Therapeutic Cancer Vaccines in Colorectal Cancer: Platforms, Mechanisms, and Combinations
Simple Summary
Abstract
1. Introduction
2. Cell-Based Vaccines in Colorectal Cancer Therapy
2.1. Tumor Cell-Based Vaccines: Enhancing Tumor Immunogenicity
2.2. Dendritic Cell-Based Vaccines: Directing the Immune Response
2.3. Induce Pluripotent Stem Cells (iPSCs): Increasing Response by Expressing Tumor-Associated Antigens
Vaccine | Type of Study (N of pts Enrolled) | Clinical Stage at Enrollment | Adjuvant | Combination | Primary Endpoint(s) | Result | Reference |
---|---|---|---|---|---|---|---|
Tumor Cell-Based Vaccines | |||||||
Vigil™ | Case report (2) | Stage IV colon cancer (liver metastases) | GM-CSF | FOLFOX-6 | Safety, immune response | DFS > 8 years for both patients; positive immuno-responsiveness | [15] |
OncoVAX® | Phase III (254) | Stage II and III colorectal cancer after surgery | BCG | / | RFS | Vaccination showed 41% risk reduction for disease progression (5-y survival, p = 0.008) Major impact on Stage II disease | [18] |
GVAX | Phase II (17) | Late-stage Stage IV pMMR colorectal cancer | GM-CSF | Cyclophosphamide + pembrolizumab | ORR | No ORR observed CEA decline in 41% of pts | [20] |
Dendritic Cell-Based Vaccines | |||||||
Autologous tumor lysate-pulsed DC vaccine | Phase II (52) | Late-stage metastatic colorectal cancer | / | / | 4-month PFS | Median PFS 2.7 vs. 2.3 mo (p = 0.628) Tumor-specific T cell responders had longer OS (7.3 vs. 3.8 mo) | [22] |
CEA RNA-pulsed DC vaccine | Phase I/II (13 in Phase II analysis) | Metastatic CEA-expressing tumors (including CRC) undergone radical surgery | / | / | Safety; feasibility | No grade II-IV toxicity reported Generation of cytotoxic CEA-specific T cells | [23] |
Autologous tumor lysate DC vaccine (GEMCAD 1602) | Phase I/II (19) | Late-stage MSS metastatic CRC | / | Avelumab | 20% 6-month PFS increase | Six-month PFS 11%; median PFS 3.1 mo (2.1–5.3 mo); median OS 12.2 mo (3.2–23.2 mo) | [24] |
CD40L-activated autologous DC vaccine | Phase II (26) | Stage II and III colorectal cancer after surgery | CD40L (12 of 26 pts) | / | Tumor-specific immune response | Tumor-specific immune response rate 61% Improved 5-year RFS in responders (63% vs. 18%, p = 0.037) | [25] |
Induced Pluripotent Stem Cell (iPSC)-Based Vaccines | |||||||
Autologous iPSC-based vaccine | Preclinical | Animal models | CpG | / | Tumor-specific immune response | Induced T cell responses inhibited tumor growth | [32] |
3. Peptide-Based Vaccines in Colorectal Cancer Treatment
Vaccine | Type of Study (N of pts Enrolled) | Clinical Stage at Enrollment | Adjuvant | Combination | Primary Endpoint(s) | Result | Reference |
---|---|---|---|---|---|---|---|
OCV-C02 peptide vaccine | Phase I (24) | Stage IV colon cancer | Montanide ISA 51 VG | / | Safety | No dose-limiting toxicities Induced T cell responses | [33] |
mKRAS G12D/G12R amphiphile peptide (ELI-002 2P) | Phase I | Stage IV KRAS-mut CRC/PDAC with MRD after resection | Amph-CpG-7909 | / | Safety Recommended Phase 2 dose | No dose-limiting toxicities mKRAS-specific T cell response rate 84% PFS improvement in responders | [34] |
MUC1 peptide | Phase I/II (103, 53 vaccines, 50 placebo) | Colorectal adenoma | Polyinosinic-polycytidylic acid | / | Immune response at 12 wks | No significant reduction in adenoma recurrence Immuno-responders at weeks 12 showed 38% absolute reduction compared to placebo (66%) | [35] |
p53-SLP® | Phase I/II (11) | Stage IV colon cancer in remission | Interferon-alpha | Safety; immunogenicity | No relevant toxicities Marked increase in IFN-γ T cells | [36] | |
IMA910 multi-peptide | Phase I/II (92) | Stage IV colon cancer post oxaliplatin-based therapy in stable disease | GM-CSF±topical imiquimod | Cyclophosphamide pre-vaccine (immunomodulation) | Immunogenicity; OS vs. matched COIN arm C | Median OS 19.7 mo vs. 16.5 mo (HR 0.675, p = 0.047) Immuno-responders reported improved OS than non-responders | [37] |
Multi-peptide personalized vaccine | Phase II (89) | Stage IV colon cancer | GM-CSF | Oxaliplatin-based chemotherapy | Safety; immunogenicity; IgG/CTL biomarker correlation with OS | Elevated IgG to TOMM34, RNF43, VEGFR2; VEGFR2 IgG linked with improved OS; CTL response increased, but not correlated with OS | [38] |
Seven-peptide cocktail vaccine | Phase I/II (30) | Stage IV colon cancer | Montanide ISA 51 VG | Tegafur-uracil plus leucovorin | Safety; Feasibility | One case of anaphylaxis and no other serious adverse events were reported Positive CTL responders had longer OS | [39] |
Poly-peptide personalized vaccine | Phase I (14) | Stage IV colon cancer | Montanide ISA 51 | Tegafur-uracil plus leucovorin | Safety; immunogenicity | Good tolerance IgG response correlated with increased OS (p = 0.0215) CTL response increased, but not correlated with OS or PFS | [40] |
HER2 chimeric B cell peptide vaccines | Phase I (49) | Late-Stage IV solid tumors (including CRC) | Montanide ISA 720VG + nor-MDP | / | Safety; immunogenicity | No relevant toxicities IgG response Poor disease control rate | [41] |
4. Nucleic Acid-Based Vaccines
4.1. mRNA Vaccines
4.2. DNA Vaccines
Vaccine | Type of Study (N of pts Enrolled) | Clinical Stage at Enrollment | Adjuvant | Combination | Primary Endpoint(s) | Result | Reference |
---|---|---|---|---|---|---|---|
mRNA-5671/V941 | Phase I/II (16 CRC pts) | Metastatic KRAS-mut (G12D, G12V, G13D or G12C) solid tumors (including CRC) | / | ±Pembrolizumab | Safety | Closed prematurely for business reasons | [42] |
BNT122 (Autogene cevumeran) | Phase I/II (213, 12 CRC pts) | Late-Stage IV solid tumors (including CRC) | / | ±Atezolizumab | Safety; tolerability | Mild-to-moderate systemic reactions Long-lasting neoantigen-specific T cell response rate was similar in both monotherapy and combination therapy | [43] |
ZYC300 | Phase I (17, 3 CRC pts) | Late-Stage IV solid tumors (including CRC) | / | / | Safety; immunogenicity | Well-tolerated; immune response to CYP1B1 induced in one of three CRC patients Immuno-responders had better response to subsequent therapy | [44] |
TetMYB | Phase I (27) | Late-Stage IV solid tumors (including CRC) | / | +BGB-A317 (anti PD-1) | Safety; immunogenicity | No results published yet | [45] |
5. Virus-Based Vaccines
Vaccine | Type of Study (N of pts Enrolled) | Clinical Stage at Enrollment | Adjuvant | Combination | Primary Endpoint(s) | Result | Reference |
---|---|---|---|---|---|---|---|
VRP-CEA (6D) | Phase I/II (40) | Stage III and IV CRC | / | / | Safety, immunogenicity, CD8+ T cell response, overall survival | Well tolerated; increased CD8+ effector memory T cell-to-Treg ratio and long-term survival benefit in Stage III colon cancer patients (5-year RFS = 75%) | [47] |
Ad5.F35-GUCY2C-PADRE | Phase I/II (43 of 81) | High-risk gastrointestinal adenocarcinomas after radical surgery | / | / | Safety, immunogenicity | Ongoing trial, no results published yet | [49] |
Ad5 [E1-, E2b-]-CEA(6D) | Phase I/II (32) | Late-stage IV CRC | / | / | Safety, immunogenicity, overall survival | Well tolerated; increased CEA-specific T cell responses; patients who received optimal vaccination schedule reported higher OS | [50] |
AdCEA | Phase II | Untreated pMMR metastatic CRC | / | mFOLFOX6 + bevacizumab + avelumab | PFS | No significant differences in mPFS: 8.8 months (95% CI: 3.3–17.0 mo) versus 10.1 months (95% CI: 3.6–16.1 mo) in control arm Increased CD4+ and CD8+ T cell responses | [51] |
Intratumoral influenza vaccine | Phase I/II (10) | Stage II-III pMMR CRC patients before curative surgery | / | / | Safety | No adverse events recorded; increased intratumoral CD8+ T cells; enhanced PD-L1 protein expression | [52] |
6. Challenges in Cancer Vaccine Development
7. Future Directions
8. Expert Opinion
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CRC | Colorectal Cancer |
MSI-H | Microsatellite Instability-High |
dMMR | Deficient Mismatch Repair |
BCG | Bacillus Calmette–Guérin |
FDA | Food and Drug Administration |
TAA | Tumor-Associated Antigen |
TSA | Tumor-Specific Antigen |
CTL | Cytotoxic T Lymphocyte |
DC | Dendritic Cell |
GMP | Good Manufacturing Practice |
GVAX | GM-CSF-secreting Allogeneic Tumor Cell Vaccine |
GM-CSF | Granulocyte–Macrophage Colony-Stimulating Factor |
DFS | Disease-Free Survival |
mRNA | Messenger Ribonucleic Acid |
shRNA | Short Hairpin RNA |
DNA | Deoxyribonucleic Acid |
ICI | Immune Checkpoint Inhibitor |
TME | Tumor Microenvironment |
MSS | Microsatellite Stable |
pMMR | Proficient Mismatch Repair |
MRD | Minimal Residual Disease |
KRAS | Kirsten Rat Sarcoma Viral Oncogene Homolog |
CTC | Circulating Tumor Cell |
PD-L1 | Programmed Death-Ligand 1 |
iPSC | Induced Pluripotent Stem Cell |
hESC | Human Embryonic Stem Cells |
CD4+ | Cluster of Differentiation 4 Positive (T Cell) |
CD8+ | Cluster of Differentiation 8 Positive (T Cell) |
HNRNPU | Heterogeneous Nuclear Ribonucleoprotein U |
NCL | Nucleolin |
CD40L | CD40 ligand |
Th1 | Type 1 T Helper Cell |
HER | Human Epidermal Growth Factor Receptor 2 |
Treg | Regulatory T Cell |
MDSC | Myeloid-Derived Suppressor Cell |
HLA | Human Leukocyte Antigen |
VEGFR | Vascular Endothelial Growth Factor Receptor |
CEA | Carcinoembryonic Antigen |
References
- Ferlay, J.; Ervik, M.; Lam, F.; Laversanne, M.; Colombet, M.; Mery, L.; Piñeros, M.; Znaor, A.; Soerjomataram, I.; Bray, F. Global Cancer Observatory: Cancer Today; International Agency for Research on Cancer: Lyon, France, 2024; Available online: https://gco.iarc.who.int/today (accessed on 5 June 2025).
- Nors, J.; Iversen, L.H.; Erichsen, R.; Gotschalck, K.A.; Andersen, C.L. Incidence of Recurrence and Time to Recurrence in Stage I to III Colorectal Cancer: A Nationwide Danish Cohort Study. JAMA Oncol. 2024, 10, 54–62. [Google Scholar] [CrossRef]
- Weng, J.; Li, S.; Zhu, Z.; Liu, Q.; Zhang, R.; Yang, Y.; Li, X. Exploring immunotherapy in colorectal cancer. J. Hematol. Oncol. 2022, 15, 95. [Google Scholar] [CrossRef]
- Cohen, R.; Rousseau, B.; Vidal, J.; Colle, R.; Diazjr, L.A.; André, T. Immune Checkpoint Inhibition in Colorectal Cancer: Microsatellite Instability and Beyond. Target. Oncol. 2019, 15, 11–24. [Google Scholar] [CrossRef] [PubMed]
- André, T.; Elez, E.; Cutsem, E.V.; Jensen, L.H.; Bennouna, J.; Mendez, G.; Schenker, M.; de la Fouchardiere, C.; Limon, M.L.; Yoshino, T.; et al. Nivolumab plus Ipilimumab in Microsatellite-Instability–High Metastatic Colorectal Cancer. N. Engl. J. Med. 2024, 391, 2014–2026. [Google Scholar] [CrossRef] [PubMed]
- Cercek, A.; Foote, M.B.; Rousseau, B.; Smith, J.J.; Shia, J.; Sinopoli, J.; Weiss, J.; Lumish, M.; Temple, L.; Patel, M.; et al. Nonoperative Management of Mismatch Repair-Deficient Tumors. N. Engl. J. Med. 2025, 392, 2297–2308. [Google Scholar] [CrossRef] [PubMed]
- Chalabi, M.; Verschoor, Y.L.; Tan, P.B.; Balduzzi, S.; Lent, A.U.V.; Grootscholten, C.; Dokter, S.; Büller, N.V.; Grotenhuis, B.A.; Kuhlmann, K.; et al. Neoadjuvant Immunotherapy in Locally Advanced Mismatch Repair–Deficient Colon Cancer. N. Engl. J. Med. 2024, 390, 1949–1958. [Google Scholar] [CrossRef]
- Le, D.T.; Uram, J.N.; Wang, H.; Bartlett, B.R.; Kemberling, H.; Eyring, A.D.; Skora, A.D.; Luber, B.S.; Azad, N.S.; Laheru, D.; et al. PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. N. Engl. J. Med. 2015, 372, 2509–2520. [Google Scholar] [CrossRef]
- Eng, C.; Kim, T.W.; Bendell, J.; Argilés, G.; Tebbutt, N.C.; Di Bartolomeo, M.; Falcone, A.; Fakih, M.; Kozloff, M.; Segal, N.H.; et al. Atezolizumab with or without cobimetinib versus regorafenib in previously treated metastatic colorectal cancer (IMblaze370): A multicentre, open-label, phase 3, randomised, controlled trial. Lancet Oncol. 2019, 20, 849–861. [Google Scholar] [CrossRef]
- Ree, A.H.; Šaltytė Benth, J.; Hamre, H.M.; Kersten, C.; Hofsli, E.; Guren, M.G.; Sorbye, H.; Johansen, C.; Negård, A.; Bjørnetrø, T.; et al. First-line oxaliplatin-based chemotherapy and nivolumab for metastatic microsatellite-stable colorectal cancer—The randomised METIMMOX trial. Br. J. Cancer 2024, 130, 1921–1928. [Google Scholar] [CrossRef]
- Gandini, A.; Puglisi, S.; Pirrone, C.; Martelli, V.; Catalano, F.; Nardin, S.; Seeber, A.; Puccini, A.; Sciallero, S. The role of immunotherapy in microsatellites stable metastatic colorectal cancer: State of the art and future perspectives. Front. Oncol. 2023, 13, 1161048. [Google Scholar] [CrossRef]
- Huyghe, N.; Benidovskaya, E.; Stevens, P.; Van den Eynde, M. Biomarkers of Response and Resistance to Immunotherapy in Microsatellite Stable Colorectal Cancer: Toward a New Personalized Medicine. Cancers 2022, 14, 2241. [Google Scholar] [CrossRef]
- Kaczmarek, M.; Poznańska, J.; Fechner, F.; Michalska, N.; Paszkowska, S.; Napierała, A.; Mackiewicz, A. Cancer Vaccine Therapeutics: Limitations and Effectiveness-A Literature Review. Cells 2023, 12, 2159. [Google Scholar] [CrossRef]
- Senzer, N.; Barve, M.; Kuhn, J.; Melnyk, A.; Beitsch, P.; Lazar, M.; Lifshitz, S.; Magee, M.; Oh, J.; Mill, S.W.; et al. Phase I Trial of “bi-shRNAifurin/GMCSF DNA/Autologous Tumor Cell” Vaccine (FANG) in Advanced Cancer. Mol. Ther. 2012, 20, 679–686. [Google Scholar] [CrossRef]
- Barve, V.; Adams, N.; Stanbery, L.; Manning, L.; Horvath, S.; Wallraven, G.; Bognar, E.; Barve, M.; Nemunaitis, J. Case Report: Marked Survival Advantage of Two Colorectal Cancer Patients with Liver Metastases Treated with Vigil and FOLFOX-6. Vaccines 2021, 9, 1201. [Google Scholar] [CrossRef] [PubMed]
- Hoover, H.C.; Brandhorst, J.S.; Peters, L.C.; Surdyke, M.G.; Takeshita, Y.; Madariaga, J.; Muenz, L.R.; Hanna, M.G. Adjuvant active specific immunotherapy for human colorectal cancer: 6.5-year median follow-up of a phase III prospectively randomized trial. J. Clin. Oncol. 1993, 11, 390–399. [Google Scholar] [CrossRef] [PubMed]
- Harris, J.E.; Ryan, L.; Hoover, H.C.; Stuart, R.K.; Oken, M.M.; Benson, A.B.; Mansour, E.; Haller, D.G.; Manola, J.; Hanna, M.G. Adjuvant Active Specific Immunotherapy for Stage II and III Colon Cancer With an Autologous Tumor Cell Vaccine: Eastern Cooperative Oncology Group Study E5283. J. Clin. Oncol. 2000, 18, 148. [Google Scholar] [CrossRef] [PubMed]
- Hanna, M.G., Jr. Immunotherapy with autologous tumor cell vaccines for treatment of occult disease in early stage colon cancer. Hum. Vaccines Immunother. 2012, 8, 1156–1160. [Google Scholar] [CrossRef]
- Hanna, M.G.; Howard, J.; Vermorken, J. Active specific immunotherapy: Using tumor heterogeneity to successfully fight cancer. Hum. Vaccines Immunother. 2014, 10, 3286–3296. [Google Scholar] [CrossRef]
- Yarchoan, M.; Huang, C.-Y.; Zhu, Q.; Ferguson, A.K.; Durham, J.N.; Anders, R.A.; Thompson, E.D.; Rozich, N.S.; Thomas, D.L., II; Nauroth, J.M.; et al. A phase 2 study of GVAX colon vaccine with cyclophosphamide and pembrolizumab in patients with mismatch repair proficient advanced colorectal cancer. Cancer Med. 2020, 9, 1485–1494. [Google Scholar] [CrossRef]
- Mehrani, Y.; Morovati, S.; Keivan, F.; Sarmadi, S.; Shojaei, S.; Forouzanpour, D.; Bridle, B.W.; Karimi, K. Dendritic Cell-Based Cancer Vaccines: The Impact of Modulating Innate Lymphoid Cells on Anti-Tumor Efficacy. Cells 2025, 14, 812. [Google Scholar] [CrossRef]
- Caballero-Baños, M.; Benitez-Ribas, D.; Tabera, J.; Varea, S.; Vilana, R.; Bianchi, L.; Ayuso, J.R.; Pagés, M.; Carrera, G.; Cuatrecasas, M.; et al. Phase II randomised trial of autologous tumour lysate dendritic cell plus best supportive care compared with best supportive care in pre-treated advanced colorectal cancer patients. Eur. J. Cancer 2016, 64, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Morse, M.A.; Nair, S.K.; Mosca, M.D.; Paul, J.; Hobeika, A.C.; Clay, T.M.; Deng, Y.; Boczkowski, D.; Proia, A.; Neidzwiecki, D.; et al. Immunotherapy with Autologous, Human Dendritic Cells Transfected with Carcinoembryonic Antigen mRNA. Cancer Investig. 2003, 21, 341–349. [Google Scholar] [CrossRef] [PubMed]
- Español-Rego, M.; Fernández-Martos, C.; Elez, E.; Foguet, C.; Pedrosa, L.; Rodríguez, N.; Ruiz-Casado, A.; Pineda, E.; Cid, J.; Cabezón, R.; et al. A Phase I-II multicenter trial with Avelumab plus autologous dendritic cell vaccine in pre-treated mismatch repair-proficient (MSS) metastatic colorectal cancer patients; GEMCAD 1602 study. Cancer Immunol. Immunother. 2023, 72, 827–840. [Google Scholar] [CrossRef] [PubMed]
- Barth, R.J., Jr.; Fisher, D.A.; Wallace, P.K.; Channon, J.Y.; Noelle, R.J.; Gui, J.; Ernstoff, M.S. A Randomized Trial of Ex vivo CD40L Activation of a Dendritic Cell Vaccine in Colorectal Cancer Patients: Tumor-Specific Immune Responses Are Associated with Improved Survival. Clin. Cancer Res. 2010, 16, 5548–5556. [Google Scholar] [CrossRef]
- Robinton, D.A.; Daley, G.Q. The promise of induced pluripotent stem cells in research and therapy. Nature 2012, 481, 295–305. [Google Scholar] [CrossRef]
- Crespo, M.; Vilar, E.; Tsai, S.-Y.; Chang, K.; Amin, S.; Srinivasan, T.; Zhang, T.; Pipalia, N.H.; Chen, H.J.; Witherspoon, M.; et al. Colonic organoids derived from human induced pluripotent stem cells for modeling colorectal cancer and drug testing. Nat. Med. 2017, 23, 878–884. [Google Scholar] [CrossRef]
- Wang, L.; Pegram, M.D.; Wu, J.C. Induced pluripotent stem cells as a novel cancer vaccine. Expert Opin. Biol. Ther. 2019, 19, 1191–1197. [Google Scholar] [CrossRef]
- Narsinh, K.H.; Sun, N.; Sanchez-Freire, V.; Lee, A.S.; Almeida, P.; Hu, S.; Jan, T.; Wilson, K.D.; Leong, D.; Rosenberg, J.; et al. Single cell transcriptional profiling reveals heterogeneity of human induced pluripotent stem cells. J. Clin. Investig. 2011, 121, 1217–1221. [Google Scholar] [CrossRef]
- de Bernardes Jesus, B.; Neves, B.M.; Ferreira, M.; Nóbrega-Pereira, S. Strategies for Cancer Immunotherapy Using Induced Pluripotency Stem Cells-Based Vaccines. Cancers 2020, 12, 3581. [Google Scholar] [CrossRef]
- Kooreman, N.G.; Kim, Y.; de Almeida, P.E.; Termglinchan, V.; Diecke, S.; Shao, N.-Y.; Wei, T.-T.; Yi, H.; Dey, D.; Nelakanti, R.; et al. Autologous iPSC-Based Vaccines Elicit Anti-tumor Responses In Vivo. Cell Stem Cell 2018, 22, 501–513.e7. [Google Scholar] [CrossRef]
- Jwo, S.-H.; Ng, S.-K.; Li, C.-T.; Chen, S.-P.; Chen, L.-Y.; Liu, P.-J.; Wang, H.-J.; Lin, J.-S.; Ko, C.-J.; Lee, C.-F.; et al. Dual prophylactic and therapeutic potential of iPSC-based vaccines and neoantigen discovery in colorectal cancer. Theranostics 2025, 15, 5890–5908. [Google Scholar] [CrossRef]
- Taniguchi, H.; Iwasa, S.; Yamazaki, K.; Yoshino, T.; Kiryu, C.; Naka, Y.; Liew, E.L.; Sakata, Y. Phase 1 study of OCV-C02, a peptide vaccine consisting of two peptide epitopes for refractory metastatic colorectal cancer. Cancer Sci. 2017, 108, 1013–1021. [Google Scholar] [CrossRef] [PubMed]
- Pant, S.; Wainberg, Z.A.; Weekes, C.D.; Furqan, M.; Kasi, P.M.; Devoe, C.E.; Leal, A.D.; Chung, V.; Basturk, O.; VanWyk, H.; et al. Lymph-node-targeted, mKRAS-specific amphiphile vaccine in pancreatic and colorectal cancer: The phase 1 AMPLIFY-201 trial. Nat. Med. 2024, 30, 531–542. [Google Scholar] [CrossRef]
- Schoen, R.E.; Boardman, L.A.; Cruz-Correa, M.; Bansal, A.; Kastenberg, D.; Hur, C.; Dzubinski, L.; Kaufman, S.F.; Rodriguez, L.M.; Richmond, E.; et al. Randomized, Double-Blind, Placebo-Controlled Trial of MUC1 Peptide Vaccine for Prevention of Recurrent Colorectal Adenoma. Clin. Cancer Res. 2023, 29, 1678–1688. [Google Scholar] [CrossRef] [PubMed]
- Zeestraten, E.C.M.; Speetjens, F.M.; Welters, M.J.P.; Saadatmand, S.; Stynenbosch, L.F.M.; Jongen, R.; Kapiteijn, E.; Gelderblom, H.; Nijman, H.W.; Valentijn, A.R.P.M.; et al. Addition of interferon-α to the p53-SLP® vaccine results in increased production of interferon-γ in vaccinated colorectal cancer patients: A phase I/II clinical trial. Int. J. Cancer 2013, 132, 1581–1591. [Google Scholar] [CrossRef] [PubMed]
- Maughan, T.; Adams, R.A.; Mayer-Mokler, A.; Nowara, E.; Torday, L.; Cseh, J.; Hoehler, T.; Hitre, E.; Folprecht, G.; Fisher, D.; et al. Overall survival (OS) of advanced colorectal cancer (aCRC) patients (pts) treated with the multipeptide vaccine IMA910: Results of a matched-pair analysis with arm C pts from COIN. J. Clin. Oncol. 2012, 30, 3530. [Google Scholar] [CrossRef]
- Kanekiyo, S.; Hazama, S.; Takenouchi, H.; Nakajima, M.; Shindo, Y.; Matsui, H.; Tokumitsu, Y.; Tomochika, S.; Tsunedomi, R.; Tokuhisa, Y.; et al. IgG response to MHC class I epitope peptides is a quantitative predictive biomarker in the early course of treatment of colorectal cancer using therapeutic peptides. Oncol. Rep. 2018, 39, 2385–2392. [Google Scholar] [CrossRef]
- Okuno, K.; Sugiura, F.; Inoue, K.; Sukegawa, Y. Clinical Trial of a 7-Peptide Cocktail Vaccine with Oral Chemotherapy for Patients with Metastatic Colorectal Cancer. Anticancer Res. 2014, 34, 3045–3052. [Google Scholar]
- Hattori, T.; Mine, T.; Komatsu, N.; Yamada, A.; Itoh, K.; Shiozaki, H.; Okuno, K. Immunological evaluation of personalized peptide vaccination in combination with UFT and UZEL for metastatic colorectal carcinoma patients. Cancer Immunol. Immunother. 2009, 58, 1843–1852. [Google Scholar] [CrossRef]
- Bekaii-Saab, T.; Wesolowski, R.; Ahn, D.H.; Wu, C.; Mortazavi, A.; Lustberg, M.; Ramaswamy, B.; Fowler, J.; Wei, L.; Overholser, J.; et al. Phase I Immunotherapy Trial with Two Chimeric HER-2 B-Cell Peptide Vaccines Emulsified in Montanide ISA 720VG and Nor-MDP Adjuvant in Patients with Advanced Solid Tumors. Clin. Cancer Res. 2019, 25, 3495–3507. [Google Scholar] [CrossRef]
- Nagasaka, M. ES28.04 Emerging Mechanisms to Target KRAS Directly. J. Thorac. Oncol. 2021, 16, S96–S97. [Google Scholar] [CrossRef]
- Lopez, J.; Powles, T.; Braiteh, F.; Siu, L.L.; LoRusso, P.; Friedman, C.F.; Balmanoukian, A.S.; Gordon, M.; Yachnin, J.; Rottey, S.; et al. Autogene cevumeran with or without atezolizumab in advanced solid tumors: A phase 1 trial. Nat. Med. 2025, 31, 152–164. [Google Scholar] [CrossRef] [PubMed]
- Gribben, J.G.; Ryan, D.P.; Boyajian, R.; Urban, R.G.; Hedley, M.L.; Beach, K.; Nealon, P.; Matulonis, U.; Campos, S.; Gilligan, T.D.; et al. Unexpected Association between Induction of Immunity to the Universal Tumor Antigen CYP1B1 and Response to Next Therapy. Clin. Cancer Res. 2005, 11, 4430–4436. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.; Pereira, L.; Roth, S.; Galletta, L.; Link, E.; Akhurst, T.; Solomon, B.; Michael, M.; Darcy, P.; Sampurno, S.; et al. First-in-human phase I clinical trial of a combined immune modulatory approach using TetMYB vaccine and Anti-PD-1 antibody in patients with advanced solid cancer including colorectal or adenoid cystic carcinoma: The MYPHISMO study protocol (NCT03287427). Contemp. Clin. Trials Commun. 2019, 16, 100409. [Google Scholar] [CrossRef]
- Viborg, N.; Pavlidis, M.A.; Barrio-Calvo, M.; Friis, S.; Trolle, T.; Sørensen, A.B.; Thygesen, C.B.; Kofoed, S.V.; Kleine-Kohlbrecher, D.; Hadrup, S.R.; et al. DNA based neoepitope vaccination induces tumor control in syngeneic mouse models. npj Vaccines 2023, 8, 77. [Google Scholar] [CrossRef]
- Crosby, E.J.; Hobeika, A.C.; Niedzwiecki, D.; Rushing, C.; Hsu, D.; Berglund, P.; Smith, J.; Osada, T.; Gwin, W.R., III; Hartman, Z.C.; et al. Long-term survival of patients with stage III colon cancer treated with VRP-CEA(6D), an alphavirus vector that increases the CD8+ effector memory T cell to Treg ratio. J. Immunother. Cancer 2020, 8, e001662. [Google Scholar] [CrossRef]
- Snook, A.E.; Baybutt, T.R.; Xiang, B.; Abraham, T.S.; Flickinger, J.C.; Hyslop, T.; Zhan, T.; Kraft, W.K.; Sato, T.; Waldman, S.A. Split tolerance permits safe Ad5-GUCY2C-PADRE vaccine-induced T-cell responses in colon cancer patients. J. Immunother. Cancer 2019, 7, 104. [Google Scholar] [CrossRef]
- Bashir, B.; Mitchell, E.P.; Posey, J.; Basu Mallick, A.; Lin, D.; Singla, R.; Fernandez, E.; Ramirez, M.J.; Singh, J.; Kraft, W.K.; et al. Phase 2A trial of Ad5.F35-GUCY2C-PADRE vaccine for recurrence prevention in gastrointestinal (GI) adenocarcinomas post definitive surgery and adjuvant therapies. J. Clin. Oncol. 2024, 42, TPS235. [Google Scholar] [CrossRef]
- Balint, J.P.; Gabitzsch, E.S.; Rice, A.; Latchman, Y.; Xu, Y.; Messerschmidt, G.L.; Chaudhry, A.; Morse, M.A.; Jones, F.R. Extended evaluation of a phase 1/2 trial on dosing, safety, immunogenicity, and overall survival after immunizations with an advanced-generation Ad5 [E1-, E2b-]-CEA(6D) vaccine in late-stage colorectal cancer. Cancer Immunol. Immunother. 2015, 64, 977–987. [Google Scholar] [CrossRef]
- Redman, J.M.; Tsai, Y.-T.; Weinberg, B.A.; Donahue, R.N.; Gandhy, S.; Gatti-Mays, M.E.; Abdul Sater, H.; Bilusic, M.; Cordes, L.M.; Steinberg, S.M.; et al. A Randomized Phase II Trial of mFOLFOX6 + Bevacizumab Alone or with AdCEA Vaccine + Avelumab Immunotherapy for Untreated Metastatic Colorectal Cancer. Oncologist 2022, 27, 198–209. [Google Scholar] [CrossRef]
- Gögenur, M.; Balsevicius, L.; Bulut, M.; Colak, N.; Justesen, T.F.; Fiehn, A.-M.K.; Jensen, M.B.; Høst-Rasmussen, K.; Cappelen, B.; Gaggar, S.; et al. Neoadjuvant intratumoral influenza vaccine treatment in patients with proficient mismatch repair colorectal cancer leads to increased tumor infiltration of CD8+ T cells and upregulation of PD-L1: A phase 1/2 clinical trial. J. Immunother. Cancer 2023, 11, e006774. [Google Scholar] [CrossRef]
- Molinari, C.; Marisi, G.; Passardi, A.; Matteucci, L.; De Maio, G.; Ulivi, P. Heterogeneity in Colorectal Cancer: A Challenge for Personalized Medicine? Int. J. Mol. Sci. 2018, 19, 3733. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.-F.; Lan, H.-R.; Huang, D.; Li, X.-M.; Jin, K.-T. Personalized Immunotherapy in Colorectal Cancers: Where Do We Stand? Front. Oncol. 2021, 11, 769305. [Google Scholar] [CrossRef] [PubMed]
- Fan, T.; Zhang, M.; Yang, J.; Zhu, Z.; Cao, W.; Dong, C. Therapeutic cancer vaccines: Advancements, challenges and prospects. Signal Transduct. Target. Ther. 2023, 8, 450. [Google Scholar] [CrossRef] [PubMed]
- Brandenburg, A.; Heine, A.; Brossart, P. Next-generation cancer vaccines and emerging immunotherapy combinations. Trends Cancer 2024, 10, 749–769. [Google Scholar] [CrossRef]
- Jeon, D.; Hill, E.; McNeel, D.G. Toll-like receptor agonists as cancer vaccine adjuvants. Hum. Vaccines Immunother. 2024, 20, 2297453. [Google Scholar] [CrossRef]
- Hensel, J.A.; Khattar, V.; Ashton, R.; Ponnazhagan, S. Recombinant AAV-CEA Tumor Vaccine in Combination with an Immune Adjuvant Breaks Tolerance and Provides Protective Immunity. Mol. Ther. Oncolytics 2019, 12, 41–48. [Google Scholar] [CrossRef]
- Boudousquié, C.; Boand, V.; Lingre, E.; Dutoit, L.; Balint, K.; Danilo, M.; Harari, A.; Gannon, P.O.; Kandalaft, L.E. Development and Optimization of a GMP-Compliant Manufacturing Process for a Personalized Tumor Lysate Dendritic Cell Vaccine. Vaccines 2020, 8, 25. [Google Scholar] [CrossRef]
- Novakova, A.; Morris, S.A.; Vaiarelli, L.; Frank, S. Manufacturing and Financial Evaluation of Peptide-Based Neoantigen Cancer Vaccines for Triple-Negative Breast Cancer in the United Kingdom: Opportunities and Challenges. Vaccines 2025, 13, 144. [Google Scholar] [CrossRef]
- Magoola, M.; Niazi, S.K. Current Progress and Future Perspectives of RNA-Based Cancer Vaccines: A 2025 Update. Cancers 2025, 17, 1882. [Google Scholar] [CrossRef]
- James, C.A.; Ronning, P.; Cullinan, D.; Cotto, K.C.; Barnell, E.K.; Campbell, K.M.; Skidmore, Z.L.; Sanford, D.E.; Goedegebuure, S.P.; Gillanders, W.E.; et al. In Silico Epitope Prediction Analyses Highlight the Potential for Distracting Antigen Immunodominance with Allogeneic Cancer Vaccines. Cancer Res. Commun. 2021, 1, 115–126. [Google Scholar] [CrossRef]
- Saldanha, L.; Langel, Ü.; Vale, N. In Silico Studies to Support Vaccine Development. Pharmaceutics 2023, 15, 654. [Google Scholar] [CrossRef]
- Jones, H.; Chen, Y.; Gibson, C.; Heimbach, T.; Parrott, N.; Peters, S.; Snoeys, J.; Upreti, V.; Zheng, M.; Hall, S. Physiologically based pharmacokinetic modeling in drug discovery and development: A pharmaceutical industry perspective. Clin. Pharmacol. Ther. 2015, 97, 247–262. [Google Scholar] [CrossRef] [PubMed]
- Rappuoli, R.; Bottomley, M.J.; D’Oro, U.; Finco, O.; De Gregorio, E. Reverse vaccinology 2.0: Human immunology instructs vaccine antigen design. J. Exp. Med. 2016, 213, 469–481. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, M.K.; Campos, D.M.D.O.; Akash, S.; Akter, S.; Yee, L.C.; Fulco, U.L.; Oliveira, J.I.N. Advances of Reverse Vaccinology for mRNA Vaccine Design against SARS-CoV-2: A Review of Methods and Tools. Viruses 2023, 15, 2130. [Google Scholar] [CrossRef] [PubMed]
- Asadollahi, E.; Zomorodipour, A.; Soheili, Z.-S.; Jahangiri, B.; Sadeghizadeh, M. Development of a multi-neoepitope vaccine targeting non-small cell lung cancer through reverse vaccinology and bioinformatics approaches. Front. Immunol. 2025, 16, 1521700. [Google Scholar] [CrossRef]
- Shaikh, S.; Kunchala, D.; Patel, M.; Velecha, D.; Prajapati, S.; Gupta, R. Reverse Vaccinology and Immunoinformatics Strategy to Screen Oncogenic Proteins and Development of a Multiepitope Peptide Vaccine Targeting Protein Kinases against Oral Cancer: An in-silico Study. Asian Pac. J. Cancer Prev. 2024, 25, 4067–4080. [Google Scholar] [CrossRef]
- Hassan Khanzada, M.; Khan, A.; Khan, K.; Jalal, K.; Aghayeva, S.; Uddin, R. A reverse vaccinomics approach for the designing of novel immunogenic multi-epitope vaccine construct against gas gangrene and related colorectal cancer for Clostridium septicum DSM 7534. Hum. Immunol. 2024, 85, 111169. [Google Scholar] [CrossRef]
- Khan, S.; Aziz, S.; Waqas, M.; Kakar, M.A.; Ahmad, S. Targeted vaccine development against Bilophila wadsworthia to curb colon diseases: A multiepitope approach based on reverse vaccinology and computational analysis. Int. J. Biol. Macromol. 2023, 250, 126002. [Google Scholar] [CrossRef]
- Goldberg, M.S. Immunoengineering: How Nanotechnology Can Enhance Cancer Immunotherapy. Cell 2015, 161, 201–204. [Google Scholar] [CrossRef]
- Ghazizadeh, Y.; Salehi Shadkami, H.; Madani, F.; Niknam, S.; Adabi, M. Advances in cancer nanovaccines: A focus on colorectal cancer. Nanomedicine 2025, 20, 1029–1041. [Google Scholar] [CrossRef]
- Yan, Y.; Duan, T.; Xue, X.; Yang, X.; Liu, M.; Ma, B.; Duan, X.; Su, C. LBP-CD155 Liposome Nanovaccine Efficiently Resist Colorectal Cancer and Enhance ICB Therapy. Int. J. Nanomed. 2025, 20, 1047–1063. [Google Scholar] [CrossRef]
- Lei, W.; Zhou, K.; Lei, Y.; Li, Q.; Zhu, H. Gut microbiota shapes cancer immunotherapy responses. npj Biofilms Microbiomes 2025, 11, 143. [Google Scholar] [CrossRef]
- Bachem, A.; Makhlouf, C.; Binger, K.J.; De Souza, D.P.; Tull, D.; Hochheiser, K.; Whitney, P.G.; Fernandez-Ruiz, D.; Dähling, S.; Kastenmüller, W.; et al. Microbiota-Derived Short-Chain Fatty Acids Promote the Memory Potential of Antigen-Activated CD8+ T Cells. Immunity 2019, 51, 285–297.e5. [Google Scholar] [CrossRef] [PubMed]
- Ibeanu, G.; Rowaiye, A.; Okoli, J.; Eze, D. Microbiome Differences in Colorectal Cancer Patients and Healthy Individuals: Implications for Vaccine Antigen Discovery. ImmunoTargets Ther. 2024, 13, 749–774. [Google Scholar] [CrossRef] [PubMed]
- Tosti, E.; Srivastava, N.; Edelmann, W. Vaccination and Microbiota Manipulation Approaches for Colon Cancer Prevention in Rodent Models. Cancer Prev. Res. 2023, 16, 429–438. [Google Scholar] [CrossRef] [PubMed]
- Hubbard, J.M.; Tőke, E.R.; Moretto, R.; Graham, R.P.; Youssoufian, H.; Lőrincz, O.; Molnár, L.; Csiszovszki, Z.; Mitchell, J.L.; Wessling, J.; et al. Safety and Activity of PolyPEPI1018 Combined with Maintenance Therapy in Metastatic Colorectal Cancer: An Open-Label, Multicenter, Phase Ib Study. Clin. Cancer Res. 2022, 28, 2818–2829. [Google Scholar] [CrossRef]
- Kim, S.; Kim, B.J.; Kim, I.; Kim, J.H.; Kim, H.K.; Ryu, H.; Choi, D.R.; Hwang, I.G.; Song, H.; Kwon, J.H.; et al. A phase II study of chemotherapy in combination with telomerase peptide vaccine (GV1001) as second-line treatment in patients with metastatic colorectal cancer. J. Cancer 2022, 13, 1363–1369. [Google Scholar] [CrossRef]
- Yu, Y.-J.; Shan, N.; Li, L.-Y.; Zhu, Y.-S.; Lin, L.-M.; Mao, C.-C.; Hu, T.-T.; Xue, X.-Y.; Su, X.-P.; Shen, X.; et al. Preliminary clinical study of personalized neoantigen vaccine therapy for microsatellite stability (MSS)-advanced colorectal cancer. Cancer Immunol. Immunother. 2023, 72, 2045–2056. [Google Scholar] [CrossRef]
- Palmer, C.D.; Rappaport, A.R.; Davis, M.J.; Hart, M.G.; Scallan, C.D.; Hong, S.-J.; Gitlin, L.; Kraemer, L.D.; Kounlavouth, S.; Yang, A.; et al. Individualized, heterologous chimpanzee adenovirus and self-amplifying mRNA neoantigen vaccine for advanced metastatic solid tumors: Phase 1 trial interim results. Nat. Med. 2022, 28, 1619–1629. [Google Scholar] [CrossRef]
- Haldar, S.D.; Anandappa, G.; Katailiha, A.; Talukder, A.; Shin, S.; Lee, J.; Coyne, E.; Valentin, A.; Parshottam, S.; Bernatchez, C.; et al. Personalized neoantigen vaccine with or without pembrolizumab in patients with microsatellite-stable metastatic colorectal cancer. Cancer Res. 2025, 85 (Suppl. S2), CT012. [Google Scholar] [CrossRef]
- Rzhevskiy, A.; Kapitannikova, A.; Malinina, P.; Volovetsky, A.; Aboulkheyr Es, H.; Kulasinghe, A.; Thiery, J.P.; Maslennikova, A.; Zvyagin, A.V.; Ebrahimi Warkiani, M. Emerging role of circulating tumor cells in immunotherapy. Theranostics 2021, 11, 8057–8075. [Google Scholar] [CrossRef]
- Liu, J.; Fu, M.; Wang, M.; Wan, D.; Wei, Y.; Wei, X. Cancer vaccines as promising immuno-therapeutics: Platforms and current progress. J. Hematol. Oncol. 2022, 15, 28. [Google Scholar] [CrossRef]
- Paßlick, D.; Piradashvili, K.; Bamberger, D.; Li, M.; Jiang, S.; Strand, D.; Wich, P.R.; Landfester, K.; Bros, M.; Grabbe, S.; et al. Delivering all in one: Antigen-nanocapsule loaded with dual adjuvant yields superadditive effects by DC-directed T cell stimulation. J. Control. Release 2018, 289, 23–34. [Google Scholar] [CrossRef]
- Lei, W.; Zhou, K.; Lei, Y.; Li, Q.; Zhu, H. Cancer vaccines: Platforms and current progress. Mol. Biomed. 2025, 6, 3. [Google Scholar] [CrossRef]
- Li, B.; VanRoey, M.; Wang, C.; Chen, T.T.; Korman, A.; Jooss, K. Anti–Programmed Death-1 Synergizes with Granulocyte Macrophage Colony-Stimulating Factor–Secreting Tumor Cell Immunotherapy Providing Therapeutic Benefit to Mice with Established Tumors. Clin. Cancer Res. 2009, 15, 1623–1634. [Google Scholar] [CrossRef]
- Karyampudi, L.; Lamichhane, P.; Scheid, A.D.; Kalli, K.R.; Shreeder, B.; Krempski, J.W.; Behrens, M.D.; Knutson, K.L. Accumulation of Memory Precursor CD8 T Cells in Regressing Tumors following Combination Therapy with Vaccine and Anti-PD-1 Antibody. Cancer Res. 2014, 74, 2974–2985. [Google Scholar] [CrossRef]
- Van Der Burg, S.H.; Arens, R.; Ossendorp, F.; Van Hall, T.; Melief, C.J.M. Vaccines for established cancer: Overcoming the challenges posed by immune evasion. Nat. Rev. Cancer 2016, 16, 219–233. [Google Scholar] [CrossRef]
- El Hajj, J.; Reddy, S.; Verma, N.; Huang, E.H.; Kazmi, S.M. Immune Checkpoint Inhibitors in pMMR/MSS Colorectal Cancer. J. Gastrointest. Cancer 2023, 54, 1017–1030. [Google Scholar] [CrossRef]
- Kijima, T.; Hazama, S.; Tsunedomi, R.; Tanaka, H.; Takenouchi, H.; Kanekiyo, S.; Inoue, Y.; Nakashima, M.; Iida, M.; Sakamoto, K.; et al. MicroRNA-6826 and -6875 in plasma are valuable non-invasive biomarkers that predict the efficacy of vaccine treatment against metastatic colorectal cancer. Oncol. Rep. 2017, 37, 23–30. [Google Scholar] [CrossRef]
- Tanaka, H.; Hazama, S.; Iida, M.; Tsunedomi, R.; Takenouchi, H.; Nakajima, M.; Tokumitsu, Y.; Kanekiyo, S.; Shindo, Y.; Tomochika, S.; et al. miR-125b-1 and miR-378a are predictive biomarkers for the efficacy of vaccine treatment against colorectal cancer. Cancer Sci. 2017, 108, 2229–2238. [Google Scholar] [CrossRef] [PubMed]
- Yeh, Y.-S.; Tsai, H.-L.; Chen, P.-J.; Chen, Y.-C.; Su, W.-C.; Chang, T.-K.; Huang, C.-W.; Wang, J.-Y. Identifying and clinically validating biomarkers for immunotherapy in colorectal cancer. Expert Rev. Mol. Diagn. 2023, 23, 231–241. [Google Scholar] [CrossRef] [PubMed]
- Taieb, J.; Svrcek, M.; Cohen, R.; Basile, D.; Tougeron, D.; Phelip, J.-M. Deficient mismatch repair/microsatellite unstable colorectal cancer: Diagnosis, prognosis and treatment. Eur. J. Cancer 2022, 175, 136–157. [Google Scholar] [CrossRef]
- Havel, J.J.; Chowell, D.; Chan, T.A. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nat. Rev. Cancer 2019, 19, 133–150. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Papukashvili, D.; Dong, Y.; Wang, X.; Hu, X.; Yang, N.; Cai, J.; Xie, F.; Rcheulishvili, N.; Wang, P.G. Identification of Tumor Antigens and Design of mRNA Vaccine for Colorectal Cancer Based on the Immune Subtype. Front. Cell Dev. Biol. 2022, 9, 783527. [Google Scholar] [CrossRef]
Vaccine | Trial ID | Type of Study | Clinical Stage at Enrollment | Route | Adjuvant | Combination | Primary Endpoint(s) | Secondary Endpoints | Key Findings | Reference |
---|---|---|---|---|---|---|---|---|---|---|
PolyPEPI1018 | NCT03391232 (OBERTO-101) | Phase IIb | MSS metastatic CRC | Subcutaneous (arms and thighs) | Montanide ISA51VG | Fluoropyrimidine/ bevacizumab maintenance | Safety | Efficacy, immunogenicity at peripheral and tumor level, immune correlates | Well tolerated; enhanced multigenic CD8+ T cell response; improved PFS in longer vaccination schedule | [78] |
GV1001 | / | Phase II | Recurrent or refractory mCRC | Intradermal | / | Chemotherapy | DCR | ORR PFS, OS, safety | DCR was 90–9% No detectable vaccine-specific immune response; no improvement in OS and PFS | [79] |
Personalized neoantigen peptide vaccine | ChiCTR1900022372 (China) | Phase II | Recurrence of metastatic MSS CRC | Subcutaneous (axillary and groin areas) | Polyinosinic:polycytidylic acid (Poly I:C) | / | Safety; feasibility | Immunogenicity, PFS | Well tolerated; T cell responses in 4 of 6 patients PFS improved in responders (19 vs. 11 months) | [80] |
ChAd68 mRNA vaccine | NCT03639714 | Phase I | Advanced solid tumors (including MSS CRC) | Intramuscular | / | Nivolumab+Ipilimumab | Safety Tolerability Recommended Phase 2 dose | Feasibility, OS, immunogenicity, ctDNA clearance | No dose-limiting toxicity; CD8+ T cell activation observed No notable improvement in survival outcomes | [81] |
NeoAg-VAX | / | Phase I | Metastatic MSS CRC | Subcutaneous | Imiquimod | ±Pembrolizumab | Safety, feasibility | ORR, PFS, 12-week PFS rate, T cell response | No dose-limiting toxicity; enhanced neoantigen-specific T cell responses; positive correlation between T cell responders and intratumor immune cell density at baseline | [82] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gallio, C.; Esposito, L.; Passardi, A. Therapeutic Cancer Vaccines in Colorectal Cancer: Platforms, Mechanisms, and Combinations. Cancers 2025, 17, 2582. https://doi.org/10.3390/cancers17152582
Gallio C, Esposito L, Passardi A. Therapeutic Cancer Vaccines in Colorectal Cancer: Platforms, Mechanisms, and Combinations. Cancers. 2025; 17(15):2582. https://doi.org/10.3390/cancers17152582
Chicago/Turabian StyleGallio, Chiara, Luca Esposito, and Alessandro Passardi. 2025. "Therapeutic Cancer Vaccines in Colorectal Cancer: Platforms, Mechanisms, and Combinations" Cancers 17, no. 15: 2582. https://doi.org/10.3390/cancers17152582
APA StyleGallio, C., Esposito, L., & Passardi, A. (2025). Therapeutic Cancer Vaccines in Colorectal Cancer: Platforms, Mechanisms, and Combinations. Cancers, 17(15), 2582. https://doi.org/10.3390/cancers17152582