozen, S.G. Primer3—New capabilities and interfaces. Nucleic Acids Res. 2012, 40, e115. [Google Scholar] [CrossRef]
- Stone, E.M.; Cideciyan, A.V.; Aleman, T.S.; Scheetz, T.E.; Sumaroka, A.; Ehlinger, M.A.; Schwartz, S.B.; Fishman, G.A.; Traboulsi, E.I.; Lam, B.L.; et al. Variations in NPHP5 in patients with nonsyndromic leber congenital amaurosis and Senior-Loken syndrome. Arch. Ophthalmol. 2011, 129, 81–87. [Google Scholar] [CrossRef]
- Barbelanne, M.; Hossain, D.; Chan, D.P.; Peränen, J.; Tsang, W.Y. Nephrocystin proteins NPHP5 and Cep290 regulate BBSome integrity, ciliary trafficking and cargo delivery. Hum. Mol. Genet. 2015, 24, 2185–2200. [Google Scholar] [CrossRef]
- Hossain, D.; Barbelanne, M.; Tsang, W.Y. Requirement of NPHP5 in the hierarchical assembly of basal feet associated with basal bodies of primary cilia. Cell. Mol. Life Sci. 2020, 77, 195–212. [Google Scholar] [CrossRef]
- Savige, J.; Ratnaike, S.; Colville, D. Retinal abnormalities characteristic of inherited renal disease. J. Am. Soc. Nephrol. 2011, 22, 1403–1415. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, S.; Jiang, Y.; Wang, Y.; Ouyang, J.; Yi, Z.; Sun, W.; Jia, X.; Xiao, X.; Wang, P.; et al. Pathogenic Variants in CEP290 or IQCB1 Cause Earlier-Onset Retinopathy in Senior-Loken Syndrome Compared to Those in INVS, NPHP3, or NPHP4. Am. J. Ophthalmol. 2023, 252, 188–204. [Google Scholar] [CrossRef]
- Ning, K.; Song, E.; Sendayen, B.E.; Prosseda, P.P.; Chang, K.C.; Ghaffarieh, A.; Alvarado, J.A.; Wang, B.; Haider, K.M.; Berbari, N.F.; et al. Defective INPP5E distribution in NPHP1-related Senior-Loken syndrome. Mol. Genet. Genom. Med. 2021, 9, e1566. [Google Scholar] [CrossRef]
- Jiang, S.T.; Chiou, Y.Y.; Wang, E.; Lin, H.K.; Lee, S.P.; Lu, H.Y.; Wang, C.-K.L.; Tang, M.-J.; Li, H. Targeted disruption of Nphp1 causes male infertility due to defects in the later steps of sperm morphogenesis in mice. Hum. Mol. Genet. 2008, 17, 3368–3379. [Google Scholar] [CrossRef]
- Patil, H.; Tserentsoodol, N.; Saha, A.; Hao, Y.; Webb, M.; Ferreira, P.A. Selective loss of RPGRIP1-dependent ciliary targeting of NPHP4, RPGR and SDCCAG8 underlies the degeneration of photoreceptor neurons. Cell Death Dis. 2012, 3, e355. [Google Scholar] [CrossRef]
- Roepman, R.; Letteboer, S.J.; Arts, H.H.; van Beersum, S.E.; Lu, X.; Krieger, E.; Ferreira, P.A.; Cremers, F.P.M. Interaction of nephrocystin-4 and RPGRIP1 is disrupted by nephronophthisis or Leber congenital amaurosis-associated mutations. Proc. Natl. Acad. Sci. USA 2005, 102, 18520–18525. [Google Scholar] [CrossRef]
- Chang, B.; Khanna, H.; Hawes, N.; Jimeno, D.; He, S.; Lillo, C.; Parapuram, S.K.; Cheng, H.; Scott, A.; Hurd, R.E.; et al. In-frame deletion in a novel centrosomal/ciliary protein CEP290/NPHP6 perturbs its interaction with RPGR and results in early-onset retinal degeneration in the rd16 mouse. Hum. Mol. Genet. 2006, 15, 1847–1857. [Google Scholar] [CrossRef] [PubMed]
- Won, J.; de Evsikova, C.M.; Smith, R.S.; Hicks, W.L.; Edwards, M.M.; Longo-Guess, C.; Li, T.; Naggert, J.K.; Nishina, P.M. NPHP4 is necessary for normal photoreceptor ribbon synapse maintenance and outer segment formation, and for sperm development. Hum. Mol. Genet. 2011, 20, 482–496. [Google Scholar] [CrossRef]
- Ronquillo, C.C.; Hanke-Gogokhia, C.; Revelo, M.P.; Frederick, J.M.; Jiang, L.; Baehr, W. Ciliopathy-associated IQCB1/NPHP5 protein is required for mouse photoreceptor outer segment formation. FASEB J. 2016, 30, 3400–3412. [Google Scholar] [CrossRef] [PubMed]
- Estrada-Cuzcano, A.; Koenekoop, R.K.; Coppieters, F.; Kohl, S.; Lopez, I.; Collin, R.W.; De Baere, E.B.W.; Roeleveld, D.; Marek, J.; Bernd, A.; et al. IQCB1 mutations in patients with leber congenital amaurosis. Investig. Ophthalmol. Vis. Sci. 2011, 52, 834–839. [Google Scholar] [CrossRef]
- Otto, E.A.; Hurd, T.W.; Airik, R.; Chaki, M.; Zhou, W.; Stoetzel, C.; Patil, S.B.; Levy, S.; Ghosh, A.K.; AMurga-Zamalloa, C.; et al. Candidate exome capture identifies mutation of SDCCAG8 as the cause of a retinal-renal ciliopathy. Nat. Genet. 2010, 42, 840–850. [Google Scholar] [CrossRef] [PubMed]
- Oh, R.; Woo, S.J.; Joo, K. Whole genome sequencing for inherited retinal diseases in the Korean National Project of Bio Big Data. Graefe’s Arch. Clin. Exp. Ophthalmol. 2024, 262, 1351–1359. [Google Scholar] [CrossRef]
- Rishi, E.; Goel, S.; Rishi, P. Senior-Loken syndrome secondary to IQCB1 mutation in association with retinitis pigmentosa. Can. J. Ophthalmol. 2021, 56, e112–e114. [Google Scholar] [CrossRef]
- Hamiwka, L.A.; Midgley, J.P.; Wade, A.W.; Martz, K.L.; Grisaru, S. Outcomes of kidney transplantation in children with nephronophthisis: An analysis of the North American Pediatric Renal Trials and Collaborative Studies (NAPRTCS) Registry. Pediatr. Transpl. 2008, 12, 878–882. [Google Scholar] [CrossRef] [PubMed]
Case | Gene | GenBank Accession | Coding Sequence Variant | Zygosity | Amino Acid Change | Reference |
---|---|---|---|---|---|---|
1 | NPHP1 | NM_000272.5 | Whole gene deletion | Homozygous | p.? | Novel |
2 | NPHP1 | NM_000272.5 | c.143G > A; c.1578_1582delinsG | Heterozygous | p.Arg48Lys; p.(Asp526Glufs*16) | Novel |
3 | NPHP1 | NM_000272.5 | Whole gene deletion | Homozygous | p.? | [7] |
4 | NPHP1 | NM_000272.5 | Whole gene deletion | Homozygous | p.? | [7] |
5 | NPHP1 | NM_000272.5 | Whole gene deletion | Homozygous | p.? | [7] |
6 | NPHP1 | NM_000272.5 | c.609_610insC; Whole gene deletion | Heterozygous | p.Arg204Glnfs*8; p.? | [7] |
7 | NPHP4 | NM_015102.5 | c.2304 + 1G > A; c.280_673del (exons 4–6) | Heterozygous | p.?; p.(Pro94Alafs*90) | Novel |
8 | NPHP4 | NM_015102.5 | c.2304 + 1G > A; c.280_673del (exons 4–6) | Heterozygous | p.?; p.(Pro94Alafs*90) | Novel |
9 | NPHP4 | NM_015102.5 | c.1972C > T; c.453-1G > C | Heterozygous | p.Arg658*; p.? | Novel |
10 | NPHP4 | NM_015102.5 | c.2964del | Homozygous | p.Glu989Serfs*17 | Novel |
11 | NPHP4 | NM_015102.5 | c.2304 + 1G > A; c.1972C > T | Heterozygous | p.?; p.Arg658* | Novel |
12 | IQCB1 | NM_001023570.4 | c.1522_1523dup; 5.8 Kb intron deletion | Heterozygous | p.Ala509Lysfs*3; p.? | Novel |
13 | IQCB1 | NM_001023570.4 | c.1522_1523dup; 5.8 Kb intron deletion | Heterozygous | p.Ala509Lysfs*3; p.? | Novel |
14 | IQCB1 | NM_001023570.4 | c.1522_1523dupGA | Homozygous | p.Ala509Lysfs*3 | [7] |
15 | IQCB1 | NM_001023570.4 | c.1522_1523dupGA | Homozygous | p.Ala509Lysfs*3 | [7] |
16 | IQCB1 | NM_001023570.4 | c.1522_1523dupGA | Homozygous | p.Ala509Lysfs*3 | [7] |
17 | SDCCAG8 | NM_006642.5 | c.845_848delTTTG; c.1300delA | Heterozygous | p.Cys283fs1; p.Asn434Ilefs28 | [7] |
Case | Age at Diagnosis (yrs)/Sex | Age at Symptom Onset (yrs)/Organ | Renal Status | Ocular Phenotype | Visual Field Pattern | Last BCVA (RE, LE) | Full Field ERG Response |
---|---|---|---|---|---|---|---|
1 | 12/F | 12/Kidney | ESRD | RP sine pigmento, Strabismus | OU central 7° preserved | 20/16, 20/25 | No rod/cone response |
2 | 17/M | 8/Eye | Moderate CKD | RP sine pigmento | OU central and superotemporal scotoma | 20/25, 20/30 | Extinct rod, preserved cone |
3 | 8/M | NA | ESRD | RP | NA | NA | NA |
4 | 13/F | NA | ESRD | RP, nystagmus | NA | NA | NA |
5 | 14/M | NA | ESRD | RP | NA | NA | NA |
6 | 13/M | NA | ESRD | RP, nystagmus | NA | NA | NA |
7 | 13/F | 13/Kidney | ESRD | Fundus albifunctatus | Normal VF | 20/20, 20/20 | Within normal limit |
8 | 16/F | 15/Kidney | Moderate CKD | Cone dystrophy | Normal VF | 20/16, 20/20 | Decreased cone, preserved rod |
9 | 49/M | 20/Eye | s/p 1st KTPL age 37 | Central & pericentral RP | OU central scotoma with 30–50° ring preserved | 20/600, 20/600 | No rod/cone response |
10 | 31/F | 23/Eye | ESRD | Diffuse RP | OU central 4° preserved | 20/600, 20/120 | No rod/cone response |
11 | 39/M | 12/Kidney | s/p 1st KTPL age 12, s/p 2nd KTPL age 39 | Diffuse RP | OU central 8° preserved | 20/50, 20/60 | No rod/cone response |
12 | 15/M | 15/Eye | Normal | RP sine pigmento | OU central 3° preserved | 20/100, 20/100 | No rod/cone response |
13 | 13/M | 13/Eye | Normal | RP sine pigmento | NA | 20/25, 20/32 | NA |
14 | 18/F | NA | ESRD | LCA | NA | NA | NA |
15 | 11/M | NA | ESRD | LCA, nystagmus | NA | NA | NA |
16 | 11/F | NA | ESRD | LCA | NA | NA | NA |
17 | 14/F | NA | ESRD | LCA, strabismus | NA | NA | NA |
Parameters | Total | Mutated Gene | p-Value | |||
---|---|---|---|---|---|---|
NPHP1 | NPHP4 | IQCB1 | SDCCAG8 | |||
(NPHP1) | (NPHP4) | (NPHP5) | (NPHP10) | |||
No. of patients | 17 (100%) | 6 (35.3%) | 5 (29.4%) | 5 (29.4%) | 1 (5.9%) | |
Age at diagnosis, yrs | 18.3 ± 11.4 (8.1–49.0) | 12.8 ± 2.9 (8.1–17.0) | 29.6 ± 15.2 (13–49) | 13.5 ± 3.0 (10.8–17.9) | NA | 0.058 * |
Age at onset, yrs † | 14.6 ± 4.5 (8–23) | 10.0 ± 2.8 (8–12) | 16.6 ± 4.7 (12–23) | 14.0 ± 1.4 (13–15) | NA | 0.183 * |
Sex (Male/Female) | 9/8 | 4/2 | 2/3 | 3/2 | 0/1 | 0.825 ** |
logMAR BCVA at last follow-up † | 0.44 ± 0.55 (−0.10 to 1.48) | 0.07 ± 0.12 (−0.10 to 0.18) | 0.60 ± 0.67 (−0.10 to 1.48) | 0.43 ± 0.32 (0.10 to 0.70) | NA | 0.362 * |
Spherical equivalent(Diopter, D) † | −1.20 ± 2.34 (−5.50 to 3.00) | −2.69 ± 0.91 (−3.63 to −1.63) | −1.09 ± 2.89 (−5.50 to 3.00) | −0.06 ± 1.07 (−1.25 to 1.25) | NA | 0.170 * |
No. of ESRD or S/P KTPL | 13/17 (76.5%) | 5 (83%) | 4 (80%) | 3 (60%) | 1 (100%) | 0.794 ** |
No. of LCA or RP | 15/17 (88.2%) | 6 (100%) | 3 (60%) | 5 (100%) | 1 (100%) | 0.167 ** |
No. of LCA | 4/17 | 0 (0%) | 0 (%) | 3 (60%) | 1 (100%) | 0.036 ** |
VF pattern † | ||||||
Normal VF | 2/8 (25%) | 0 (0%) | 2 (40%) | 0 (0%) | NA | 0.258 ** |
Central VF defect | 2/8 (25%) | 1 (50%) | 1 (20%) | 0 (0%) | NA | 0.538 ** |
Central VF preserved with peripheral VF constriction | 4/8 (50%) | 1 (50%) | 2 (20%) | 1 (100%) | NA | 0.504 ** |
Full field ERG pattern † | ||||||
Within normal limit | 1/8 (12.5%) | 0 | 1 (20%) | 0 | NA | >0.999 ** |
Decreased cone response | 1/8 (12.5%) | 0 | 1 (20%) | 0 | NA | >0.999 ** |
Decreased rod response | 1/8 (12.5%) | 1 (50%) | 0 (0%) | 0 | NA | 0.058 ** |
Decreased cone and rod response | 5/8 (62.5%) | 1 (50%) | 3 (60%) | 1 (100%) | NA | 0.610 ** |
Initial symptom † | ||||||
Visual symptom | 5/9 (55.6%) | 1 (50%) | 2 (40%) | 2 (100%) | NA | 0.683 ** |
Renal symptom | 4/9 (44.4%) | 1 (50%) | 3 (60%) | 0 (0%) | NA | 0.683 ** |
Diagnosed priorities † | ||||||
Eye | 5/9 (55.6%) | 1 (50%) | 2 (40%) | 2 (100%) | NA | 0.683 ** |
Kidney | 4/9 (44.4%) | 1 (50%) | 3 (60%) | 0 (0%) | NA | 0.683 ** |
Family history † | 4/9 (44.4%) | 0 | 2 (40%) ‡ | 2 (40%) ‡ | NA | 0.365 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, J.R.; Jung, S.; Joo, K.; Choi, H.I.; Kim, Y.J.; Woo, S.J. Clinical and Genetic Characteristics of Senior-Loken Syndrome Patients in Korea. Genes 2025, 16, 835. https://doi.org/10.3390/genes16070835
Song JR, Jung S, Joo K, Choi HI, Kim YJ, Woo SJ. Clinical and Genetic Characteristics of Senior-Loken Syndrome Patients in Korea. Genes. 2025; 16(7):835. https://doi.org/10.3390/genes16070835
Chicago/Turabian StyleSong, Jae Ryong, Sangwon Jung, Kwangsic Joo, Hoon Il Choi, Yoon Jeon Kim, and Se Joon Woo. 2025. "Clinical and Genetic Characteristics of Senior-Loken Syndrome Patients in Korea" Genes 16, no. 7: 835. https://doi.org/10.3390/genes16070835
APA StyleSong, J. R., Jung, S., Joo, K., Choi, H. I., Kim, Y. J., & Woo, S. J. (2025). Clinical and Genetic Characteristics of Senior-Loken Syndrome Patients in Korea. Genes, 16(7), 835. https://doi.org/10.3390/genes16070835