Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (413)

Search Parameters:
Keywords = pellet level

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 2863 KiB  
Article
An Integrated–Intensified Adsorptive-Membrane Reactor Process for Simultaneous Carbon Capture and Hydrogen Production: Multi-Scale Modeling and Simulation
by Seckin Karagoz
Gases 2025, 5(3), 17; https://doi.org/10.3390/gases5030017 (registering DOI) - 2 Aug 2025
Abstract
Minimizing carbon dioxide emissions is crucial due to the generation of energy from fossil fuels. The significance of carbon capture and storage (CCS) technology, which is highly successful in mitigating carbon emissions, has increased. On the other hand, hydrogen is an important energy [...] Read more.
Minimizing carbon dioxide emissions is crucial due to the generation of energy from fossil fuels. The significance of carbon capture and storage (CCS) technology, which is highly successful in mitigating carbon emissions, has increased. On the other hand, hydrogen is an important energy carrier for storing and transporting energy, and technologies that rely on hydrogen have become increasingly promising as the world moves toward a more environmentally friendly approach. Nevertheless, the integration of CCS technologies into power production processes is a significant challenge, requiring the enhancement of the combined power generation–CCS process. In recent years, there has been a growing interest in process intensification (PI), which aims to create smaller, cleaner, and more energy efficient processes. The goal of this research is to demonstrate the process intensification potential and to model and simulate a hybrid integrated–intensified adsorptive-membrane reactor process for simultaneous carbon capture and hydrogen production. A comprehensive, multi-scale, multi-phase, dynamic, computational fluid dynamics (CFD)-based process model is constructed, which quantifies the various underlying complex physicochemical phenomena occurring at the pellet and reactor levels. Model simulations are then performed to investigate the impact of dimensionless variables on overall system performance and gain a better understanding of this cyclic reaction/separation process. The results indicate that the hybrid system shows a steady-state cyclic behavior to ensure flexible operating time. A sustainability evaluation was conducted to illustrate the sustainability improvement in the proposed process compared to the traditional design. The results indicate that the integrated–intensified adsorptive-membrane reactor technology enhances sustainability by 35% to 138% for the chosen 21 indicators. The average enhancement in sustainability is almost 57%, signifying that the sustainability evaluation reveals significant benefits of the integrated–intensified adsorptive-membrane reactor process compared to HTSR + LTSR. Full article
Show Figures

Figure 1

21 pages, 719 KiB  
Article
Changes in Ruminal Dynamics and Microbial Populations Derived from Supplementation with a Protein Concentrate for Cattle with the Inclusion of Non-Conventional Feeding Sources
by Diana Sofía Torres-Velázquez, Daniel Francisco Ramos-Rosales, Manuel Murillo-Ortiz, Jesús Bernardo Páez-Lerma, Juan Antonio Rojas-Contreras, Karina Aide Araiza-Ponce and Damián Reyes-Jáquez
Fermentation 2025, 11(8), 438; https://doi.org/10.3390/fermentation11080438 - 30 Jul 2025
Viewed by 202
Abstract
Feed supplementation strategies are essential for optimizing cattle productivity, and the incorporation of non-conventional feed resources may reduce both production costs and environmental impact. This study evaluated the effects of pelletized protein concentrates (including Acacia farnesiana, A. schaffneri, and Agave duranguensis [...] Read more.
Feed supplementation strategies are essential for optimizing cattle productivity, and the incorporation of non-conventional feed resources may reduce both production costs and environmental impact. This study evaluated the effects of pelletized protein concentrates (including Acacia farnesiana, A. schaffneri, and Agave duranguensis bagasse) on rumen fermentation parameters, microbial communities, and gas emissions. Fistulated bullocks received the concentrate daily, and ruminal contents were collected and filtered before and after supplementation to assess in vitro gas and methane production, pH, and microbial composition using high-throughput sequencing of 16S rRNA and mcrA amplicons. In addition, in situ degradability was evaluated during and after the supplementation period. Supplementation led to a significant (p < 0.05) reduction in degradability parameters and methane production, along with a marked decrease in the abundance of Methanobrevibacter and an increase in succinate-producing taxa. These effects were attributed to the enhanced levels of non-fiber carbohydrates, hemicellulose, crude protein, and the presence of bioactive secondary metabolites and methanol. Rumen microbiota composition was consistent with previously described core communities, and mcrA-based sequencing proved to be a valuable tool for targeted methanogen detection. Overall, the inclusion of non-conventional ingredients in protein concentrates may improve ruminal fermentation efficiency and contribute to methane mitigation in ruminants, although further in vivo trials on a larger scale are recommended. Full article
Show Figures

Figure A1

11 pages, 4560 KiB  
Article
Valorization of Forest Biomass Through Biochar for Static Floating Applications in Agricultural Uses
by Óscar González-Prieto, Luis Ortiz Torres and María Esther Costas Costas
Biomass 2025, 5(3), 44; https://doi.org/10.3390/biomass5030044 - 30 Jul 2025
Viewed by 105
Abstract
The feasibility of utilizing biochar as a static floating material for agricultural applications was researched to prevent evaporation from open water static storage systems or as a floating barrier in slurry pits, for instance. Five types of biochar were created from chips, bark, [...] Read more.
The feasibility of utilizing biochar as a static floating material for agricultural applications was researched to prevent evaporation from open water static storage systems or as a floating barrier in slurry pits, for instance. Five types of biochar were created from chips, bark, and pellets of pine and residues from two acacia species using a pyrolysis time between 60 and 120 min and mean temperatures between 380 and 690 °C in a simple double-chamber reactor. Biomass and biochar were characterized for their main properties: bulk density, moisture content, volatile matter, ash content, fixed carbon, and pH. Biochar was also evaluated through a basic floatability test over 27 days (648 h) in distilled water. The highest fixed carbon content was observed in pine bark biochar (69.5%), followed by the pine pellets (67.4%) and pine chips (63.4%). Despite their high carbon content, the pellets exhibited a low floatability level, whereas pine bark biochar showed superior static floatage times, together with chip and ground chip biochar. These results suggest that biochar produced from bark and wood chips may be suitable for application as floatability material in water or slurry management systems. These results warrant further research into the static floating of biochar. Full article
Show Figures

Figure 1

17 pages, 1899 KiB  
Article
Oat Fiber Alleviates Loperamide-Induced Constipation in Mice by Modulating Intestinal Barrier Function
by Yufei Shi, Yuchao Han, Jie Jiang, Di Wang, Zhongxia Li, Guiju Sun, Shaokang Wang, Wang Liao, Hui Xia, Da Pan and Ligang Yang
Nutrients 2025, 17(15), 2481; https://doi.org/10.3390/nu17152481 - 29 Jul 2025
Viewed by 189
Abstract
Objective: To investigate the effects of oat fiber on animal constipation and elucidate its underlying mechanisms. Methods: Male BALB/c mice were randomly allocated into five groups: control group (CON), model control group (MODEL), low dose group (LOW), middle dose group (MIDDLE), high dose [...] Read more.
Objective: To investigate the effects of oat fiber on animal constipation and elucidate its underlying mechanisms. Methods: Male BALB/c mice were randomly allocated into five groups: control group (CON), model control group (MODEL), low dose group (LOW), middle dose group (MIDDLE), high dose group (HIGH). Constipation was induced in the mice by intragastric administration of loperamide. Subsequently, the mice (except those in the CON and MODEL groups) were administered oat fiber intragastrically for 21 consecutive days. Results: Compared with the MODEL group, oat fiber significantly increased the number of fecal pellets, fecal wet weight, and fecal water content (p < 0.05), shortened the time to first black stool excretion (p < 0.05), and enhanced the small intestinal propulsion rate in constipated mice. Additionally, oat fiber significantly upregulated motilin (MTL) and gastrin (GAS) levels (p < 0.05), while downregulating vasoactive intestinal peptide (VIP) and somatostatin (SS) levels (p < 0.05). It also significantly reduced the transcription level of Aquaporin 8 (AQP8) (p < 0.05), effectively alleviating intestinal mucosal injury and immune inflammation. The relative expression levels of TNF-α and IL-1β were significantly decreased in the oat fiber group (p < 0.05). Gut microbiota analysis revealed that oat fiber increased both the abundance and diversity of gut microbiota in constipated mice. Specifically, oat fiber was found to enhance the relative abundance of Firmicutes while reducing that of Bacteroidetes. At the genus level, it promoted the proliferation of Lachnospiraceae_NK4A136_group and Roseburia. Conclusions: Oat fiber alleviates constipation in mice by modulating gastrointestinal regulatory peptides, gut microbiota, aquaporin and mitigating intestinal barrier damage and immune-inflammatory responses. Full article
(This article belongs to the Section Prebiotics and Probiotics)
Show Figures

Figure 1

17 pages, 4950 KiB  
Article
Optimization of Biochar Pellet Production from Corn Straw Char and Waste Soybean Powder Using Ultrasonic Vibration-Assisted Pelleting
by Wentao Li, Shengxu Yin, Jianning Sui and Lina Luo
Processes 2025, 13(8), 2376; https://doi.org/10.3390/pr13082376 - 26 Jul 2025
Viewed by 261
Abstract
To address the challenges of low density, loose structure, high utilization costs, and inadequate molding effects of corn straw char under ambient temperature and pressure conditions, this study investigated the utilization of waste soybean powder (WSP) as a binder to produce biochar pellets [...] Read more.
To address the challenges of low density, loose structure, high utilization costs, and inadequate molding effects of corn straw char under ambient temperature and pressure conditions, this study investigated the utilization of waste soybean powder (WSP) as a binder to produce biochar pellets via ultrasonic-assisted processing. A single-factor experiment was initially conducted to assess the effects of key variables. Subsequently, a Central Composite Rotatable Design (CCRD) was employed to evaluate the individual and interactive effects of these variables, in which pellet density and durability served as response indicators. Regression models for both responses were developed and validated using analysis of variance (ANOVA). The results indicated that, at a 0.05 significance level, the mixing ratio of corn straw char to WSP and molding pressure had highly significant effects on pellet density, while pelleting time had a significant effect and ultrasonic power had no significant influence. All four factors significantly affected pellet durability, and their interactions were further analyzed. The optimal conditions were a mixing ratio of 45%, pelleting time of 33 s, an ultrasonic power of 150 W, and a molding pressure of 5 MPa, yielding pellets with a density of 1140.41 kg/m3 and a durability of 98.54%. These results demonstrate that WSP is an effective binder for the ultrasonic-assisted fabrication of biochar pellets. Full article
(This article belongs to the Section Sustainable Processes)
Show Figures

Figure 1

19 pages, 1186 KiB  
Article
The Genotoxic Potential of Organic Emissions from Domestic Boilers Combusting Biomass and Fossil Fuels
by Jitka Sikorova, Frantisek Hopan, Lenka Kubonova, Jiri Horak, Alena Milcova, Pavel Rossner, Antonin Ambroz, Kamil Krpec, Oleksandr Molchanov and Tana Zavodna
Toxics 2025, 13(8), 619; https://doi.org/10.3390/toxics13080619 - 25 Jul 2025
Viewed by 136
Abstract
Solid fuels are still widely used in household heating in Europe and North America. Emissions from boilers are released in proximity to people. Therefore, there is a need to minimise the toxicity of emissions affecting human health to the greatest extent possible. This [...] Read more.
Solid fuels are still widely used in household heating in Europe and North America. Emissions from boilers are released in proximity to people. Therefore, there is a need to minimise the toxicity of emissions affecting human health to the greatest extent possible. This study compares the genotoxic potential of the emissions of four boilers of modern and old design (automatic, gasification, down-draft, over-fire) operating at reduced output to simulate the real-life combustion fed by various fossil and renewable solid fuels (hard coal, brown coal, brown coal briquettes, wood pellets, wet and dry spruce). Organic emissions were tested for genotoxic potential by analysing bulky DNA adducts and 8-oxo-dG adduct induction. There was no consistent genotoxic pattern among the fuels used within the boilers. Genotoxicity was strongly correlated with polycyclic aromatic hydrocarbon (PAH) content, and even stronger correlation was observed with particulate matter (PM). In all measured variables (PM, PAHs, genotoxicity), the technology of the boilers was a more important factor in determining the genotoxic potential than the fuels burned. The highest levels of both bulky and 8-oxo-dG DNA adducts were induced by organics originating from the over-fire boiler, while the automatic boiler exhibited genotoxic potential that was ~1000- and 100-fold lower, respectively. Full article
(This article belongs to the Section Human Toxicology and Epidemiology)
Show Figures

Graphical abstract

21 pages, 8833 KiB  
Article
Harnessing Hazara Virus as a Surrogate for Crimean–Congo Hemorrhagic Fever Virus Enables Inactivation Studies at a Low Biosafety Level
by Judith Olejnik, Kristina Meier, Jarod N. Herrera, Daniel J. DeStasio, Dylan J. Deeney, Elizabeth Y. Flores, Mitchell R. White, Adam J. Hume and Elke Mühlberger
Pathogens 2025, 14(7), 700; https://doi.org/10.3390/pathogens14070700 - 15 Jul 2025
Viewed by 353
Abstract
Research on highly pathogenic biosafety level 4 (BSL-4) viruses that are classified as Select Agents involves transferring inactivated materials to lower containment levels for further analysis. Compliance with Select Agent and BSL-4 safety regulations necessitates the validation and verification of inactivation procedures. To [...] Read more.
Research on highly pathogenic biosafety level 4 (BSL-4) viruses that are classified as Select Agents involves transferring inactivated materials to lower containment levels for further analysis. Compliance with Select Agent and BSL-4 safety regulations necessitates the validation and verification of inactivation procedures. To streamline this process, it would be beneficial to use surrogate BSL-2 viruses for inactivation studies. This not only simplifies BSL-4 work but also enables the testing and validation of inactivation procedures in research facilities that lack access to high-containment laboratories yet may receive samples containing highly pathogenic viruses that require efficient and complete inactivation. In this study, we used Hazara virus (HAZV) as a surrogate virus for Crimean–Congo hemorrhagic fever virus to show the efficacy of various inactivation methods. We demonstrate the successful inactivation of HAZV using TRIzol/TRIzol LS and aldehyde fixation. Importantly, the parameters of the aldehyde inactivation of cell pellets differed from those of the monolayers, highlighting the importance of inactivation validation. As part of this study, we also defined specific criteria that must be met by a BSL-2 virus to be used as a surrogate for a closely related BSL-4 virus. Defining these criteria helps identify suitable nonpathogenic surrogates for developing inactivation procedures for highly pathogenic viruses. Full article
Show Figures

Figure 1

21 pages, 2638 KiB  
Article
Inhibiting miR-200a-3p Increases Sirtuin 1 and Mitigates Kidney Injury in a Tubular Cell Model of Diabetes and Hypertension-Related Renal Damage
by Olga Martinez-Arroyo, Ana Flores-Chova, Marta Mendez-Debaets, Laia Garcia-Ferran, Lesley Escrivá, Maria Jose Forner, Josep Redón, Raquel Cortes and Ana Ortega
Biomolecules 2025, 15(7), 995; https://doi.org/10.3390/biom15070995 - 11 Jul 2025
Viewed by 359
Abstract
Hypertension and diabetes mellitus are key contributors to kidney damage, with the renal tubule playing a central role in the progression of kidney disease. MicroRNAs have important regulatory roles in renal injury and are among the most abundant cargos within extracellular vesicles (EVs), [...] Read more.
Hypertension and diabetes mellitus are key contributors to kidney damage, with the renal tubule playing a central role in the progression of kidney disease. MicroRNAs have important regulatory roles in renal injury and are among the most abundant cargos within extracellular vesicles (EVs), emerging as novel kidney disease biomarkers and therapeutic tools. Previously, we identified miR-200a-3p and its target SIRT1 as having a potential role in kidney injury. We aimed to evaluate miR-200a-3p levels in EVs from patient’s urine and delve into its function in causing tubular injury. We quantified miR-200a-3p urinary EV levels in hypertensive patients with and without diabetes (n = 69), 42 of which were with increased urinary albumin excretion (UAE). We analysed miR-200a-3p levels in EVs and cellular pellets, as well as their targets at mRNA and protein levels in renal tubule cells (RPTECs) subjected to high glucose and Angiotensin II treatments, and observed their influence on apoptosis, RPTEC markers and tubular injury markers. We conducted microRNA mimic and inhibitor transfections in treated RPTECs. Our findings revealed elevated miR-200a-3p levels in increased UAE patient urinary EVs, effectively discriminating UAE (AUC of 0.75, p = 0.003). In vitro, miR-200a-3p and renal injury markers increased, while RPTEC markers, SIRT1, and apoptosis decreased under treatments. Experiments using miR-200a-3p mimics and inhibitors revealed a significant impact on SIRT1 and decrease in tubular damage through miR-200a-3p inhibition. Increased levels of miR-200a-3p emerge as a potential disease marker, and its inhibition provides a therapeutic target aimed at reducing renal tubular damage linked to hypertension and diabetes. Full article
(This article belongs to the Special Issue New Insights into Kidney Disease Development and Therapy Strategies)
Show Figures

Graphical abstract

9 pages, 817 KiB  
Article
A Green and Simple Analytical Method for the Evaluation of the Effects of Zn Fertilization on Pecan Crops Using EDXRF
by Marcelo Belluzzi Muiños, Javier Silva, Paula Conde, Facundo Ibáñez, Valery Bühl and Mariela Pistón
Processes 2025, 13(7), 2218; https://doi.org/10.3390/pr13072218 - 11 Jul 2025
Viewed by 322
Abstract
A simple and fast analytical method was developed and applied to assess the effect of two forms of zinc fertilization on a pecan tree cultivar in Uruguay: fertigation and foliar application with a specially formulated fertilizer. Zinc content was determined in 36 leaf [...] Read more.
A simple and fast analytical method was developed and applied to assess the effect of two forms of zinc fertilization on a pecan tree cultivar in Uruguay: fertigation and foliar application with a specially formulated fertilizer. Zinc content was determined in 36 leaf samples from two crop cycles: 2020–2021 and 2021–2022. Fresh samples were dried, ground, and sieved. Analytical determinations were performed by flame atomic absorption spectrometry (FAAS, considered a standard method) and energy dispersive X-ray spectrometry (EDXRF, the proposed method). In the first case, sample preparation was carried out by microwave-assisted digestion using 4.5 mol L−1 HNO3. In the second case, pellets (Φ 13 mm, 2–3 mm thick) were prepared by direct mechanical pressing. Figures of merit of both methodologies were adequate for the purpose of zinc monitoring. The results obtained from both methodologies were statistically compared and found to be equivalent (95% confidence level). Based on the principles of Green Analytical Chemistry, both procedures were evaluated using the Analytical Greenness Metric Approach (AGREE and AGREEprep) tools. It was concluded that EDXRF was notably greener than FAAS and can be postulated as an alternative to the standard method. The information emerging from the analyses aided decision-making at the agronomic level. Full article
Show Figures

Figure 1

21 pages, 2779 KiB  
Article
Soy Protein Isolate Affects Blood and Brain Biomarker Expression in a Mouse Model of Fragile X
by Brynne Boeck, Yingqing Mao, Ruo-Pan Huang and Cara J. Westmark
Int. J. Mol. Sci. 2025, 26(13), 6137; https://doi.org/10.3390/ijms26136137 - 26 Jun 2025
Viewed by 409
Abstract
Fragile X syndrome is characterized by the diminished expression of the fragile X messenger ribonucleoprotein (FMRP), a ubiquitously expressed RNA binding protein with numerous functions in cells. Our prior work found significant differences in physiological and behavioral outcomes as a function of FMRP [...] Read more.
Fragile X syndrome is characterized by the diminished expression of the fragile X messenger ribonucleoprotein (FMRP), a ubiquitously expressed RNA binding protein with numerous functions in cells. Our prior work found significant differences in physiological and behavioral outcomes as a function of FMRP levels and in response to diet in mice. Here, we assess protein biomarker levels as a function of FMRP levels, sex and matched casein and soy protein isolate-based purified ingredient diets in Fmr1KO and littermate mice. Brain regions (cortex, hippocampus, and hypothalamus) and blood plasma were analyzed by RayBiotech’s Quantibody® Mouse Cytokine Antibody Array 640 to quantitate the expression of 640 proteins. The main findings were the identification of numerous proteins that were differentially expressed in response to diet, sex and/or genotype. Of note, prolactin (PRL) levels in blood plasma were significantly elevated in Fmr1KO female mice as a function of genotype and sex selectively with the AIN-93G/casein diet. Also, using a moderately stringent significance cutoff, growth differentiation factor 9 (GDF-9) in plasma from mice fed AIN-93G/soy was the only protein studied by Quantibody arrays that was differentially expressed between WT and Fmr1KO male mice. When comparing the results from a pelleted infant formula study with AIN-93G-based diets, insulin-like growth factor binding protein 5 (IGFBP5) in plasma was the only protein differentially expressed as a function of soy in the diet. There was no overlap in statistically significant results when comparing tissue analyzed by mass spectrometry versus Quantibody arrays from mice maintained on AIN-93G-based diets. In conclusion, gene–diet interactions affect protein expression in Fmr1KO and littermate mice and need to be considered in study design. Full article
Show Figures

Figure 1

16 pages, 1375 KiB  
Review
The Influence of Temperature on the Microstructure, Atterberg Limits, and Swelling Pressure of Bentonite Clay: A Review
by Lingling Li, Haiquan Sun, Xiaoyu Fang and Liangliang Lu
Geosciences 2025, 15(6), 233; https://doi.org/10.3390/geosciences15060233 - 18 Jun 2025
Viewed by 328
Abstract
The geological containment of high-level radioactive waste has become widely accepted among international organizations, and it has been adopted by many countries as part of their national nuclear waste disposal plan. The multi-barrier system, including the compacted bentonite blocks or pellets serving as [...] Read more.
The geological containment of high-level radioactive waste has become widely accepted among international organizations, and it has been adopted by many countries as part of their national nuclear waste disposal plan. The multi-barrier system, including the compacted bentonite blocks or pellets serving as human-made containment or buffer media, is the key component of high-level radioactive waste disposal, which contains a waste canister that isolates the nuclear waste from a human being geosphere for one million years. The bentonite clay surrounding the nuclear waste capsule is subjected to prolonged exposure to elevated temperatures because of the continuous decay of radioactivity. Long-term heating at high temperatures could change the buffers’ microstructural characteristics and physicochemical and hydromechanical properties, which can influence their self-sealing ability. This paper offers a comprehensive overview of the current understanding of thermal effects on bentonite-based buffer systems. The thermal impact on the microstructure, Atterberg limits, and swelling pressure of bentonite clay are intensely reviewed, and the findings are summarized. This review paper highlights new insights into the design of multi-layered containment approaches for high-level radioactive waste isolation. Full article
(This article belongs to the Section Geomechanics)
Show Figures

Figure 1

16 pages, 355 KiB  
Article
Baculovirus Variant Detection from Transient CRISPR-Cas9-Mediated Disruption of gp64 at Different Gene Locations
by Madhuja Chakraborty, Lisa Nielsen, Delaney Nash, Mark R. Bruder, Jozef I. Nissimov, Trevor C. Charles and Marc G. Aucoin
Int. J. Mol. Sci. 2025, 26(12), 5805; https://doi.org/10.3390/ijms26125805 - 17 Jun 2025
Viewed by 490
Abstract
The Baculovirus Expression Vector System (BEVS) is an important protein and complex biologics production platform. The baculovirus GP64 protein is the major envelope glycoprotein that aids in virus entry and is required for cell-to-cell transmission in cell culture. Several studies have developed strategies [...] Read more.
The Baculovirus Expression Vector System (BEVS) is an important protein and complex biologics production platform. The baculovirus GP64 protein is the major envelope glycoprotein that aids in virus entry and is required for cell-to-cell transmission in cell culture. Several studies have developed strategies around gp64 gene disruption in an attempt to minimize baculovirus co-production. Here, we investigate the result of transiently targeting the baculovirus gp64 gene with CRISPR-Cas9 during infection. Because not all genomes are effectively disrupted, we describe a variant calling methodology that allows the detection of the targeted mutations in gp64 even though these mutations are not the dominant sequences. Using a transfection-infection assay (T-I assay), the AcMNPV gp64 gene was targeted at six different locations to evaluate the effects of single and multiple targeting sites, and we demonstrated a reduction in the levels of baculovirus vectors while maintaining or enhancing foreign protein production when protein was driven by a p6.9 promoter. Viral genomes were subsequently isolated from the supernatant and cell pellet fractions, and our sequencing pipeline successfully detected indel mutations within gp64 for most of the single-guide RNA (sgRNA) targets. We also observed that 68.8% of variants found in the virus stock were conserved upon virus propagation in cell culture, thus indicating that they are not detrimental to viral fitness. This work provides a comprehensive assessment of CRISPR-Cas9 genome editing of baculovirus vectors, with potential applications in enhancing the efficiency of the BEVS. Full article
(This article belongs to the Special Issue Viral Infection and Virology Methods)
Show Figures

Figure 1

24 pages, 2150 KiB  
Article
Medicated Meloxicam Pellets Reduce Some Indicators of Pain in Disbudded Dairy Calves
by Tiarna Scerri, Sabrina Lomax, Peter Thomson, Benjamin Kimble, Peter White, Merran Govendir, Cameron Clark and Dominique Van der Saag
Animals 2025, 15(11), 1641; https://doi.org/10.3390/ani15111641 - 3 Jun 2025
Viewed by 529
Abstract
Disbudding is a husbandry practice that causes pain and discomfort to calves. As a prominent welfare concern, it is now standard practice for calves to be given analgesic treatment such as a nonsteroidal anti-inflammatory drug (NSAID) injection. Meloxicam is a commonly used NSAID [...] Read more.
Disbudding is a husbandry practice that causes pain and discomfort to calves. As a prominent welfare concern, it is now standard practice for calves to be given analgesic treatment such as a nonsteroidal anti-inflammatory drug (NSAID) injection. Meloxicam is a commonly used NSAID as it provides pain relief for up to 44 h following disbudding. However, since symptoms can persist for up to two weeks, it was hypothesised that more prolonged analgesic treatment would promote better welfare outcomes than the conventional injection. This study tested a novel treatment whereby disbudded calves were fed grain-based pellets medicated with meloxicam over a 7-day period. Lower levels of horn site inflammation were observed for the pellet treatment across the 7-day feeding period in comparison to the conventional injection. The pellet treatment calves also exhibited less pain-specific and more positive social-specific behaviours during and beyond the feeding period. Together, these results suggest that lower levels of inflammation enacted by prolonged meloxicam administration have an active role in reducing pain and maintaining the affectivity of disbudded calves. With the goal of establishing sustained disbudding treatment as a new industry standard, future research will focus on larger-scale results reproducibility and maximising treatment practicality. Full article
(This article belongs to the Section Veterinary Clinical Studies)
Show Figures

Figure 1

19 pages, 1949 KiB  
Article
Presence, Spatial Distribution, and Characteristics of Microplastics in Beach Sediments Along the Northwestern Moroccan Mediterranean Coast
by Soria Azaaouaj, Noureddine Er-Ramy, Driss Nachite and Giorgio Anfuso
Water 2025, 17(11), 1646; https://doi.org/10.3390/w17111646 - 29 May 2025
Cited by 1 | Viewed by 894
Abstract
Microplastics (MPs) (<5 mm) are recognized as an emerging global problem in all oceans and coastlines around the world. This paper provided the quantification and characteristics of microplastics found on fourteen beaches along the northwestern Moroccan Mediterranean coast. A total of 42 samples [...] Read more.
Microplastics (MPs) (<5 mm) are recognized as an emerging global problem in all oceans and coastlines around the world. This paper provided the quantification and characteristics of microplastics found on fourteen beaches along the northwestern Moroccan Mediterranean coast. A total of 42 samples were gathered at a depth of 5 cm along the shoreline using a quadrant of 1 m × 1 m. Microplastics were detected in all sediment samples. The average abundance was 59.33 ± 34.38 MPs kg−1 of dry weight (median: 48.33 MPs kg−1), ranging from 22 ± 7.21 to 135.33 ± 38.80 MPs kg−1. Statistical analyses revealed significant differences between sampling sites. All observed microplastics were classified according to their shape, color, and size. The microplastic shapes comprised fibrous MPs (77.61%), fragments (15.65%), films (4.49%), foams (1.85%), and pellets (0.40%). Microplastic particles in the sediment samples ranged from 0.063 to 5 mm in length and were composed of small (54.3%, <1 mm) and large sizes (45.7%, 1–5 mm). The size fractions with the greatest percentage of MPs were 1–2 mm (24.9%). The dominant color of the microplastics was transparent (43.2%), followed by black (15.8%) and blue (13.3%), with shapes that were mainly angular and irregular. The present results indicate a moderate level of microplastic contamination on the beaches throughout the northern Moroccan Mediterranean coast, and tourism, fishing activities, and wastewater discharges as the most relevant sources. Full article
Show Figures

Figure 1

17 pages, 259 KiB  
Article
Valorization of Cork Residues for Biomass Pellet Production: Meeting ENplus® Standards Through Strategic Blending
by Amadeu D. S. Borges, Paulo Matos and Miguel Oliveira
Clean Technol. 2025, 7(2), 43; https://doi.org/10.3390/cleantechnol7020043 - 22 May 2025
Viewed by 1609
Abstract
Cork processing generates significant by-products that pose environmental challenges and waste management concerns. This study investigates the potential of utilizing cork residues—finishing powders, grinding powders, and sawdust—for biomass pellet production, emphasizing compliance with ENplus® A1, A2, and B standards. Physical, chemical, and [...] Read more.
Cork processing generates significant by-products that pose environmental challenges and waste management concerns. This study investigates the potential of utilizing cork residues—finishing powders, grinding powders, and sawdust—for biomass pellet production, emphasizing compliance with ENplus® A1, A2, and B standards. Physical, chemical, and calorimetric analyses reveal that sawdust is the only material capable of independently meeting ENplus® requirements, due to its low nitrogen (0.19%) and ash (0.22%) contents. However, its low net heating value necessitates blending with cork residues for improved energy performance. Finishing powders, despite a high net heating value (17.36 MJ/kg) and low ash content (0.37%), are restricted by their elevated nitrogen levels (1.59%). Grinding powders, with net heating values ranging from 16.25 to 17.78 MJ/kg, offer limited suitability due to high ash and nitrogen contents. For Class A1, mixtures require 85–87% sawdust, limiting cork residue incorporation to 15%. For Class A2, sawdust inclusion drops to 65–70%, allowing for greater use of cork residues and boosting net heating values to 16.74 MJ/kg. Class B mixtures achieve the highest incorporation of cork residues (up to 65%), with net heating values reaching 16.92 MJ/kg, suitable for industrial applications. These results highlight blending strategies as essential for balancing regulatory compliance, energy efficiency, and waste valorization. Future research should focus on pretreatment methods, alternative biomass sources, and lifecycle assessments to enhance compliance and scalability, promoting sustainable energy solutions and circular economy goals. Full article
Show Figures

Graphical abstract

Back to TopTop