Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (59)

Search Parameters:
Keywords = perfectly matched layers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 369 KiB  
Article
Transverse Wave Propagation in Functionally Graded Structures Using Finite Elements with Perfectly Matched Layers and Infinite Element Coupling
by Kulandhaivel Hemalatha, Anandakrishnan Akshaya, Ali Qabur, Santosh Kumar, Mohammed Tharwan, Ali Alnujaie and Ayman Alneamy
Mathematics 2025, 13(13), 2131; https://doi.org/10.3390/math13132131 - 29 Jun 2025
Viewed by 262
Abstract
This study investigates the propagation of shear horizontal transverse waves in a functionally graded piezoelectric half-space (FGPHS), where the material properties vary linearly and quadratically. The analysis focuses on deriving and understanding the dispersion characteristics of such waves in in-homogeneous media. The WKB [...] Read more.
This study investigates the propagation of shear horizontal transverse waves in a functionally graded piezoelectric half-space (FGPHS), where the material properties vary linearly and quadratically. The analysis focuses on deriving and understanding the dispersion characteristics of such waves in in-homogeneous media. The WKB approximation method is employed to obtain the dispersion relation analytically, considering the smooth variation of material properties. To validate and study the wave behavior numerically, two advanced techniques were utilized: the Semi-Analytical Finite Element with Perfectly Matched Layer (SAFE-PML) and the Semi-Analytical Infinite Element (SAIFE) method incorporating a (1/r) decay model to simulate infinite media. The numerical implementation uses the Rayleigh–Ritz method to discretize the wave equation, and Gauss 3-point quadrature is applied for efficient numerical integration. The dispersion curves are plotted to illustrate the wave behavior in the graded piezoelectric medium. The results from SAFE-PML and SAIFE are in excellent agreement, indicating that these techniques effectively model the shear horizontal transverse wave propagation in such structures. This study also demonstrates that combining finite and infinite element approaches provides accurate and reliable simulation of wave phenomena in functionally graded piezoelectric materials, which has applications in sensors, actuators, and non-destructive testing. Full article
(This article belongs to the Special Issue Finite Element Analysis and Application)
Show Figures

Figure 1

22 pages, 4865 KiB  
Article
An Unsupervised Fusion Strategy for Anomaly Detection via Chebyshev Graph Convolution and a Modified Adversarial Network
by Hamideh Manafi, Farnaz Mahan and Habib Izadkhah
Biomimetics 2025, 10(4), 245; https://doi.org/10.3390/biomimetics10040245 - 17 Apr 2025
Viewed by 579
Abstract
Anomalies refer to data inconsistent with the overall trend of the dataset and may indicate an error or an unusual event. Time series prediction can detect anomalies that happen unexpectedly in critical situations during the usage of a system or a network. Detecting [...] Read more.
Anomalies refer to data inconsistent with the overall trend of the dataset and may indicate an error or an unusual event. Time series prediction can detect anomalies that happen unexpectedly in critical situations during the usage of a system or a network. Detecting or predicting anomalies in the traditional way is time-consuming and error-prone. Accordingly, the automatic recognition of anomalies is applicable to reduce the cost of defects and will pave the way for companies to optimize their performance. This unsupervised technique is an efficient way of detecting abnormal samples during the fluctuations of time series. In this paper, an unsupervised deep network is proposed to predict temporal information. The correlations between the neighboring samples are acquired to construct a graph of neighboring fluctuations. The extricated features related to the temporal distribution of the time samples in the constructed graph representation are used to impose the Chebyshev graph convolution layers. The output is used to train an adversarial network for anomaly detection. A modification is performed for the generative adversarial network’s cost function to perfectly match our purpose. Thus, the proposed method is based on combining generative adversarial networks (GANs) and a Chebyshev graph, which has shown good results in various domains. Accordingly, the performance of the proposed fusion approach of a Chebyshev graph-based modified adversarial network (Cheb-MA) is evaluated on the Numenta dataset. The proposed model was evaluated based on various evaluation indices, including the average F1-score, and was able to reach a value of 82.09%, which is very promising compared to recent research. Full article
(This article belongs to the Special Issue Biomimicry for Optimization, Control, and Automation: 3rd Edition)
Show Figures

Figure 1

17 pages, 895 KiB  
Article
A Study on the Electromagnetic Characteristics of Very-Low-Frequency Waves in the Ionosphere Based on FDTD
by Kui Huang, Qi Xiao, Juan Chen and Mian Dong
Electronics 2025, 14(8), 1545; https://doi.org/10.3390/electronics14081545 - 10 Apr 2025
Cited by 1 | Viewed by 438
Abstract
Very-low-frequency electromagnetic waves have low propagation loss, slow attenuation, a stable phase and amplitude in the Earth ionosphere waveguide cavity, and are widely used in VLF communication and navigation, ionospheric heating, global lightning distribution inversion, and other fields. Studying the transmission characteristics of [...] Read more.
Very-low-frequency electromagnetic waves have low propagation loss, slow attenuation, a stable phase and amplitude in the Earth ionosphere waveguide cavity, and are widely used in VLF communication and navigation, ionospheric heating, global lightning distribution inversion, and other fields. Studying the transmission characteristics of very-low-frequency (VLF) signals in the ionosphere is of great significance in spaceborne VLF communication technology. The existing research on ionospheric transmission characteristics using the finite-difference time domain (FDTD) algorithm is mostly based on high-frequency pulse signals, and the propagation model is relatively rough, resulting in certain calculation errors. To this end, a time-domain finite-difference algorithm model based on a uniaxial anisotropic perfectly matched layer (UPML) boundary in a spherical coordinate system was established, effectively solving the reflection problem existing in PEC boundary. The algorithm was used to numerically calculate the field-strength attenuation of VLF waves in the ionosphere. The simulation results showed that in the VLF frequency band, reducing the frequency is beneficial for electromagnetic waves to penetrate the ionosphere. Although the attenuation trend in the VLF waves is roughly the same during the day and night, the attenuation during the day is significantly greater than that at night, and this was compared and analyzed with traditional algorithms to verify the accuracy of the algorithm. Full article
Show Figures

Figure 1

21 pages, 8407 KiB  
Article
An Artificial Neural Network Method for Simulating Soliton Propagation Based on the Rosenau-KdV-RLW Equation on Unbounded Domains
by Laurence Finch, Weizhong Dai and Aniruddha Bora
Mathematics 2025, 13(7), 1036; https://doi.org/10.3390/math13071036 - 22 Mar 2025
Viewed by 391
Abstract
The simulation of wave propagation, such as soliton propagation, based on the Rosenau-KdV-RLW equation on unbounded domains requires a bounded computational domain. Therefore, a special boundary treatment, such as an absorbing boundary condition (ABC) or a perfectly matched layer (PML), is necessary to [...] Read more.
The simulation of wave propagation, such as soliton propagation, based on the Rosenau-KdV-RLW equation on unbounded domains requires a bounded computational domain. Therefore, a special boundary treatment, such as an absorbing boundary condition (ABC) or a perfectly matched layer (PML), is necessary to minimize the reflections of outgoing waves at the boundary, preventing interference with the simulation’s accuracy. However, the presence of higher-order partial derivatives, such as uxxt and uxxxxt in the Rosenau-KdV-RLW equation, raises challenges in deriving accurate artificial boundary conditions. To address this issue, we propose an artificial neural network (ANN) method that enables soliton propagation through the computational domain without imposing artificial boundary conditions. This method randomly selects training points from the bounded computational space-time domain, and the loss function is designed based solely on the initial conditions and the Rosenau-KdV-RLW equation itself, without any boundary conditions. We analyze the convergence of the ANN solution theoretically. This new ANN method is tested in three examples. The results indicate that the present ANN method effectively simulates soliton propagation based on the Rosenau-KdV-RLW equation in unbounded domains or over extended periods. Full article
Show Figures

Figure 1

6 pages, 1660 KiB  
Proceeding Paper
Chromatic Dispersion of Chalcogenide Glass-Based Photonic Crystal Fiber with Ultra-High Numerical Aperture
by Jyoti Chauhan, Yogita Kalra and Ravindra Kumar Sinha
Phys. Sci. Forum 2024, 10(1), 8; https://doi.org/10.3390/psf2024010008 - 20 Feb 2025
Cited by 1 | Viewed by 390
Abstract
We report a graded index chalcogenide glass (As2Se3)-based photonic crystal fiber having a solid core. The proposed PCF has ultra-high numerical aperture value reaching up to 1.82 for the explored wavelength range of 1.8–10 μm in the mid-infrared region. [...] Read more.
We report a graded index chalcogenide glass (As2Se3)-based photonic crystal fiber having a solid core. The proposed PCF has ultra-high numerical aperture value reaching up to 1.82 for the explored wavelength range of 1.8–10 μm in the mid-infrared region. The value of numerical aperture increases as the pitch increase from 0.92 to 0.96 to 1 micrometer, at a particular value of wavelength. With this high value of numerical aperture, a PCF is capable of gathering a high amount of light in its core. With negative dispersion reaching up to −2000 ps/km/nm at 4.8 µm, the fiber acts as a dispersion-compensating fiber, with confinement loss being close to zero for higher values of wavelength. The confinement loss of the designed PCF is also significantly less and it decreases as the wavelength increases. Also, the value of dispersion is significantly less due to the regular variation in the size of the holes in the transverse direction, as compared to the design when there is no gradation. The design has been optimized with an appropriate value of the perfectly matched layer to achieve the best results. Full article
(This article belongs to the Proceedings of The 1st International Online Conference on Photonics)
Show Figures

Figure 1

30 pages, 17496 KiB  
Article
Frequency-Domain Finite Element Modeling of Seismic Wave Propagation Under Different Boundary Conditions
by Ying Zhang, Haiyang Liu, Shikun Dai and Herui Zhang
Mathematics 2025, 13(4), 578; https://doi.org/10.3390/math13040578 - 10 Feb 2025
Viewed by 831
Abstract
Seismic wave propagation in complex terrains, especially in the presence of air layers, plays a crucial role in accurate subsurface imaging. However, the influence of different boundary conditions on seismic wave propagation characteristics has not been fully explored. This study employs the finite [...] Read more.
Seismic wave propagation in complex terrains, especially in the presence of air layers, plays a crucial role in accurate subsurface imaging. However, the influence of different boundary conditions on seismic wave propagation characteristics has not been fully explored. This study employs the finite element method (FEM) to simulate and analyze seismic wavefields under different boundary conditions, including perfectly matched layer (PML), Neumann free boundary conditions, and air layer conditions. First, the finite element solution for the 2D frequency-domain acoustic wave equation is introduced, and the correctness of the algorithm is validated using a homogeneous model. Then, both horizontal and undulating terrain interfaces are designed to investigate the kinematic and dynamic characteristics of the wavefields under different boundary conditions. The results show that PML boundaries effectively absorb seismic waves, prevent reflections, and ensure stable wave propagation, making them an ideal choice for simulating open boundaries. In contrast, Neumann boundaries generate significant reflected waves, particularly in undulating terrains, complicating the wavefield characteristics. Introducing an air layer alters the dynamics of the wavefield, leading to energy leakage and multi-path effects, which are more consistent with real-world seismic-geophysical models. Finally, the computational results using the Overthrust model under different boundary conditions further demonstrate that different boundary conditions significantly affect wavefield morphology. It is essential to select appropriate boundary conditions based on the specific simulation requirements, and boundary conditions with an air layer are most consistent with real seismic geological models. This study provides new insights into the role of boundary conditions in seismic numerical simulations and offers theoretical guidance for improving the accuracy of wavefield simulations in realistic geological scenarios. Full article
(This article belongs to the Special Issue Analytical Methods in Wave Scattering and Diffraction, 2nd Edition)
Show Figures

Figure 1

30 pages, 13443 KiB  
Article
Implementation of PMDL and DRM in OpenSees for Soil-Structure Interaction Analysis
by Sefa Uzun and Yusuf Ayvaz
Appl. Sci. 2024, 14(18), 8519; https://doi.org/10.3390/app14188519 - 21 Sep 2024
Viewed by 3725
Abstract
It is widely acknowledged that the effects of soil-structure interaction (SSI) can have substantial implications during periods of intense seismic activity; therefore, accurate quantification of these effects is of paramount importance in the design of earthquake-resistant structures. The analysis of SSI is typically [...] Read more.
It is widely acknowledged that the effects of soil-structure interaction (SSI) can have substantial implications during periods of intense seismic activity; therefore, accurate quantification of these effects is of paramount importance in the design of earthquake-resistant structures. The analysis of SSI is typically conducted using either direct or substructure methods. Both of these approaches involve the use of numerical models with truncated or reduced-order computational domains. To ensure effective truncation, it is crucial to employ boundary representations that are capable of perfectly absorbing outgoing waves and allowing for the consistent application of input motions. At present, such capabilities are not widely available to researchers and practicing engineers. In order to address this issue, this study implemented the Domain Reduction Method (DRM) and Perfectly Matched Discrete Layers (PMDLs) in OpenSees. The accuracy and stability of these implementations were verified through the use of vertical and inclined incident SV waves in a two-dimensional problem. In terms of computational efficiency, PMDLs require a shorter analysis time (e.g., with PMDLs, the analysis concluded in 35 min as compared to 250 min with extended domain method) and less computational power (one processor for PMDLs against 20 processors for the extended domain method) thus offering a balance between accuracy and efficiency. Furthermore, illustrative examples of the aforementioned implemented features are presented, namely the response analysis of single-cell and double-cell tunnels exposed to plane waves inclined at an angle. Full article
(This article belongs to the Special Issue Soil-Structure Interaction in Structural and Geotechnical Engineering)
Show Figures

Figure 1

16 pages, 3531 KiB  
Article
A Normal Mode Model Based on the Spectral Element Method for Simulating Horizontally Layered Acoustic Waveguides
by Yinuo Zhang, Houwang Tu, Yongxian Wang, Guojun Xu and Dongbao Gao
J. Mar. Sci. Eng. 2024, 12(9), 1499; https://doi.org/10.3390/jmse12091499 - 30 Aug 2024
Viewed by 1513
Abstract
Acoustic waves are essential tools for guiding underwater activities. For many years, numerical modeling of ocean acoustic propagation has been a major research focus in underwater acoustics. Normal mode theory, one of the earliest and most extensively studied methods in this field, is [...] Read more.
Acoustic waves are essential tools for guiding underwater activities. For many years, numerical modeling of ocean acoustic propagation has been a major research focus in underwater acoustics. Normal mode theory, one of the earliest and most extensively studied methods in this field, is renowned for its well-established theoretical framework. The core of normal mode theory involves the numerical solution of modal equations. In classical normal mode models, these equations are typically discretized using low-order finite difference methods, which, while broadly applicable, suffer from a limited convergence rate. The spectral element method, widely used in the seismic field, is recognized for its spectral precision and flexibility. In this article, we propose a normal mode model discretized using the spectral element method. The weak form of the modal equation directly satisfies boundary and interface conditions without requiring additional operations. The entire computational domain can be divided into segments of varying number and length, configured according to environmental conditions. The perfectly matched layer technique is employed to simulate acoustic half-space boundary conditions, effectively addressing the high computational costs and numerical instability associated with traditional artificial absorbing layers. Based on these algorithms, we have developed a numerical program (SEM). This research verifies the accuracy of the spectral element model through three different types of numerical experiments. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

26 pages, 5316 KiB  
Article
Simplified Tunnel–Soil Model Based on Thin-Layer Method–Volume Method–Perfectly Matched Layer Method
by Yu Wang, Mengfan Zhou, Yanmei Cao, Xiaoxi Wang, Zhe Li and Meng Ma
Appl. Sci. 2024, 14(13), 5692; https://doi.org/10.3390/app14135692 - 29 Jun 2024
Cited by 1 | Viewed by 998
Abstract
In order to analyze the ground vibration responses induced by the dynamic loads in a tunnel, this paper proposes a new simplified tunnel–soil model. Specifically, based on the basic theory of the thin-layer method (TLM), the basic solution of three-dimensional layered foundation soil [...] Read more.
In order to analyze the ground vibration responses induced by the dynamic loads in a tunnel, this paper proposes a new simplified tunnel–soil model. Specifically, based on the basic theory of the thin-layer method (TLM), the basic solution of three-dimensional layered foundation soil displacement was derived in the cylindrical coordinate system. The perfectly matched layer (PML) boundary condition was applied to the TLM. Subsequently, a tunnel–soil dynamic interaction analysis model was established using the volume method (VM) in conjunction with the TLM-PML method. The displacement frequency response function of the foundation soil around the tunnel foundation was derived. Finally, a ground vibration test under an impact load in a tunnel was carried out. The test and calculated results were compared. The comparison results show that the ground vibration acceleration response values within 25 m from the load are similar. Compared with the test results, the theoretical calculation results exhibit a decreasing trend in the range of 40–80 Hz between 25 and 60 m, with the maximum reduction being approximately one order of magnitude. In addition, the experimental comparison demonstrates that the model can be used to analyze the ground vibrations caused by underground loads. Full article
(This article belongs to the Special Issue Geotechnical Earthquake Engineering: Current Progress and Road Ahead)
Show Figures

Figure 1

16 pages, 5709 KiB  
Article
Domain Decomposition Hybrid Implicit–Explicit Algorithm with Higher-Order Perfectly Matched Layer Formulation for Electrical Performance Evaluation under Low-Pressure Discharge Phenomenon
by Rui Wang, Wanzhao Cui, Le Zhang, Yuming Wang and Huan Wei
Electronics 2024, 13(12), 2364; https://doi.org/10.3390/electronics13122364 - 17 Jun 2024
Viewed by 923
Abstract
Low-pressure discharge events have a major impact on a satellite’s electrical performance. Most notably, a number of serious issues arise from the inability to directly modify satellite systems that operate in orbit. Accurate analysis of electrical performance is crucial for mitigating the issues [...] Read more.
Low-pressure discharge events have a major impact on a satellite’s electrical performance. Most notably, a number of serious issues arise from the inability to directly modify satellite systems that operate in orbit. Accurate analysis of electrical performance is crucial for mitigating the issues arising from the low-pressure discharge phenomenon. Complex structures, such as intricate features and curved structures, are frequently used in satellite systems’ enormous microwave components. In this case, the finite-difference time-domain (FDTD) approach proposes the hybrid implicit–explicit (HIE) algorithm with a domain decomposition method to effectively simulate complex structures under the low-pressure discharge phenomenon. The bilinear transform method is adjusted in accordance with the implicit equations for the anisotropic magnetized plasma environment caused by the discharge. To end unbounded lattices, a higher-order perfectly matched layer is used at the boundary. An example of a microwave connector structure is used to show how well the algorithm performs electrically. According to the findings, the suggested algorithm behaves in a way that is consistent with both the traditional algorithm and the experiments. Furthermore, the phenomenon of low-pressure discharge has a notable impact on the electrical performance of microwave components. Full article
(This article belongs to the Special Issue Advances in Electromagnetic Interference and Protection)
Show Figures

Figure 1

13 pages, 8672 KiB  
Article
Efficient Parallel FDTD Method Based on Non-Uniform Conformal Mesh
by Kaihui Liu, Tao Huang, Liang Zheng, Xiaolin Jin, Guanjie Lin, Luo Huang, Wenjing Cai, Dapeng Gong and Chunwang Fang
Appl. Sci. 2024, 14(11), 4364; https://doi.org/10.3390/app14114364 - 21 May 2024
Viewed by 2068
Abstract
The finite-difference time-domain (FDTD) method is a versatile electromagnetic simulation technique, widely used for solving various broadband problems. However, when dealing with complex structures and large dimensions, especially when applying perfectly matched layer (PML) absorbing boundaries, tremendous computational burdens will occur. To reduce [...] Read more.
The finite-difference time-domain (FDTD) method is a versatile electromagnetic simulation technique, widely used for solving various broadband problems. However, when dealing with complex structures and large dimensions, especially when applying perfectly matched layer (PML) absorbing boundaries, tremendous computational burdens will occur. To reduce the computational time and memory, this paper presents a Message Passing Interface (MPI) parallel scheme based on non-uniform conformal FDTD, which is suitable for convolutional perfectly matched layer (CPML) absorbing boundaries, and adopts a domain decomposition approach, dividing the entire computational domain into several subdomains. More importantly, only one magnetic field exchange is required during the iterations, and the electric field update is divided into internal and external parts, facilitating the synchronous communication of magnetic fields between adjacent subdomains and internal electric field updates. Finally, unmanned helicopters, helical antennas, 100-period folded waveguides, and 16 × 16 phased array antennas are designed to verify the accuracy and efficiency of the algorithm. Moreover, we conducted parallel tests on a supercomputing platform, showing its satisfactory reduction in computational time and excellent parallel efficiency. Full article
(This article belongs to the Special Issue Parallel Computing and Grid Computing: Technologies and Applications)
Show Figures

Figure 1

34 pages, 12848 KiB  
Article
Design Optimization of Printed Multi-Layered Electroactive Actuators Used for Steerable Guidewire in Micro-Invasive Surgery
by Simon Toinet, Mohammed Benwadih, Helga Szambolics, Christine Revenant, David Alincant, Marine Bordet, Jean-Fabien Capsal, Nellie Della-Schiava, Minh-Quyen Le and Pierre-Jean Cottinet
Materials 2024, 17(9), 2135; https://doi.org/10.3390/ma17092135 - 2 May 2024
Cited by 6 | Viewed by 2046
Abstract
To treat cardiovascular diseases (i.e., a major cause of mortality after cancers), endovascular-technique-based guidewire has been employed for intra-arterial navigation. To date, most commercially available guidewires (e.g., Terumo, Abbott, Cordis, etc.) are non-steerable, which is poorly suited to the human arterial system with [...] Read more.
To treat cardiovascular diseases (i.e., a major cause of mortality after cancers), endovascular-technique-based guidewire has been employed for intra-arterial navigation. To date, most commercially available guidewires (e.g., Terumo, Abbott, Cordis, etc.) are non-steerable, which is poorly suited to the human arterial system with numerous bifurcations and angulations. To reach a target artery, surgeons frequently opt for several tools (guidewires with different size integrated into angulated catheters) that might provoke arterial complications such as perforation or dissection. Steerable guidewires would, therefore, be of high interest to reduce surgical morbidity and mortality for patients as well as to simplify procedure for surgeons, thereby saving time and health costs. Regarding these reasons, our research involves the development of a smart steerable guidewire using electroactive polymer (EAP) capable of bending when subjected to an input voltage. The actuation performance of the developed device is assessed through the curvature behavior (i.e., the displacement and the angle of the bending) of a cantilever beam structure, consisting of single- or multi-stack EAP printed on a substrate. Compared to the single-stack architecture, the multi-stack gives rise to a significant increase in curvature, even when subjected to a moderate control voltage. As suggested by the design framework, the intrinsic physical properties (dielectric, electrical, and mechanical) of the EAP layer, together with the nature and thickness of all materials (EAP and substrate), do have strong effect on the bending response of the device. The analyses propose a comprehensive guideline to optimize the actuator performance based on an adequate selection of the relevant materials and geometric parameters. An analytical model together with a finite element model (FEM) are investigated to validate the experimental tests. Finally, the design guideline leads to an innovative structure (composed of a 10-stack active layer screen-printed on a thin substrate) capable of generating a large range of bending angle (up to 190°) under an acceptable input level of 550 V, which perfectly matches the standard of medical tools used for cardiovascular surgery. Full article
(This article belongs to the Section Polymeric Materials)
Show Figures

Graphical abstract

12 pages, 603 KiB  
Article
Research on the Impact of a Fluid Field on an Acoustic Field in Herschel–Quincke Tube
by Congcong Ma, Pingping Niu, Hanhao Zhu and Hongyu Zou
Appl. Sci. 2024, 14(6), 2417; https://doi.org/10.3390/app14062417 - 13 Mar 2024
Viewed by 1269
Abstract
A study concerning the influence of flow on the Herschel–Quincke duct is presented here, which includes the numerical model, the acoustic source and the absorption condition called the Perfectly Matched Layer. For the excitation of a sound field, a normal mode wave is [...] Read more.
A study concerning the influence of flow on the Herschel–Quincke duct is presented here, which includes the numerical model, the acoustic source and the absorption condition called the Perfectly Matched Layer. For the excitation of a sound field, a normal mode wave is placed at the inlet of the tube. The function of PML is to simulate the infinite tube and avoid the reflection of acoustic wave. To investigate the influence of flow field on sound field, a coupled calculation method combining the finite element method and computational fluid dynamics is used to solve the linearized Euler equation, named the Galbrun equation. Firstly, the influence of the cross-section of the tube on the acoustic field is considered. Secondly, the effects of flow on the acoustic field is also investigated. Lastly, a comparative analysis of the simulation results reveals the influence of flow and other parameters of the tube on sound propagation. Both the Mach number and the cross-section ratio have an influence on the acoustic resonance, and the resonance frequency decreases with the increase in the cross-section ratio. Full article
(This article belongs to the Section Fluid Science and Technology)
Show Figures

Figure 1

14 pages, 12604 KiB  
Article
Adaptive-Coefficient Finite Difference Frequency Domain Method for Solving Time-Fractional Cattaneo Equation with Absorbing Boundary Condition
by Wenhao Xu, Jing Ba, Jianxiong Cao and Cong Luo
Fractal Fract. 2024, 8(3), 146; https://doi.org/10.3390/fractalfract8030146 - 29 Feb 2024
Viewed by 1905
Abstract
The time-fractional Cattaneo (TFC) equation is a practical tool for simulating anomalous dynamics in physical diffusive processes. The existing numerical solutions to the TFC equation generally deal with the Dirichlet boundary conditions. In this paper, we incorporate the absorbing boundary condition as a [...] Read more.
The time-fractional Cattaneo (TFC) equation is a practical tool for simulating anomalous dynamics in physical diffusive processes. The existing numerical solutions to the TFC equation generally deal with the Dirichlet boundary conditions. In this paper, we incorporate the absorbing boundary condition as a complex-frequency-shifted (CFS) perfectly matched layer (PML) into the TFC equation. Then, we develop an adaptive-coefficient (AC) finite-difference frequency-domain (FDFD) method for solving the TFC with CFS PML. The corresponding analytical solution for homogeneous TFC equation with a point source is proposed for validation. The effectiveness of the developed AC FDFD method is verified by the numerical examples of four typical TFC models, including the different orders of time-fractional derivatives for both the homogeneous model and the layered model. The numerical examples show that the developed AC FDFD method is more accurate than the traditional second-order FDFD method for solving the TFC equation with the CFS PML absorbing boundary condition, while requiring similar computational costs. Full article
Show Figures

Figure 1

24 pages, 2887 KiB  
Article
Seismo-VLAB: An Open-Source Software for Soil–Structure Interaction Analyses
by Danilo S. Kusanovic, Elnaz E. Seylabi, Peyman Ayoubi, Kien T. Nguyen, Joaquin Garcia-Suarez, Albert R. Kottke and Domniki Asimaki
Mathematics 2023, 11(21), 4530; https://doi.org/10.3390/math11214530 - 3 Nov 2023
Cited by 2 | Viewed by 3290
Abstract
In the fields of structural and geotechnical engineering, improving the understanding of soil–structure interaction (SSI) effects is critical for earthquake-resistant design. Engineers and practitioners often resort to finite element (FE) software to advance this objective. Unfortunately, the availability of software equipped with boundary [...] Read more.
In the fields of structural and geotechnical engineering, improving the understanding of soil–structure interaction (SSI) effects is critical for earthquake-resistant design. Engineers and practitioners often resort to finite element (FE) software to advance this objective. Unfortunately, the availability of software equipped with boundary representation for absorbing scattered waves and ensuring consistent input ground motion prescriptions, which is necessary for accurately representing SSI effects, is currently limited. To address such limitations, the authors developed Seismo-VLAB (SVL v1.0-stable) an open-source software designed to perform SSI simulations. The methodology considers the integration of advanced techniques, including the domain decomposition method (DDM), perfectly matched layers (PMLs), and domain reduction method (DRM), in addition to parallel computing capabilities to accelerate the solution of large-scale problems. In this work, the authors provide a detailed description of the implementation for addressing SSI modeling, validate some of the SVL’s features needed for such purpose, and demonstrate that the coupled DRM–PML technique is a necessary condition for accurately solving SSI problems. It is expected that SVL provides a significant contribution to the SSI research community, offering a self-contained and versatile alternative. The software’s practical application in analyzing SSI and directionality effects on 3D structures under seismic loading demonstrates its capability to model real-world earthquake responses in structural engineering. Full article
Show Figures

Figure 1

Back to TopTop