Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (412)

Search Parameters:
Keywords = peptide nucleic acid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 789 KiB  
Perspective
Therapeutic Cancer Vaccines in Colorectal Cancer: Platforms, Mechanisms, and Combinations
by Chiara Gallio, Luca Esposito and Alessandro Passardi
Cancers 2025, 17(15), 2582; https://doi.org/10.3390/cancers17152582 - 6 Aug 2025
Abstract
Colorectal cancer (CRC) remains one of the most lethal malignancies worldwide, with high recurrence rates and limited curative options in metastatic settings. Cancer vaccines represent an emerging immunotherapeutic approach that aims to stimulate robust, tumor-specific immune responses. This review summarizes the current state [...] Read more.
Colorectal cancer (CRC) remains one of the most lethal malignancies worldwide, with high recurrence rates and limited curative options in metastatic settings. Cancer vaccines represent an emerging immunotherapeutic approach that aims to stimulate robust, tumor-specific immune responses. This review summarizes the current state of CRC vaccine development, including tumor cell-based, dendritic cell-based, peptide-based, nucleic acid-based (DNA and mRNA), and virus-based platforms. We highlight findings from key clinical trials that demonstrate immunogenicity, safety, and preliminary efficacy, with particular attention to combinations with chemotherapy and immune checkpoint inhibitors. Furthermore, we explore critical challenges such as tumor heterogeneity, immunosuppressive tumor microenvironments, and the logistical complexity; in this context, we particularly focus on the current development of personalized cancer vaccines, exploring the newly identified encouraging epitopes and their safety and efficacy in recent trials. The integration of cancer vaccines with in silico modeling, advanced delivery systems such as nanoparticles or AI-guided designs, and microbiome modulation represents a promising avenue for enhancing their clinical utility. Overall, therapeutic and prophylactic cancer vaccines may soon contribute meaningfully to the comprehensive management of CRC, especially in settings of minimal residual disease or early recurrence. Full article
(This article belongs to the Special Issue Exploring Immunotherapy in Colorectal Cancer)
Show Figures

Figure 1

19 pages, 4720 KiB  
Review
Changes in Thermodynamic Parameters Induced by Pyrimidine Nucleic Bases Forming Complexes with Amino Acids and Peptides in a Buffer Solution at pH = 7.4
by Elena Yu. Tyunina, Vladimir P. Barannikov and Igor N. Mezhevoi
Liquids 2025, 5(3), 19; https://doi.org/10.3390/liquids5030019 - 22 Jul 2025
Viewed by 205
Abstract
This article presents a mini-review of the available data on the thermodynamics of the complexation of amino acids and peptides with some nucleic bases in a buffer medium. Data on changes in thermodynamic parameters (binding constants, Gibbs energy, enthalpy, entropy) during the complexation [...] Read more.
This article presents a mini-review of the available data on the thermodynamics of the complexation of amino acids and peptides with some nucleic bases in a buffer medium. Data on changes in thermodynamic parameters (binding constants, Gibbs energy, enthalpy, entropy) during the complexation of nucleic bases with amino acids and peptides as a function of physicochemical properties are given at T = 298.15 K. The effects of complexation on the volumetric properties of nucleic bases, including apparent molar volumes, standard molar volumes, and limiting molar expansibility, over a temperature range of 288.15 to 313.15 K are considered in detail. Differences in the behavior of amino acids and peptides caused by different modes of coordination with nucleic bases are noted. These manifest in the stoichiometry of the formed complexes, the relationship with the acid dissociation constants of carboxyl and amino groups, enthalpy–entropy compensation in the complexation process, the temperature dependence of the transfer volumes, and the effect of hydrophobicity on volumetric characteristics. Full article
Show Figures

Figure 1

21 pages, 2790 KiB  
Article
To Clamp or Not to Clamp: Enhancing Seed Endophyte Metabarcoding Success
by Allison A. Mertin, Linda L. Blackall, Douglas R. Brumley, Edward C. Y. Liew and Marlien M. van der Merwe
Seeds 2025, 4(3), 28; https://doi.org/10.3390/seeds4030028 - 27 Jun 2025
Viewed by 296
Abstract
Seed microbes play crucial roles in plant health, but studying their diversity is challenging due to host DNA contamination. This study aimed to optimise methodologies for investigating seed microbiomes across diverse plant species, focusing on the efficacy of peptide nucleic acid (PNA) clamps [...] Read more.
Seed microbes play crucial roles in plant health, but studying their diversity is challenging due to host DNA contamination. This study aimed to optimise methodologies for investigating seed microbiomes across diverse plant species, focusing on the efficacy of peptide nucleic acid (PNA) clamps to reduce host DNA amplification. We tested PNA clamps on three plant species: Melaleuca quinquenervia (tree), Microlaena stipoides, and Themeda triandra (grasses). The effectiveness of PNA clamps was assessed through in silico analysis, axenic tissue culture, and metabarcoding techniques. In silico analysis confirmed the specificity of PNA clamps to the 16S rRNA gene V4 region of chloroplasts in the grass species. Axenic tissue culture experiments showed that applying PNA clamps at both 1 µM and 0.25 µM concentrations significantly reduced plant DNA amplification. Metabarcoding analyses further confirmed that PNA clamps effectively suppressed host DNA, enhancing microbial diversity estimates across all three species while preserving core microbial taxa. The efficacy of the clamps varied among host species, with T. triandra exhibiting the highest blocking efficacy, and chloroplast clamps outperforming mitochondrial ones. This study demonstrates that PNA clamps are a useful for improving seed endophyte metabarcoding datasets, although they require optimisation for some plant species. This knowledge will contribute to enhancing our understanding of seed microbiome diversity and its ecological implications. Full article
Show Figures

Figure 1

40 pages, 2128 KiB  
Review
Therapeutic Colorectal Cancer Vaccines: Emerging Modalities and Translational Opportunities
by Palaniyandi Muthukutty, Hyun Young Woo and So Young Yoo
Vaccines 2025, 13(7), 689; https://doi.org/10.3390/vaccines13070689 - 26 Jun 2025
Viewed by 962
Abstract
Therapeutic vaccines offer a targeted approach to enhancing anti-tumor immunity with minimal systemic toxicity. Despite advancements in surgery, chemotherapy, radiation, and immunotherapy, colorectal cancer (CRC) remains a major clinical challenge, particularly due to the limited efficacy of immune checkpoint inhibitors outside the MSI-H [...] Read more.
Therapeutic vaccines offer a targeted approach to enhancing anti-tumor immunity with minimal systemic toxicity. Despite advancements in surgery, chemotherapy, radiation, and immunotherapy, colorectal cancer (CRC) remains a major clinical challenge, particularly due to the limited efficacy of immune checkpoint inhibitors outside the MSI-H subgroup. In this comprehensive review summarizes the emerging vaccine modalities for CRC, including peptide, nucleic acid, cell-based, vector-driven, and nanotechnology platforms. We discuss the barriers posed by tumor immune evasion and heterogeneity, and highlight innovative strategies designed to improve vaccine efficacy. Finally, we explore recent clinical developments and translational opportunities that position therapeutic vaccines as a promising component of future CRC immunotherapy. Full article
(This article belongs to the Special Issue Cancer Vaccines: 4th Edition)
Show Figures

Figure 1

53 pages, 1094 KiB  
Review
Research and Clinical Progress of Therapeutic Tumor Vaccines
by Chunyan Dong, Zhuang Li, Dejiang Tan, Huimin Sun, Jinghui Liang, Dexian Wei, Yiyang Zheng, Linyu Zhang, Sihan Liu, Yu Zhang, Junzhi Wang and Qing He
Vaccines 2025, 13(7), 672; https://doi.org/10.3390/vaccines13070672 - 23 Jun 2025
Viewed by 1621
Abstract
Therapeutic cancer vaccines are a new growth point of biomedicine with broad industrial prospects in the post-COVID-19 era. Many large international pharmaceutical companies and emerging biotechnology companies are deploying different tumor therapeutic cancer vaccine projects, focusing on promoting their clinical transformation, and the [...] Read more.
Therapeutic cancer vaccines are a new growth point of biomedicine with broad industrial prospects in the post-COVID-19 era. Many large international pharmaceutical companies and emerging biotechnology companies are deploying different tumor therapeutic cancer vaccine projects, focusing on promoting their clinical transformation, and the vaccine industry has strong momentum for development. Such vaccines are also the core engine and pilot site for the development of new vaccine targets, new vectors, new adjuvants, and new technologies, which play a key role in promoting the innovation and development of vaccines. Various therapeutic cancer vaccines, such as viral vector vaccines, bacterial vector vaccines, cell vector vaccines, peptide vaccines, and nucleic acid vaccines, have all been applied in clinical research. With the continuous development of technology, therapeutic cancer vaccines are evolving towards the trends of precise antigens, efficient carriers, diversified adjuvants, and combined applications. For instance, the rapidly advancing mRNA-4157 vaccine is a typical representative that combines personalized antigens with efficient delivery vectors (lipid nanoparticles, LNPs), and it also shows synergistic advantages in melanoma patients treated in combination with immune checkpoint inhibitors. In this article, we will systematically discuss the current research and development status and clinical research progress of various therapeutic cancer vaccines. Full article
Show Figures

Figure 1

18 pages, 4899 KiB  
Review
Targeting the Undruggable: Recent Progress in PROTAC-Induced Transcription Factor Degradation
by Hyein Jung and Yeongju Lee
Cancers 2025, 17(11), 1871; https://doi.org/10.3390/cancers17111871 - 3 Jun 2025
Viewed by 1835
Abstract
Transcription factors (TFs) play central roles in gene regulation and disease progression but have long been considered undruggable due to the absence of well-defined binding pockets and their reliance on protein–protein or protein–DNA interactions. Proteolysis-targeting chimeras (PROTACs) offer a novel strategy to overcome [...] Read more.
Transcription factors (TFs) play central roles in gene regulation and disease progression but have long been considered undruggable due to the absence of well-defined binding pockets and their reliance on protein–protein or protein–DNA interactions. Proteolysis-targeting chimeras (PROTACs) offer a novel strategy to overcome these limitations by inducing selective degradation of TFs via the ubiquitin–proteasome system. This review highlights recent advances in TF-targeting PROTACs, focusing on key oncogenic TFs such as androgen receptor (AR), estrogen receptor alpha (ERα), BRD4, c-Myc, and STAT family members. Strategies for ligand design—including small molecules, peptides, and nucleic acid-based elements—are discussed alongside the use of various E3 ligases such as VHL, CRBN, and IAP. Several clinically advanced PROTACs, including ARV-110 and ARV-471, demonstrate the therapeutic potential of this technology. Despite challenges in pharmacokinetics and E3 ligase selection, emerging data suggest that PROTACs can successfully target TFs, paving the way for new treatment strategies across oncology and other disease areas. Full article
(This article belongs to the Special Issue Recent Advances in PROteolysis TArgeting Chimeras (PROTACs))
Show Figures

Figure 1

22 pages, 9343 KiB  
Article
A DNA Vaccine Against Proadrenomedullin N-Terminal 20 Peptide (PAMP) Reduces Angiogenesis and Increases Lymphocyte and Macrophage Infiltration but Has No Effect on Tumor Burden in a Mouse Model of Lung Metastasis
by Tom Kalathil Raju, Srdan Tadic, Pablo Garrido, Laura Ochoa-Callejero, Judit Narro-Íñiguez, Josune García-Sanmartín and Alfredo Martínez
Vaccines 2025, 13(6), 586; https://doi.org/10.3390/vaccines13060586 - 30 May 2025
Viewed by 773
Abstract
Background/Objectives: Nucleic acid-based anticancer vaccines are becoming a very active field in the fight against cancer. Here, our goal was to generate an oral DNA vaccine targeting the angiogenic peptide, proadrenomedullin N-terminal 20 peptide (PAMP). Methods: An expression plasmid (PcPAMP) was generated by [...] Read more.
Background/Objectives: Nucleic acid-based anticancer vaccines are becoming a very active field in the fight against cancer. Here, our goal was to generate an oral DNA vaccine targeting the angiogenic peptide, proadrenomedullin N-terminal 20 peptide (PAMP). Methods: An expression plasmid (PcPAMP) was generated by fusing the tetanus toxin epitopes P2 and P30 to the mouse PAMP sequence to counteract self-tolerance, and the empty plasmid was used as a negative control (PcNeg). The plasmids were introduced into Salmonella typhimurium bacteria that were then transformed into bacterial ghosts. C57BL/6J mice were orally immunized with the ghosts five times at 2-week intervals. Then, B16-F10 melanoma cells were injected into the tail vein to generate lung metastases. Furthermore, naïve CD4+ T cells were exposed to PAMP, and their secretome was analyzed by proximity extension assays. Results: Significant levels of anti-PAMP immunoglobulins were detected in the blood of PcPAMP-vaccinated mice and their levels of spleen CD8+ T cells were significantly higher than in those treated with PcNeg, indicating that self-tolerance was effectively broken. Although the number and size of lung metastases was similar between both experimental groups, there was a significant reduction in intratumoral angiogenesis and in cancer cell proliferation index in the PcPAMP group. Furthermore, these animals showed an intense infiltration of lymphocytes, including regulatory T cells, and M2-like macrophages into the metastases, that was not evident in the PcNeg group. In addition, PAMP induced upregulation of IL1β, IL6, IL7, IL12, IL27, TNFα, and FGF21, and downregulation of IL16 in naïve CD4+ T cells. Conclusions: Although the vaccine was not effective in reducing tumor growth, new proliferative and immune functions have been described for PAMP. These new functions include induction of melanoma proliferation and modulation of lymphocyte and macrophage tumor infiltration dynamics. Full article
Show Figures

Figure 1

23 pages, 4235 KiB  
Review
Recent Advances in the Development of Functional Nucleic Acid Biosensors Based on Aptamer-Rolling Circle Amplification
by Ce Liu and Wanchong He
Molecules 2025, 30(11), 2375; https://doi.org/10.3390/molecules30112375 - 29 May 2025
Viewed by 1031
Abstract
Aptamers are synthetic nucleic acids or peptides that exhibit high specificity and affinity for target molecules such as small molecules, proteins, or cells. Due to their ability to bind precisely to these targets, aptamers have found widespread use in bioanalytical and diagnostic applications. [...] Read more.
Aptamers are synthetic nucleic acids or peptides that exhibit high specificity and affinity for target molecules such as small molecules, proteins, or cells. Due to their ability to bind precisely to these targets, aptamers have found widespread use in bioanalytical and diagnostic applications. Rolling circle amplification (RCA) is an amplification technique that utilizes DNA or RNA templates, where circular primers are extended by polymerases to generate multiple repeated sequences, enabling highly sensitive detection of target molecules. The integration of aptamers with RCA offers significant advantages, enhancing both the specificity and sensitivity of detection while ensuring a fast and straightforward process. This synergy has already been widely applied across various fields, including fluorescence, microfluidics, visualization, and electrochemical technologies. Examples include molecular probe development, rapid detection of disease biomarkers, and environmental monitoring. Looking ahead, the aptamer-RCA platform holds great promise for advancing early disease diagnosis, precision medicine, and the development of nanosensors, driving innovation and new applications in these fields. Full article
(This article belongs to the Special Issue Functional Nanomaterials for Biosensors and Biomedicine Application)
Show Figures

Figure 1

16 pages, 6714 KiB  
Article
Construction of Graphene Oxide Probes Loaded with Antisense Peptide Nucleic Acid and Doxorubicin for Regulating Telomerase Activity and Inducing Apoptosis of Cancer Cells
by Yanyan Zhu, Qinghong Ji and Min Hong
Biosensors 2025, 15(6), 337; https://doi.org/10.3390/bios15060337 - 26 May 2025
Viewed by 593
Abstract
In this study, we developed a multifunctional graphene oxide (GO)-based nanoprobe co-loaded with antisense peptide nucleic acid (PNA) and the chemotherapeutic agent doxorubicin (DOX). The nanoplatform was strategically functionalized with folic acid ligands to enable folate receptor-mediated tumor targeting. Upon cellular internalization, the [...] Read more.
In this study, we developed a multifunctional graphene oxide (GO)-based nanoprobe co-loaded with antisense peptide nucleic acid (PNA) and the chemotherapeutic agent doxorubicin (DOX). The nanoplatform was strategically functionalized with folic acid ligands to enable folate receptor-mediated tumor targeting. Upon cellular internalization, the antisense PNA component selectively hybridized with human telomerase reverse transcriptase (hTERT) mRNA through sequence-specific recognition, inducing structural detachment from the GO surface. This displacement restored the fluorescence signal of previously quenched fluorophores conjugated to the PNA strand, thereby enabling the real-time in situ detection and quantitative fluorescence imaging of intracellular hTERT mRNA dynamics. The antisense PNA component effectively reduced the hTERT mRNA level and downregulated telomerase activity via an antisense gene regulation pathway, while the pH-responsive release of DOX induced potent cancer cell apoptosis through chemotherapeutic action. This combinatorial therapeutic strategy demonstrated enhanced anticancer efficacy compared to single-modality treatments, achieving a 60% apoptosis induction in HeLa cells through coordinated gene silencing and chemotherapy. This study establishes GO as a promising dual-drug nanocarrier platform for developing next-generation theranostic systems that integrate molecular diagnostics with multimodal cancer therapy. Full article
(This article belongs to the Special Issue Fluorescent Probes for Bioimaging and Biosensors)
Show Figures

Figure 1

16 pages, 7103 KiB  
Article
Adjuvanted RNA Origami—A Tunable Peptide Assembly Platform for Constructing Cancer Nanovaccines
by Theresa Yip, Xinyi Tu, Xiaodong Qi, Hao Yan and Yung Chang
Vaccines 2025, 13(6), 560; https://doi.org/10.3390/vaccines13060560 - 25 May 2025
Viewed by 1015
Abstract
Background/Objectives: Cancer peptide vaccines represent a promising strategy to develop targeted and personalized treatments for cancer patients. While tumor peptides alone are insufficient in mounting effective immune responses, the addition of adjuvants can enhance their immunogenicity. Nanoparticle delivery systems have been explored as [...] Read more.
Background/Objectives: Cancer peptide vaccines represent a promising strategy to develop targeted and personalized treatments for cancer patients. While tumor peptides alone are insufficient in mounting effective immune responses, the addition of adjuvants can enhance their immunogenicity. Nanoparticle delivery systems have been explored as vaccine carriers to incorporate both adjuvants and peptides. One such nanoparticle is RNA origami (RNA-OG), a nucleic acid nanostructure that is programmed to form different sizes and shapes. Our designed RNA-OG can incorporate various biomolecules and has intrinsic adjuvant activity by acting as a toll-like receptor 3 agonist. We previously showed that the RNA-OG functions as an adjuvanted, carrier-free vaccine platform to assemble peptides. Although effective, only a fixed number of peptides (13) could be covalently linked to each RNA-OG. Methods: Here, we developed a simple physical assembly strategy to attach polylysine-linked neopeptides onto RNA-OG so that the number of peptides per RNA-OG could be readily tuned and tested for their immunogenicity. Results: Although the vaccines with a high number of peptides, i.e., 100–200 peptides/RNA-OG, led to greater peptide presentation by bone marrow-derived dendritic cells, they failed to mount effective CD8+ T cell responses against engrafted tumor cells, probably owing to an induction of early T cell exhaustion. Interestingly, the same vaccine format with a low number of peptides, i.e., 10–15 peptides/RNA-OG, enhanced CD8+ T cell responses without provoking T cell exhaustion in tumor-bearing mice, leading to strong protective anti-tumor immunity. In comparison, the covalently assembled RNA-OG-peptide vaccine, having a similarly low peptide dosage, offered the highest therapeutic efficacy. Thus, our RNA-OG nanostructure provides a simple and tunable platform for peptide loading to optimize vaccine efficacy. Conclusions: Our findings have significant implications for peptide vaccine design regarding peptide dosages and structural stability of RNA-OG complexed with peptides, which could guide the development of more effective peptide vaccines for cancer immunotherapy. Full article
(This article belongs to the Special Issue Novel Immunotherapies, Cell Therapies and Cancer Vaccines)
Show Figures

Figure 1

20 pages, 4445 KiB  
Article
Investigating the Interactions of Peptide Nucleic Acids with Multicomponent Peptide Hydrogels for the Advancement of Healthcare Technologies
by Sabrina Giordano, Monica Terracciano, Enrico Gallo, Carlo Diaferia, Andrea Patrizia Falanga, Antonella Accardo, Monica Franzese, Marco Salvatore, Gennaro Piccialli, Nicola Borbone and Giorgia Oliviero
Gels 2025, 11(5), 367; https://doi.org/10.3390/gels11050367 - 17 May 2025
Viewed by 583
Abstract
This study reports the development of peptide-based hydrogels for the encapsulation and controlled release of peptide nucleic acids in drug delivery applications. Ultrashort aromatic peptides, such as Fmoc-FF, self-assemble into biocompatible hydrogels with nanostructured architectures. The functionalization of tripeptides (Fmoc-FFK and Fmoc-FFC) with [...] Read more.
This study reports the development of peptide-based hydrogels for the encapsulation and controlled release of peptide nucleic acids in drug delivery applications. Ultrashort aromatic peptides, such as Fmoc-FF, self-assemble into biocompatible hydrogels with nanostructured architectures. The functionalization of tripeptides (Fmoc-FFK and Fmoc-FFC) with lysine (K) or cysteine (C) enables electrostatic or covalent interactions with model PNAs engineered with glutamic acid or cysteine residues, respectively. Hydrogels were polymerized in situ in the presence of PNAs, and component ratios were systematically varied to optimize mechanical properties, loading efficiency, and release kinetics. The formulations obtained with a 1/10 ratio of Fmoc-FF(K or C)/Fmoc-FF provided an optimal balance between structural integrity and delivery performance. All hydrogel formulations demonstrated high stiffness (G′ > 19,000 Pa), excellent water retention, and minimal swelling under physiological conditions (ΔW < 4%). The release studies over 10 days showed that electrostatic loading enabled faster and higher release (up to 90%), while covalent bonding resulted in slower, sustained delivery (~15%). These findings highlight the tunability of the hydrogel system for diverse therapeutic applications. Full article
Show Figures

Figure 1

18 pages, 5182 KiB  
Review
Evolutionary Routes to Modern Metabolic Pathways
by Alberto Vázquez-Salazar and Israel Muñoz-Velasco
Macromol 2025, 5(2), 23; https://doi.org/10.3390/macromol5020023 - 8 May 2025
Viewed by 2402
Abstract
Metabolism, the network of biochemical reactions that powers life, arose under conditions radically different from those on Earth today. Investigating its origins reveals how initially simple chemical processes gradually integrated nucleic acid and then protein catalysts, becoming progressively more complex and regulated until [...] Read more.
Metabolism, the network of biochemical reactions that powers life, arose under conditions radically different from those on Earth today. Investigating its origins reveals how initially simple chemical processes gradually integrated nucleic acid and then protein catalysts, becoming progressively more complex and regulated until they evolved into the enzyme-rich systems observed in modern organisms. Here, we integrate multiple perspectives on the origin of metabolism, focusing primarily on an evolutionary trajectory from an RNA-based world, where ribozymes, metal ions, coenzymes, small peptides, and other small organic molecules worked in concert, to enzyme-driven metabolic networks. We also address the longstanding debates on whether these early metabolic pathways were largely autotrophic or heterotrophic, and consider so-called “pre-metabolisms” (non-enzymatic networks) as an alternative conceptual framework. We discuss key examples such as the Wood–Ljungdahl (W–L) pathway and the reverse tricarboxylic acid (TCA) cycle, both posited to function under early Earth conditions. Finally, we examine how the environment (e.g., minerals, clays, hydrothermal vents) shaped early metabolism, describe unresolved questions about the Last Common Ancestor’s catalytic repertoire and propose future directions that link geochemical insights with molecular biology and synthetic approaches. Full article
Show Figures

Graphical abstract

12 pages, 2016 KiB  
Article
Ionic Strength Investigation on the Interaction Between miR-155 and a PNA-Based Probe by Atomic Force Spectroscopy
by Davide Atzei, Francesco Lavecchia di Tocco and Anna Rita Bizzarri
Biomolecules 2025, 15(5), 634; https://doi.org/10.3390/biom15050634 - 28 Apr 2025
Viewed by 478
Abstract
Peptide nucleic acids (PNAs) are synthetic analogues of DNA/RNA characterized by the absence of negative phosphate groups, which confer a low sensitivity to ionic strength for hybridization with respect to the canonical counterpart. PNAs are a suitable probe for miRNAs, as well as [...] Read more.
Peptide nucleic acids (PNAs) are synthetic analogues of DNA/RNA characterized by the absence of negative phosphate groups, which confer a low sensitivity to ionic strength for hybridization with respect to the canonical counterpart. PNAs are a suitable probe for miRNAs, as well as endogenous molecules of single-strand non-coding RNA whose dysregulation is often linked to several diseases. The interaction forces between PNA and microRNA-155 (miR-155), a multifunctional microRNA overexpressed in a variety of tumors, were investigated by Atomic Force Spectroscopy (AFS) in fluid under different conditions. We found that the unbinding forces acquired at the ionic strength of 150 mM for a rather wide range of loading rates (ΔF/Δt) can be described using the Bell–Evans model. This allows us to extract information on the kinetics and thermodynamic properties of the miR-155/PNA duplex. Additionally, we probed the unbinding forces and the target recognition times between miR-155 and PNA in the 50–300 mM ionic strength range. Our results indicate that both of these parameters are practically independent from the ionic strength in the analyzed range. The results provide information that is useful for a wider use of PNA in biosensors for diagnostics and therapeutics, even in situ. Full article
(This article belongs to the Section Molecular Biophysics: Structure, Dynamics, and Function)
Show Figures

Figure 1

17 pages, 7060 KiB  
Article
Impact of Pre-Extraction Methods on Apple Blossom Microbiome Analysis
by Nikhil N. Patel, Jonathan R. Gaiero, Muhammad Sulman, Paul Moote, Darlene Nesbitt, Antonet M. Svircev and Walid Ellouze
Microorganisms 2025, 13(4), 923; https://doi.org/10.3390/microorganisms13040923 - 16 Apr 2025
Viewed by 605
Abstract
This study examines the effect of pre-extraction methods, namely, sonication, grinding, and lyophilization, and the use of peptide nucleic acid (PNA) blockers on the DNA recovery, diversity, and taxonomic resolution of bacterial and fungal communities in apple blossoms. Sonication was the most successful [...] Read more.
This study examines the effect of pre-extraction methods, namely, sonication, grinding, and lyophilization, and the use of peptide nucleic acid (PNA) blockers on the DNA recovery, diversity, and taxonomic resolution of bacterial and fungal communities in apple blossoms. Sonication was the most successful in recovering bacterial 16S and fungal ITS reads across all the collection points and plots. Lyophilization and grinding led to a significant reduction in fungal read counts, while PNA enhanced the recovery of bacterial 16S reads. Sonication improved the efficiency of DNA extraction and yielded greater diversity in the recovered microbial community. Sonicated samples showed greater sensitivity to temporal shifts in microbial community composition. Communities in sonicated samples contained a larger number of bacterial genera, such as Bacillus, Staphylococcus, and Erwinia, and fungal genera, including Didymellaceae and Cladosporium. In contrast, lyophilization and grinding led to a reduction in detected taxa. The indicator species analysis determined that 35 bacterial and 21 fungal genera were closely related to sonication, whereas no other pre-extraction method had any associated genera. Our findings suggest that sonication is the most appropriate pre-extraction method for analyzing blossom-associated microbiomes, and that the use of PNA blockers can improve the recovery of bacteria and minimize contamination by host DNA. Full article
Show Figures

Figure 1

10 pages, 1928 KiB  
Article
Targeted Suppression of CEACAM6 via pHLIP-Delivered RNAs in Pancreatic Ductal Adenocarcinoma
by Hongsik Kim, Chang-Gok Woo, Seung-Myoung Son, Yong-Pyo Lee, Hee-Kyung Kim, Yaewon Yang, Jihyun Kwon, Ki-Hyeong Lee, Ho-Chang Lee, Ok-Jun Lee and Hye-Sook Han
Medicina 2025, 61(4), 598; https://doi.org/10.3390/medicina61040598 - 26 Mar 2025
Viewed by 569
Abstract
Background and Objectives: Carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) is involved in pancreatic cancer progression and is an attractive therapeutic target for pancreatic cancer. In this study, we evaluated the therapeutic efficacy of small-interfering RNA (siRNA) targeting CEACAM6 (siCEACAM6) and the [...] Read more.
Background and Objectives: Carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) is involved in pancreatic cancer progression and is an attractive therapeutic target for pancreatic cancer. In this study, we evaluated the therapeutic efficacy of small-interfering RNA (siRNA) targeting CEACAM6 (siCEACAM6) and the CEACAM6-suppressive microRNA-29a (miR-29a) in a pancreatic ductal adenocarcinoma xenograft mouse model using pH-low insertion peptide (pHLIP) technology, which targets the acidic tumor microenvironment. Materials and Methods: The delivery vectors for siRNA and miRNA were constructed by conjugating the peptide nucleic acid forms of siCEACAM6 and miR-29a to a peptide with a pHLIP, enabling the transport of siRNA and miRNA across the plasma membrane. The tumor-suppressive effects of pHLIP-siCEACAM6 and pHLIP-miR-29a were assessed in vivo using a BALB/c xenograft mouse model with the injection of the CFPAC-1 human pancreatic ductal adenocarcinoma cell line. Results: The treatment of CFPAC-1 cells with pHLIP-siCEACAM6 and pHLIP-miR-29a under acidic pH conditions suppressed CEACAM6 expression and decreased cell viability. In a xenograft mouse model, the intravenous injection of pHLIP-siCEACAM6 and pHLIP-miR-29a suppressed tumor growth by up to 25.1% (p < 0.01) and 21.2% (p < 0.01), respectively, compared to the control mice treated with pHLIP-scr. Conclusions: Our results demonstrated the efficacy of the pHLIP-mediated delivery of siCEACAM6 and miR-29a as a promising therapeutic strategy in a pancreatic ductal adenocarcinoma xenograft mouse model. The pHLIP technology, which targets the acidic tumor microenvironment, represents an innovative approach to the delivery of small RNAs to pancreatic ductal adenocarcinoma cells, providing new potential strategies for pancreatic cancer treatment. Full article
(This article belongs to the Special Issue Recent Developments in Anticancer Drug Delivery)
Show Figures

Figure 1

Back to TopTop