Valorization of Cork Residues for Biomass Pellet Production: Meeting ENplus® Standards Through Strategic Blending
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
- Finishing powder;
- Grinding powders A, B, C, and D;
- Sawdust.
2.2. Density Measurement
2.3. Proximate Analysis
2.4. Elemental Analysis
2.5. Calorimetry
2.6. Mixture Design and Rationale
3. Results and Discussion
3.1. Characterization of Biomass Samples
3.2. Performance of Pellet Mixtures
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gil, L. Cork powder waste: An overview. Biomass Bioenergy 1997, 13, 59–61. [Google Scholar] [CrossRef]
- Pereira, H. The Rationale behind Cork Properties: A Review of Structure and Chemistry. Bioresources 2015, 10, 6207–6229. [Google Scholar] [CrossRef]
- Scalbert, A. Antimicrobial properties of tannins. Phytochemistry 1991, 30, 3875–3883. [Google Scholar] [CrossRef]
- Kolattukudy, P.E. Biopolyester Membranes of Plants: Cutin and Suberin. Science 1979, 208, 990–1000. [Google Scholar] [CrossRef]
- Fernandes, E.M.; Aroso, I.M.; Mano, J.F.; Covas, J.A.; Reis, R.L. Functionalized cork-polymer composites (CPC) by reactive extrusion using suberin and lignin from cork as coupling agents. Compos. Part B Eng. 2014, 67, 371–380. [Google Scholar] [CrossRef]
- Ferreira, R.; Garcia, H.; Sousa, A.F.; Petkovic, M.; Lamosa, P.; Freire, C.S.R.; Silvestre, A.J.D.; Rebelo, L.P.N.; Pereira, C.S. Suberin isolation from cork using ionic liquids: Characterisation of ensuing products. New J. Chem. 2012, 36, 2014–2024. [Google Scholar] [CrossRef]
- Carriço, C.M.; Tiritan, M.E.; Cidade, H.; Afonso, C.; e Silva, J.R.; Almeida, I.F. Added-Value Compounds in Cork By-Products: Methods for Extraction, Identification, and Quantification of Compounds with Pharmaceutical and Cosmetic Interest. Molecules 2023, 28, 3465. [Google Scholar] [CrossRef]
- Gandini, A.; Neto, C.P.; Silvestre, A.J. Suberin: A promising renewable resource for novel macromolecular materials. Prog. Polym. Sci. 2006, 31, 878–892. [Google Scholar] [CrossRef]
- Chanana, I.; Sharma, A.; Kumar, P.; Kumar, L.; Kulshreshtha, S.; Kumar, S.; Patel, S.K.S. Combustion and Stubble Burning: A Major Concern for the Environment and Human Health. Fire 2023, 6, 79. [Google Scholar] [CrossRef]
- Pereira, R.N.; Malico, I.; Mesquita, P.; Sousa, A.; Gonçalves, A.C. Energy use of cork residues in the Portuguese cork industry. In Proceedings of the 12th SDEWES Conference on Sustainable Development of Energy, Water and Environmental Systems–SDEWES2017, Dubrovnik, Croácia, 4–8 September 2017; Available online: https://www.researchgate.net/publication/320455861_Energy_use_of_cork_residues_in_the_Portuguese_cork_industry (accessed on 25 November 2024).
- Nunes, L.; Matias, J.; Catalão, J. Energy recovery from cork industrial waste: Production and characterisation of cork pellets. Fuel 2013, 113, 24–30. [Google Scholar] [CrossRef]
- Clauser, N.M.; González, G.; Mendieta, C.M.; Kruyeniski, J.; Area, M.C.; Vallejos, M.E. Biomass Waste as Sustainable Raw Material for Energy and Fuels. Sustainability 2021, 13, 794. [Google Scholar] [CrossRef]
- Pinto, C.S. Discover the Enercork Project—Energy Recovery from Cork Powder Waste. 2014. Available online: http://www.pofc.qren.pt/areas-do-compete/incentivos-as-empresas/iedt/projectos-que-apoiamos/entity/conheca-o-projeto-enercork-valorizacao-energetica-do-residuo-po-de-cortica?fromlist=1 (accessed on 12 December 2024).
- Marques, I.P.; Gil, L. Potencial Energético dos Efluentes da Preparação da Cortiça. Laboratório Nacional de Energia e Geologia, I.P, Lisbon, 2012. Available online: http://hdl.handle.net/10400.9/1667 (accessed on 9 December 2024).
- de Oliveira Matos, V.; Carmo-Calado, L.D.; de Campos, V.A.F.; Romano, P.; de Brito, P.S.D.; Rodrigues, L.; Mota-Panizio, R. Anaerobic Digestion of Cork Boiling Wastewater—Effect of Agitation. In Proceedings of the 1st International Conference on Water Energy Food and Sustainability (ICoWEFS 2021); Springer International Publishing: Cham, Switzerland, 2021; pp. 352–360. [Google Scholar] [CrossRef]
- Al-Kassir, A.; Gañán-Gómez, J.; Mohamad, A.; Cuerda-Correa, E. A study of energy production from cork residues: Sawdust, sandpaper dust and triturated wood. Energy 2010, 35, 382–386. [Google Scholar] [CrossRef]
- Helaimia, R. From Cork Waste to Electrıcal Thermal and Hydrogen Bioenergies. Int. J. Adv. Nat. Sci. Eng. Res. 2023, 7, 142–148. Available online: https://as-proceeding.com/index.php/ijanser/article/view/383 (accessed on 28 November 2024).
- Sepúlveda, F.J.; Arranz, J.I.; Miranda, M.T.; Montero, I.; Rojas, C.V. Drying and Pelletizing Analysis of Waste from Cork Granulated Industry. Energies 2018, 11, 109. [Google Scholar] [CrossRef]
- ENplus®. History of ENplus®, ENplus Pellets. 2022. Available online: https://enplus-pellets.eu/history/ (accessed on 29 May 2024).
- ISO 17225-2:2014 (E); Solid Biofuels—Fuel Specifications and Classes-Part 2: Graded Wood Pellets. International Organization for Standardization: Geneva, Switzerland, 2014.
- Gilvari, H.; De Jong, W.; Schott, D.L. The Effect of Biomass Pellet Length, Test Conditions and Torrefaction on Mechanical Durability Characteristics According to ISO Standard 17831-1. Energies 2020, 13, 3000. [Google Scholar] [CrossRef]
- Nunes, L.; Matias, J.; Catalão, J. Production and Characterisation of Cork Pellets: An Alternative for Sustainable Energy Recovery. Renew. Energy Power Qual. J. 2024, 12, 538–542. [Google Scholar] [CrossRef]
- Catalan Cork Institute. How the Cork Sector is Putting Circular Economy into Practice. 2018. Available online: https://medforest.net/2018/10/31/how-the-cork-sector-is-putting-circular-economy-into-practice/ (accessed on 16 December 2024).
- European Union. Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the promotion of the use of energy from renewable sources (recast). Off. J. Eur. Union L 2018, 328, 82–209. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32018L2001 (accessed on 26 April 2025).
- European Union. Directive (EU) 2023/2413 of the European Parliament and of the Council of 18 October 2023 amending Directive (EU) 2018/2001, Regulation (EU) 2018/1999 and Directive 98/70/EC as regards the promotion of energy from renewable sources. Off. J. Eur. Union L 2023, 2413, 1–66. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32023L2413 (accessed on 26 April 2025).
- ISO 18134-3:2015 (E); Solid Biofuels—Determination of Moisture Content-OVEN Dry Method-Part 3: Moisture in General Analysis Sample. International Organization for Standardization: Geneva, Switzerland, 2015.
- ISO 18122:2015 (E); Solid Biofuels—Determination of Ash Content. International Organization for Standardization: Geneva, Switzerland, 2015.
- ISO 18123:2015 (E); Solid Biofuels—Determination of the Content of Volatile Matter. International Organization for Standardization: Geneva, Switzerland, 2015.
- ISO 16948:2015 (E); Solid Biofuels—Determination of Total Content of Carbon, Hydrogen and Nitrogen. International Organization for Standardization: Geneva, Switzerland, 2015.
- ISO 18125:2017 (E); Solid Biofuels—Determination of Calorific Value. International Organization for Standardization: Geneva, Switzerland, 2017.
- Sarker, T.R.; Nanda, S.; Meda, V.; Dalai, A.K. Densification of waste biomass for manufacturing solid biofuel pellets: A review. Environ. Chem. Lett. 2023, 21, 231–264. [Google Scholar] [CrossRef]
- Anjos, O.; Rodrigues, C.; Morais, J.; Pereira, H. Effect of density on the compression behaviour of cork. Mater. Des. 2014, 53, 1089–1096. [Google Scholar] [CrossRef]
- Sepulveda, F.S.; Arranz, J.I.; Miranda, M.T.; Montero, I.; Rojas, C.V. Analysis of Pelletizing of Granulometric Separation Powder from Cork Industries. Materials 2014, 7, 6686–6700. [Google Scholar] [CrossRef]
- Barros, C.S.A. Produção de Pellets para valorização de resíduos provenientes da indústria corticeira. Master’s thesis, Universidade do Minho Escola de Engenharia, Guimarães, Portugal, 2013. Available online: https://hdl.handle.net/1822/28198 (accessed on 28 October 2023).
- Sha, D.; Li, Y.; Zhou, X.; Zhang, J.; Zhang, H.; Yu, J. Influence of Volatile Content on the Explosion Characteristics of Coal Dust. ACS Omega 2021, 6, 27150–27157. [Google Scholar] [CrossRef]
- Trovagunta, R.; Hubbe, M.A. Suberin as a Bio-based Flame-Retardant? BioResources 2023, 18, 4388–4391. Available online: https://ojs.bioresources.com/index.php/BRJ/article/view/22643 (accessed on 21 November 2023). [CrossRef]
- Rodríguez, J.L.; Álvarez, X.; Valero, E.; Ortiz, L.; de la Torre-Rodríguez, N.; Acuña-Alonso, C. Influence of ashes in the use of forest biomass as source of energy. Fuel 2021, 283, 119256. [Google Scholar] [CrossRef]
- Koppejan, J.; Schmidl, C. Nitrogen flows in biomass combustion systems A parametric scoping study aimed at optimising nitrogen flows in biomass combustion. IEA Bioenergy 2022. Available online: https://www.ieabioenergy.com/wp-content/uploads/2023/02/Task32_Nitrogencycle_I_final.pdf (accessed on 4 November 2023).
- Silva, A.A.M. Estudo da Valorização de Resíduos de Biomassa Como Matéria-Prima Para a Produção de CDRc. Instituto Superior de Engenharia do Porto: Porto, Portugal, 2019. Available online: http://hdl.handle.net/10400.22/14602 (accessed on 24 May 2024).
- Emenike, O.; Michailos, S.; Hughes, K.J.; Ingham, D.; Pourkashanian, M. Techno-economic and environmental assessment of BECCS in fuel generation for FT-fuel, bioSNG and OMEx. Sustain. Energy Fuels 2021, 5, 3382–3402. [Google Scholar] [CrossRef]
- Mapstone, E. Carbon Sequestration in the Cloud Forest: A Comparative Evaluation of Aboveground Biomass Carbon Stock Potential in the Río Guajalito Reserve. Indep. Study Proj. (ISP) Collect. 2017, 2726. Available online: https://digitalcollections.sit.edu/isp_collection/2726/ (accessed on 21 November 2023).
- Nhuchhen, D.R. Prediction of carbon, hydrogen, and oxygen compositions of raw and torrefied biomass using proximate analysis. Fuel 2016, 180, 348–356. [Google Scholar] [CrossRef]
- Ferreira, A.C.O. Caracterização de Vários Tipos de Biomassa Para Valorização Energética. Master’s thesis, Universidade de Aveiro, Aveiro, Portugal, 2013. Available online: http://hdl.handle.net/10773/12119 (accessed on 20 December 2024).
- Akanni, A.A.; Kolawole, O.J.; Dayanand, P.; Ajani, L.O.; Madhurai, M. Influence of Torrefaction on Lignocellulosic Woody Biomass of Nigerian Origin. J. Chem. Technol. Metall. 2019, 54, 274–285. Available online: https://journal.uctm.edu/node/j2019-2/4_18-10_p274-285.pdf (accessed on 5 January 2025).
- Mediavilla, I.; Fernández, M.; Esteban, L. Optimization of pelletisation and combustion in a boiler of 17.5 kWth for vine shoots and industrial cork residue. Fuel Process. Technol. 2009, 90, 621–628. [Google Scholar] [CrossRef]
- Costa, P.A.; Barreiros, M.A.; Mouquinho, A.I.; e Silva, P.O.; Paradela, F.; Oliveira, F.A.C. Slow pyrolysis of cork granules under nitrogen atmosphere: By-products characterization and their potential valorization. Biofuel Res. J. 2022, 9, 1562–1572. [Google Scholar] [CrossRef]
- Oliveira, M.; Nunes, F.H.F.M.; Borges, A.D.d.S. Harnessing Livestock and Vineyard Residues for Sustainable Energy Production in Portugal. Clean Technol. 2025, 7, 1. [Google Scholar] [CrossRef]
Material | Origin | Composition | Key Characteristics | Utility |
---|---|---|---|---|
Finishing Powder | Produced during mechanical finishing operations (e.g., rectification, capping, chamfering) | Natural cork stoppers: Entirely cork Agglomerated cork stoppers: Cork and polyurethane glue | Composed of the mixture of natural and agglomerated cork stoppers residues Particles are fine and uniform | Used for further processing or as filler material |
Grinding Powder A | Result of grinding operations (rejected material, shavings, and stopper production waste) | Cork powder, dirt, and some wood | High silica content Low particle size | Unsuitable for cork-based products |
Grinding Powder B | Similar to powder A but sourced in a different factory | Cork powder, dirt, and some wood | Higher silica and wood content compared to powder A | Unsuitable for cork-based products |
Grinding Powder C | Similar to powders A and B but with higher cork content | Cork powder, dirt, and some wood | Higher cork fraction and lower silica content compared to powders A and B | Unsuitable for cork-based products |
Grinding Powder D | Result of further processing of stoppers | Cork and wood | High cork and wood content | Unsuitable for cork-based products |
Sawdust | Produced during wood operations for capsule manufacturing | Predominantly wood | Fine, uniform particles | Used in energy production |
Property | Unit | ENplus® A1 | ENplus® A2 | ENplus® B | |
---|---|---|---|---|---|
Moisture | (%) | ≤10 | |||
Ash | (%) | ≤0.7 | ≤1.2 | ≤2.0 | |
Nitrogen | (%) | ≤0.3 | ≤0.5 | ≤1.0 | |
NHV | MJ/kg | ≥16.5 | |||
Sulphur | (%) | ≤0.04 | ≤0.05 |
Biomass Sample | Density (kg/m3) |
---|---|
Finishing powder | 75.30 ± 1.03 |
Grinding powder A | 378.06 ± 7.79 |
Grinding powder B | 321.32 ± 9.40 |
Grinding powder C | 391.98 ± 7.22 |
Grinding powder D | 278.17 ± 10.18 |
Sawdust | 223.50 ± 6.87 |
Biomass Sample | Moisture (%) | Volatile Matter (%) | Ash (%) | Fixed Carbon (%) |
---|---|---|---|---|
Finishing powder | 3.23 ± 0.15 | 78.85 ± 0.13 | 0.37 ± 0.06 | 17.55 ± 0.09 |
Grinding powder A | 9.45 ± 0.30 | 62.61 ± 0.17 | 5.03 ± 0.42 | 22.91 ± 0.21 |
Grinding powder B | 8.36 ± 0.16 | 62.50 ± 0.63 | 5.00 ± 0.07 | 24.14 ± 0.46 |
Grinding powder C | 9.22 ± 0.28 | 61.43 ± 0.30 | 3.83 ± 0.10 | 25.52 ± 0.34 |
Grinding powder D | 8.63 ± 0.30 | 64.50 ± 0.40 | 2.22 ± 0.07 | 24.65 ± 0.54 |
Sawdust | 8.20 ± 0.25 | 74.14 ± 0.38 | 0.22 ± 0.001 | 17.45 ± 0.45 |
Biomass Sample | N (%) | C (%) | H (%) | S (%) | O (%) |
---|---|---|---|---|---|
Finishing powder | 1.59 ± 0.27 | 68.04 ± 6.40 | 8.61 ± 0.86 | n.d. | 21.40 ± 7.40 |
Grinding powder A | 0.95 ± 0.08 | 50.22 ± 1.80 | 4.73 ± 0.23 | n.d. | 39.07 ± 2.02 |
Grinding powder B | 1.01 ± 0.05 | 52.65 ± 3.25 | 5.05 ± 0.38 | n.d. | 36.29 ± 3.67 |
Grinding powder C | 0.59 ± 0.03 | 51.33 ± 2.45 | 4.99 ± 0.41 | n.d. | 39.26 ± 2.82 |
Grinding powder D | 0.63 ± 0.07 | 51.98 ± 1.53 | 5.49 ± 0.46 | n.d. | 39.68 ± 1.91 |
Sawdust | 0.19 ± 0.10 | 48.16 ± 1.00 | 4.98 ± 0.02 | n.d. | 46.46 ± 0.87 |
Biomass Sample | GHV (MJ/kg) | NHV (MJ/kg) |
---|---|---|
Finishing powder | 19.22 ± 0.41 | 17.36 ± 0.41 |
Grinding powder A | 17.42 ± 0.07 | 16.25 ± 0.07 |
Grinding powder B | 18.96 ± 0.19 | 17.62 ± 0.19 |
Grinding powder C | 18.43 ± 0.01 | 17.22 ± 0.01 |
Grinding powder D | 19.09 ± 0.62 | 17.78 ± 0.62 |
Sawdust | 17.65 ± 0.34 | 16.45 ± 0.34 |
Mixture 1 | Mixture 2 | Mixture 3 | |
---|---|---|---|
Composition (%): | |||
Finishing powder | 2.00 | 0.00 | 5.00 |
Grinding powder (A, B, C) | 8.00 | 7.00 | 2.00 |
Grinding powder D | 5.00 | 7.00 | 6.00 |
Sawdust | 85.00 | 86.00 | 87.00 |
Properties: | |||
Moisture (%) | 8.190 ± 0.213 | 8.290 ± 0.213 | 7.990 ± 0.213 |
Ash (%) | 0.670 ± 0.057 | 0.670 ± 0.057 | 0.430 ± 0.057 |
Nitrogen (%) | 0.290 ± 0.084 | 0.270 ± 0.085 | 0.300 ± 0.087 |
NHV (MJ/kg) | 16.560 ± 0.291 | 16.596 ± 0.296 | 16.596 ± 0.299 |
Sulphur (%) | N.D. | N.D. | N.D. |
Mixture 4 | Mixture 5 | Mixture 6 | |
---|---|---|---|
Composition (%): | |||
Finishing powder | 11.00 | 15.00 | 11.00 |
Grinding powder (A, B, C) | 18.00 | 12.00 | 19.00 |
Grinding powder D | 6.00 | 3.00 | 0.00 |
Sawdust | 65.00 | 70.00 | 70.00 |
Properties: | |||
Moisture (%) | 7.830 ± 0.213 | 7.560 ± 0.213 | 7.810 ± 0.213 |
Ash (%) | 1.150 ± 0.057 | 0.830 ± 0.057 | 1.070 ± 0.057 |
Nitrogen (%) | 0.490 ± 0.071 | 0.490 ± 0.08 | 0.470 ± 0.076 |
NHV (kWh/kg) | 16.740 ± 0.233 | 16.704 ± 0.249 | 16.668 ± 0.247 |
Sulphur (%) | N.D. | N.D. | N.D. |
Mixture 7 | Mixture 8 | Mixture 9 | |
---|---|---|---|
Composition (%): | |||
Finishing powder | 25.00 | 30.00 | 20.00 |
Grinding powder (A, B, C) | 37.00 | 35.00 | 37.00 |
Grinding powder D | 3.00 | 0.00 | 3.00 |
Sawdust | 35.00 | 35.00 | 40.00 |
Properties: | |||
Moisture (%) | 7.270 ± 0.213 | 6.990 ± 0.213 | 7.520 ± 0.213 |
Ash (%) | 1.940 ± 0.057 | 1.800 ± 0.057 | 1.940 ± 0.057 |
Nitrogen (%) | 0.800 ± 0.077 | 0.840 ± 0.089 | 0.730 ± 0.068 |
NHV (kWh/kg) | 16.920 ± 0.179 | 16.920 ± 0.188 | 16.884 ± 0.181 |
Sulphur (%) | N.D. | N.D. | N.D. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borges, A.D.S.; Matos, P.; Oliveira, M. Valorization of Cork Residues for Biomass Pellet Production: Meeting ENplus® Standards Through Strategic Blending. Clean Technol. 2025, 7, 43. https://doi.org/10.3390/cleantechnol7020043
Borges ADS, Matos P, Oliveira M. Valorization of Cork Residues for Biomass Pellet Production: Meeting ENplus® Standards Through Strategic Blending. Clean Technologies. 2025; 7(2):43. https://doi.org/10.3390/cleantechnol7020043
Chicago/Turabian StyleBorges, Amadeu D. S., Paulo Matos, and Miguel Oliveira. 2025. "Valorization of Cork Residues for Biomass Pellet Production: Meeting ENplus® Standards Through Strategic Blending" Clean Technologies 7, no. 2: 43. https://doi.org/10.3390/cleantechnol7020043
APA StyleBorges, A. D. S., Matos, P., & Oliveira, M. (2025). Valorization of Cork Residues for Biomass Pellet Production: Meeting ENplus® Standards Through Strategic Blending. Clean Technologies, 7(2), 43. https://doi.org/10.3390/cleantechnol7020043