Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (243)

Search Parameters:
Keywords = peak wall stress

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 19682 KB  
Article
Shear Mechanism Differentiation Investigation of Rock Joints with Varying Lithologies Using 3D-Printed Barton Profiles and Numerical Modeling
by Yue Chen, Yinsheng Wang, Yongqiang Li, Guoshun Lv, Quan Dai, Le Liu and Lianheng Zhao
Geotechnics 2026, 6(1), 8; https://doi.org/10.3390/geotechnics6010008 - 15 Jan 2026
Viewed by 26
Abstract
To investigate the shear behavior of rock mass joint surfaces with varying roughness and lithology, this study introduces a novel experimental framework that combines high-precision 3D printing and direct shear testing. Ten artificial joint surfaces were fabricated using Barton standard profiles with different [...] Read more.
To investigate the shear behavior of rock mass joint surfaces with varying roughness and lithology, this study introduces a novel experimental framework that combines high-precision 3D printing and direct shear testing. Ten artificial joint surfaces were fabricated using Barton standard profiles with different joint roughness coefficients (JRC) and were cast using two representative rock-like materials simulating soft and hard rocks. The 3D printing technique employed significantly reduced the staircase effect and ensured high geometric fidelity of the joint morphology. Shear tests revealed that peak shear strength increases with JRC, but the underlying failure mechanisms vary depending on the lithology. Experimental results were further used to back-calculate JRC values and validate the empirical JRC–JCS (joint wall compressive strength) model. Numerical simulations using FLAC3D captured the shear stress–displacement evolution for different lithologies, revealing that rock strength primarily influences peak shear strength and fluctuation characteristics during failure. Notably, despite distinct lithologies, the post-peak degradation behavior tends to converge, suggesting universal residual shear mechanisms across rock types. These findings highlight the critical role of lithology in joint shear behavior and demonstrate the effectiveness of 3D-printing-assisted model tests in advancing rock joint characterization. Full article
Show Figures

Figure 1

12 pages, 923 KB  
Article
Epicardial Fat Thickness as a Marker of Coronary Artery Disease Severity and Ischemic Burden: A Prospective Echocardiographic Study
by Dafni Charisopoulou, Sotiria Iliopoulou, George Koulaouzidis, Nikolaos Antoniou, Kyriakos Tsantekidis, Aggeliki D. Mavrogianni, Michael Y. Henein and John Zarifis
J. Clin. Med. 2026, 15(2), 657; https://doi.org/10.3390/jcm15020657 - 14 Jan 2026
Viewed by 65
Abstract
Background/Objectives: Epicardial fat thickness (EFT) is an echocardiographic marker of epicardial adipose tissue that has been linked to coronary atherosclerosis, but its relationship with both coronary artery disease (CAD) severity and myocardial ischemia remains incompletely assessed. This study evaluated the association between [...] Read more.
Background/Objectives: Epicardial fat thickness (EFT) is an echocardiographic marker of epicardial adipose tissue that has been linked to coronary atherosclerosis, but its relationship with both coronary artery disease (CAD) severity and myocardial ischemia remains incompletely assessed. This study evaluated the association between EFT, angiographic CAD severity, and stress-induced myocardial ischemia. Methods: In a prospective study, 125 consecutive patients with suspected stable angina underwent transthoracic echocardiography with EFT measurement, dobutamine stress echocardiography, and coronary angiography. EFT was measured at end-systole in the parasternal long-axis view. Significant CAD was defined as ≥50% stenosis in at least one major epicardial coronary artery. Myocardial ischemia was assessed using peak-stress wall motion score index (WMSI). Results: Significant CAD was present in 56% of patients. Mean EFT was significantly higher in patients with significant CAD compared with those without (7.8 ± 2.0 mm vs. 5.5 ± 1.5 mm; p < 0.001). EFT increased progressively with angiographic CAD severity (non-significant CAD: 5.5 ± 1.5 mm; one-vessel disease: 6.5 ± 1.8 mm; two-vessel disease: 7.5 ± 2.0 mm; three-vessel disease: 8.5 ± 1.9 mm; p < 0.001). Patients with EFT > 5 mm had a significantly higher prevalence of significant CAD (68.8% vs. 33.3%; p < 0.001) and were older, with higher body mass index and a greater prevalence of hypertension and obesity. Additionally, peak-stress WMSI was significantly higher in patients with elevated EFT (1.08 ± 0.07 vs. 1.04 ± 0.05; p = 0.005), indicating a greater ischemic burden. Conclusions: EFT is associated with both the anatomical severity of CAD and the extent of stress-induced myocardial ischemia, supporting its potential role in non-invasive risk stratification of patients with suspected CAD. Full article
(This article belongs to the Special Issue Visualizing Cardiac Function: Advances in Modern Imaging Diagnostics)
Show Figures

Figure 1

19 pages, 5275 KB  
Article
Prediction of Micro-Milling-Induced Residual Stress and Deformation in Titanium Alloy Thin-Walled Components and Multi-Objective Collaborative Optimization
by Jie Yi, Rui Wang, Dengyun Du, Dong Han, Xinyao Wang and Junfeng Xiang
Materials 2026, 19(2), 219; https://doi.org/10.3390/ma19020219 - 6 Jan 2026
Viewed by 255
Abstract
The intrinsically low stiffness of titanium alloy thin-walled components causes residual stresses to readily accumulate during high-speed micro-milling, leading to deformation and hindering machining precision. To clarify the residual-stress formation mechanism and enable deformation control, this study first proposes a surface residual stress [...] Read more.
The intrinsically low stiffness of titanium alloy thin-walled components causes residual stresses to readily accumulate during high-speed micro-milling, leading to deformation and hindering machining precision. To clarify the residual-stress formation mechanism and enable deformation control, this study first proposes a surface residual stress characterization model based on an exponentially decaying sinusoidal function, with model parameters efficiently identified via an improved particle swarm optimization algorithm, allowing rapid characterization of stress distributions under different process conditions. A response surface model constructed using a central composite design is then employed to reveal the coupled effects of machining parameters on residual stress and top-surface deformation. On this basis, a GA-BP neural network–based prediction framework is developed to improve the accuracy of residual stress and deformation prediction, while the AGE-MOEA2 multi-objective evolutionary algorithm is used to optimize micro-milling parameters for the simultaneous minimization of residual stress and deformation via Pareto-optimal solutions. Validation experiments on thin-wall micro-milling confirm that the optimized parameters significantly reduce peak residual stress and suppress top-surface deformation. The proposed modeling and optimization strategy provides an effective reference for high-precision machining of titanium alloy thin-walled components. Full article
Show Figures

Figure 1

21 pages, 8939 KB  
Article
Hydro-Mechanical Behavior and Seepage-Resistance Capacity of a Coal Pillar-Water-Blocking Wall Composite Structure for Goaf Water Hazard Control
by Jinchang Zhao, Pengkai Li, Shaoqing Niu and Xiaoyan Wang
Appl. Sci. 2026, 16(1), 448; https://doi.org/10.3390/app16010448 - 31 Dec 2025
Viewed by 160
Abstract
Water inrush from flooded goaf under high hydraulic head seriously threatens deep coal mining, especially where roadways must be driven close to old workings. This study investigates the seepage and load-bearing behavior of a combined coal pillar and rigid cutoff wall system under [...] Read more.
Water inrush from flooded goaf under high hydraulic head seriously threatens deep coal mining, especially where roadways must be driven close to old workings. This study investigates the seepage and load-bearing behavior of a combined coal pillar and rigid cutoff wall system under coupled mining-excavation-seepage processes. A three-dimensional hydro-mechanical model based on Biot poroelasticity and a stress-damage-permeability relationship is developed in FLAC3D, using a field case from the Yuwu Coal Mine. Different wall thicknesses and mining stages are simulated, and pillar performance is quantified by the elastic-core volume fraction and a permeability-connectivity index. Similar-material shear tests are further carried out to examine sliding behavior at the wall–pillar interface. Simulations show that the composite system reduces peak vertical stress in the pillar by 12–20% during panel retreat (from 54.2 MPa without a wall to 47.7–45.0 MPa with 0.5–2.5 m walls), while the elastic core volume fraction increases from 16.7% to 30.4–50.4% and the minimum elastic core width improves from 0.5 m to 1.5–2.0 m. The wall provides strong lateral confinement, increasing lateral stress within the pillar by up to 50% and preventing hydraulic penetration for wall thicknesses ≥1.0 m. Shear tests reveal critical distances for safe load transfer and support the use of targeted reinforcement at the interface. The findings offer a quantitative basis for designing safe water-control structures in high-pressure goaf environments. Full article
Show Figures

Figure 1

23 pages, 3015 KB  
Article
Comparative Study on Surface Heating Systems with and Without External Shading: Effects on Indoor Thermal Environment
by Małgorzata Fedorczak-Cisak, Elżbieta Radziszewska-Zielina, Mirosław Dechnik, Aleksandra Buda-Chowaniec, Anna Romańska and Anna Dudzińska
Energies 2026, 19(1), 223; https://doi.org/10.3390/en19010223 - 31 Dec 2025
Viewed by 302
Abstract
The three key design criteria for nearly zero-energy buildings (nZEBs) and climate-neutral buildings are minimizing energy use, ensuring high occupant comfort, and reducing environmental impact. Thermal comfort is one of the main components of indoor environmental quality (IEQ), strongly affecting occupants’ health, well-being, [...] Read more.
The three key design criteria for nearly zero-energy buildings (nZEBs) and climate-neutral buildings are minimizing energy use, ensuring high occupant comfort, and reducing environmental impact. Thermal comfort is one of the main components of indoor environmental quality (IEQ), strongly affecting occupants’ health, well-being, and productivity. As energy-efficiency requirements become more demanding, the appropriate selection of heating systems, their automated control, and the management of solar heat gains are becoming increasingly important. This study investigates the influence of two low-temperature radiant heating systems—underfloor and wall-mounted—and the use of Venetian blinds on perceived thermal comfort in a highly glazed public nZEB building located in a densely built urban area within a temperate climate zone. The assessment was based on the PMV (Predicted Mean Vote) index, commonly used in IEQ research. The results show that both heating systems maintained indoor conditions corresponding to comfort or slight thermal stress under steady state operation. However, during periods of strong solar exposure in the room without blinds, PMV values exceeded 2.0, indicating substantial heat stress. In contrast, external Venetian blinds significantly stabilized the indoor microclimate—reducing PMV peaks by an average of 50.2% and lowering the number of discomfort hours by 94.9%—demonstrating the crucial role of solar protection in highly glazed spaces. No significant whole-body PMV differences were found between underfloor and wall heating. Overall, the findings provide practical insights into the control of thermal conditions in radiant-heated spaces and highlight the importance of solar shading in mitigating heat stress. These results may support the optimization of HVAC design, control, and operation in both residential and non-residential nZEB buildings, contributing to improved occupant comfort and enhanced energy efficiency. Full article
Show Figures

Figure 1

17 pages, 3456 KB  
Article
Effect of Laser Power on Residual Stress in Bottom-Locking Welded Joints Between TC4 and TA18 Titanium Alloys: Numerical Modeling and Experiments
by Ming Cao, Denggao Liu, Xiangyu Zhou, Wenqin Wang, Yanjun Wang, Chaohua Zhang and Xianfeng Xiao
Metals 2026, 16(1), 48; https://doi.org/10.3390/met16010048 - 30 Dec 2025
Viewed by 148
Abstract
In aerospace manufacturing, laser welding of TC4/TA18 dissimilar titanium alloys in bottom-locking configurations is essential for lightweight design, yet the residual stress behavior of such joints remains insufficiently understood. This study systematically examines the influence of laser power on residual stress distribution in [...] Read more.
In aerospace manufacturing, laser welding of TC4/TA18 dissimilar titanium alloys in bottom-locking configurations is essential for lightweight design, yet the residual stress behavior of such joints remains insufficiently understood. This study systematically examines the influence of laser power on residual stress distribution in laser-welded TC4/TA18 bottom-locking tubular joints. Welded specimens were fabricated at three distinct laser power levels (600 W, 800 W, and 1000 W). Experimental characterization included macroscopic morphology analysis and residual stress measurement using the blind-hole drilling method, among other techniques. Concurrently, a three-dimensional thermo-elastic-plastic finite element model was established based on ABAQUS 2022 to simulate the transient temperature field and stress–strain field during the welding process. The results indicate that due to the differences in thermophysical properties between the two titanium alloys and the wall thickness effect, both the temperature field and residual stress distribution of the TC4/TA18 dissimilar titanium alloy bottom-locking joints exhibit significant asymmetry. Laser power exerts a selective influence on the residual stress field: within the parameter range of this study, increasing laser power can significantly reduce the peak hoop stress of TA18 thin-walled tubes and TC4 thick-walled tubes, as well as the peak axial stress of TC4 thick-walled tubes, while remarkably increasing the peak axial stress of TA18 thin-walled tubes. The numerical simulation results are in good agreement with the experimental data, verifying that the established finite element model is an effective tool for predicting welding outcomes. Full article
(This article belongs to the Special Issue Properties and Residual Stresses of Welded Alloys)
Show Figures

Figure 1

28 pages, 11753 KB  
Article
Analysis of Turbulence Models to Simulate Patient-Specific Vortex Flows in Aortic Coarctation
by Nikita Skripka, Aleksandr Khairulin and Alex G. Kuchumov
Fluids 2026, 11(1), 11; https://doi.org/10.3390/fluids11010011 - 30 Dec 2025
Viewed by 204
Abstract
Coarctation of the aorta is a localized narrowing of the aortic lumen. This pathology leads to hypertension in upper extremity vessels, left ventricular hypertrophy and to impaired perfusion of the abdominal cavity and lower extremities. Along with traditional diagnostic methods, mathematical modeling is [...] Read more.
Coarctation of the aorta is a localized narrowing of the aortic lumen. This pathology leads to hypertension in upper extremity vessels, left ventricular hypertrophy and to impaired perfusion of the abdominal cavity and lower extremities. Along with traditional diagnostic methods, mathematical modeling is used for risk assessment and the prediction of disease outcomes. However, when applying numerical models to describe hemodynamic parameters, the choice of turbulence model to describe swirling flow occurring in the aorta in this pathology must be justified. Thus, three turbulence models, namely k-ε, k-ω, and SST were analyzed for the description of swirling flows in the study of coarctation’s effect on hemodynamic parameters and analysis of the mechanisms leading to various cardiovascular diseases caused by altered hemodynamics. The results revealed significant differences in swirling flow patterns between the k-ε and k-ω models, while the k-ω and SST models showed consistent results over the cardiac cycle. In the peak systolic phase, average velocity rises to 1.07–1.98 m·s−1 for the k-ε model, 0.82–2.12 m·s−1 for the k-ω model, 1.22–2.12 m·s−1 for the SST model and 0.8–2.12 m·s−1 for laminar flow. WSS values increase rapidly to 11–22 Pa in k-ε, 25–50 Pa in k-ω and SST models of turbulence, and 30–55 Pa for laminar flow. Significant differences were also evident in the prediction of wall shear stress, with the k-ε model giving values more than twice as high as the k-ω and SST models. The data obtained confirm the necessity of careful model selection for accurate hemodynamic parameter estimation, especially in coarctation. The findings of this study can be used for further physics-informed neural network analysis of evaluation of treatment evaluations for congenital heart disease patients. Full article
(This article belongs to the Special Issue Biological Fluid Dynamics, 2nd Edition)
Show Figures

Figure 1

13 pages, 2146 KB  
Article
Intra-Patient Heterogeneity of Mechanical and Anatomical Properties in Thoracic Aortic Wall: An Ex Vivo Study Comparing Patients with Bicuspid and Tricuspid Aortic Valve Aortopathy
by Pasquale Totaro, Giulia Formenton, Martina Musto, Chiara Sciacca, Alessandro Caimi, Martina Schembri, Stefano Pelenghi and Ferdinando Auricchio
J. Cardiovasc. Dev. Dis. 2026, 13(1), 15; https://doi.org/10.3390/jcdd13010015 - 28 Dec 2025
Viewed by 183
Abstract
Background: The ex vivo evaluation of the aortic wall aims to identify potential risk factors predictive of acute aortic syndrome. The comparison of aortic wall properties in patients with bicuspid aortic disease versus those with tricuspid aortic disease has been the subject of [...] Read more.
Background: The ex vivo evaluation of the aortic wall aims to identify potential risk factors predictive of acute aortic syndrome. The comparison of aortic wall properties in patients with bicuspid aortic disease versus those with tricuspid aortic disease has been the subject of many studies. However, the heterogeneity of aortic wall characteristics in individual patients has never been thoroughly investigated. In this study, we focused on comparing the heterogeneity of aortic wall characteristics in patients with bicuspid (BAV) and tricuspid (TAV) aortic valve disease. Materials and Methods: Out of 113 patients enrolled in our cumulative study on the ex-vivo evaluation of the aortic wall, in patients with dilated ascending aorta, 56 patients with >3 specimens taken from the anterior wall were selected for the present study. The heterogeneity of anatomical characteristics (aortic wall thickness) was assessed by measuring the coefficient of variability (cV). In 35 patients, furthermore, mechanical (uniaxial ultimate stress–strain test) characteristics heterogeneity was also evaluated. Intra-patient mechanical and anatomical variability was then compared between the BAV and TAV groups. Results: Heterogeneity of aortic wall thickness was significantly less important compared to heterogeneity of mechanical properties: peak strain (Pstr p = 0.0042), peak stress (PS p = 0.001) and maximum elastic modulus (EM p = 0.001). Only EM heterogeneity was significantly reverse-correlated to patient’s age (p = 0.0005), and this correlation was peculiar for patients with BAV. In BAV patients, furthermore, age > 66 was associated with a significantly superior EM heterogeneity (p = 0.008). A direct comparison of anatomical and mechanical intra-patient variability between BAV and TAV groups, however, did not show significant differences. Discussion: Our study clearly demonstrates that the anatomical and mechanical characteristics of the aortic wall in patients with aortic dilation are not homogeneous. The heterogeneity of aortic wall thickness appears to be less significant than that of mechanical properties, thus confirming a limited correlation between anatomical and mechanical characteristics. The comparison between the BAV and TAV groups revealed limited peculiarities, further suggesting a preservation of the mechanical properties of the aortic wall in patients with bicuspid aortic disease and, therefore, without a peculiar mechanical properties-related increased risk of acute aortic syndrome. Full article
Show Figures

Graphical abstract

15 pages, 6845 KB  
Article
Drop Hammer Impact Test on Concrete Well Walls After Combined Action of Compressive Load and Sulfate Erosion
by Tongxing Guo, Guoqiang Xu, Wei Zhang and Chenggang Shen
Buildings 2025, 15(24), 4578; https://doi.org/10.3390/buildings15244578 - 18 Dec 2025
Viewed by 325
Abstract
The long-term safety of concrete shaft walls in deep mines faces severe challenges from the coupled effects of stress, chemical erosion, and dynamic disturbances. This study conducted coupled loading and sulfate erosion tests on concrete and investigated its dynamic response using drop-weight impact [...] Read more.
The long-term safety of concrete shaft walls in deep mines faces severe challenges from the coupled effects of stress, chemical erosion, and dynamic disturbances. This study conducted coupled loading and sulfate erosion tests on concrete and investigated its dynamic response using drop-weight impact tests. The failure modes, impact force time-history curves, and strain time-history curves of concrete under different erosion ages and load levels were analyzed. The SEM observations revealed the microstructure of the concrete. Results indicate that increasing drop height exacerbates specimen failure and elevates peak impact force and strain, while simultaneously shortening the impact duration. Compared to SL20, SL40 exhibited lower peak impact force and higher peak strain under long-term combined loading and sulfate erosion. This reveals that larger loads accelerate internal damage within concrete under erosive conditions. This study provides theoretical and experimental bases for the long-term safety and impact resistance of well wall concrete. Full article
Show Figures

Figure 1

17 pages, 4664 KB  
Article
Using Patient-Based Computational Fluid Dynamics for Abdominal Aortic Aneurysm Assessment
by Natthaporn Kaewchoothong, Sorracha Rookkapan, Chayut Nuntadusit and Surapong Chatpun
Bioengineering 2025, 12(12), 1380; https://doi.org/10.3390/bioengineering12121380 - 18 Dec 2025
Viewed by 429
Abstract
Abdominal aortic aneurysm (AAA) is a dangerous disease and can cause sudden death if it ruptures. This study investigated blood flow behaviors and hemodynamic changes in three categories (small, medium and large diameters) of AAAs using computational fluid dynamics (CFD) based on patient [...] Read more.
Abdominal aortic aneurysm (AAA) is a dangerous disease and can cause sudden death if it ruptures. This study investigated blood flow behaviors and hemodynamic changes in three categories (small, medium and large diameters) of AAAs using computational fluid dynamics (CFD) based on patient geometry. Computed tomography images of patients with abdominal aortic aneurysms were used to construct a patient-specific AAA model. This study included one healthy subject and seven patients who had AAAs with a diameter larger than 3 cm. The results showed that the aortic aneurysms were highly turbulent in the diastolic phase, and there was an increase in turbulence as the aneurysm size increased. The time-averaged wall shear stress (TAWSS) in the artery was high at peak systole and decreased during diastole. The oscillating shear index (OSI) was higher at the middle and distal aortic aneurysm sac than in other areas. Low TAWSS and a high OSI in the aneurysm region may indicate a risk of wall rupture in AAA. This study suggests that CFD provides further insights by visualizing blood flow behaviors and quantitatively analyzing hemodynamic parameters. Full article
(This article belongs to the Special Issue Cardiovascular Models and Biomechanics)
Show Figures

Figure 1

29 pages, 15877 KB  
Article
Fracture Evolution in Rocks with a Hole and Symmetric Edge Cracks Under Biaxial Compression: An Experimental and Numerical Study
by Daobing Zhang, Linhai Zeng, Shurong Guo, Zhiping Chen, Jiahua Zhang, Xianyong Jiang, Futian Zhang and Anmin Jiang
Mathematics 2025, 13(24), 4035; https://doi.org/10.3390/math13244035 - 18 Dec 2025
Viewed by 284
Abstract
This study employs physical experiments and the RFPA3D numerical method to investigate the fracture evolution of rocks containing a central hole with symmetrically arranged double cracks (seven inclination angles β) under biaxial compression. The results demonstrate that peak stress and strain exhibit [...] Read more.
This study employs physical experiments and the RFPA3D numerical method to investigate the fracture evolution of rocks containing a central hole with symmetrically arranged double cracks (seven inclination angles β) under biaxial compression. The results demonstrate that peak stress and strain exhibit nonlinear increases with rising β. Tensile–shear failure dominates at lower angles (β = 0–60°), characterized by secondary crack initiation at defect tips and wing/anti-wing crack development at intermediate angles (β = 45–60°). At higher angles (β = 75–90°), shear failure prevails, governed by crack propagation along hole walls. When β exceeds 45°, enhanced normal stress on crack planes suppresses mode II propagation and secondary crack formation. Elevated lateral pressures (15–20 MPa) significantly alter failure patterns by redirecting the maximum principal stress, causing cracks to align parallel to this orientation and driving anti-wing cracks toward specimen boundaries. Three-dimensional analysis reveals critical differences between internal and surface fracture propagation, highlighting how penetrating cracks around the hole crucially impact stability. This study provides valuable insights into complex fracture mechanisms in defective rock masses, offering practical guidance for stability assessment in underground mining operations where such composite defects commonly occur. Full article
Show Figures

Figure 1

17 pages, 8139 KB  
Article
Flow-Induced Groove Corrosion in Gas Well Deliquification Tubing: Synergistic Effects of Multiphase Flow and Electrochemistry
by Wenwen Song, Junfeng Xie, Jun Yi, Lei Wen, Pan Dai, Yongxu Li, Yanming Liu and Xianghong Lv
Coatings 2025, 15(12), 1490; https://doi.org/10.3390/coatings15121490 - 17 Dec 2025
Viewed by 373
Abstract
Gas well deliquification is a key technology for mitigating liquid loading and restoring or enhancing production capacity in ultra-deep, high-temperature, and high-pressure gas wells. The abnormal corrosion behavior observed in the gas lift tubing of the Well X-1 oilfield in western China, within [...] Read more.
Gas well deliquification is a key technology for mitigating liquid loading and restoring or enhancing production capacity in ultra-deep, high-temperature, and high-pressure gas wells. The abnormal corrosion behavior observed in the gas lift tubing of the Well X-1 oilfield in western China, within the 50–70 °C interval (1000–1500 m), was investigated. By analyzing the asymmetric wall thinning and axial groove morphology on the inner surface of tubing and then establishing a two-dimensional model of the vertical wellbore, the gas–liquid flow behavior and associated corrosion mechanisms were also elucidated. Results indicate that the flow pattern evolves from slug flow at the bottomhole, through a transitional pattern below the gas lift valve, to annular-mist flow at and above the valve. The wall shear stress peaks at the gas lift valve coupled with the significantly higher fluid velocity above the valve, which markedly elevates the corrosion rate. In this regime, the resultant annular-mist flow features a high-velocity gas core carrying entrained droplets, whose impingement synergistically enhances electrochemical corrosion, forming severe groove-like morphology along the inner tubing wall. Therefore, the corrosion in this well is attributed to the synergistic effect of the mechano-electrochemical coupling between multiphase flow and electrochemical processes on the inner surface of the tubing. Full article
(This article belongs to the Special Issue Tribological and Corrosion Properties of the Surfaces)
Show Figures

Figure 1

34 pages, 17210 KB  
Article
Experimental Study on Seismic Behavior of Irregular-Shaped Steel-Beam-to-CFST Column Joints with Inclined Internal Diaphragms
by Peng Li, Jialiang Jin, Chen Shi, Wei Wang and Weifeng Jiao
Buildings 2025, 15(24), 4514; https://doi.org/10.3390/buildings15244514 - 13 Dec 2025
Viewed by 288
Abstract
With the increasing functional and geometric complexity of modern steel buildings, irregular-shaped beam-to-column joints are becoming common in engineering practice. However, their seismic behavior remains insufficiently understood, particularly for configurations with geometric asymmetry and complex stress transfer mechanisms. This study experimentally investigates the [...] Read more.
With the increasing functional and geometric complexity of modern steel buildings, irregular-shaped beam-to-column joints are becoming common in engineering practice. However, their seismic behavior remains insufficiently understood, particularly for configurations with geometric asymmetry and complex stress transfer mechanisms. This study experimentally investigates the seismic performance of irregular steel-beam-to-concrete-filled steel tube (CFST) column joints incorporating inclined internal diaphragms (IIDs), taking unequal-depth beam (UDB) and staggered beam (SB) joints as representative cases. Two full-scale joint specimens were designed and tested under cyclic loading to evaluate their failure modes, load-bearing capacity, stiffness/strength degradation, energy dissipation capacity, strain distribution, and panel zone shear behavior. Both joints exhibited satisfactory strength and initial stiffness. Although diaphragm fracture occurred at approximately 3% drift, the joints retained 45–60% of their peak load capacity, based on the average strength of several loading cycles at the same drift level after diaphragm failure, and maintained stable hysteresis with average equivalent damping ratios above 0.20. Final failure was governed by successive diaphragm fracture followed by the tearing of the column wall, indicating that the adopted diaphragm thickness (equal to the beam flange thickness) was insufficient and that welding quality significantly affected joint performance. Refined finite element (FE) models were developed and validated against the test responses, reasonably capturing global strength, initial stiffness, and the stress concentration patterns prior to diaphragm fracture. The findings of this study provide a useful reference for the seismic design and further development of internal-diaphragm irregular steel-beam-to-CFST column joints. Full article
Show Figures

Figure 1

27 pages, 4967 KB  
Article
Optimization of Composite Formulation Using Recycled Polyethylene for Rotational Molding
by Vitaliy Tyukanko, Roman Tarunin, Alexandr Demyanenko, Vladislav Semenyuk, Antonina Dyuryagina, Yerik Merkibayev, Abdigali Bakibaev, Rustam Alpyssov and Dmitriy Alyoshin
Polymers 2025, 17(24), 3290; https://doi.org/10.3390/polym17243290 - 11 Dec 2025
Viewed by 490
Abstract
In this work, we optimized three key factors for rotational molding composites: the recycled polyethylene (rPE) content, the pigment (Cp) content, and the process parameter-peak internal air temperature (PIAT). We studied the influence of rPE, Cp, and PIAT on various composite properties. These [...] Read more.
In this work, we optimized three key factors for rotational molding composites: the recycled polyethylene (rPE) content, the pigment (Cp) content, and the process parameter-peak internal air temperature (PIAT). We studied the influence of rPE, Cp, and PIAT on various composite properties. These included mechanical properties (e.g., elastic modulus E), impact strength (MFEsp), surface characteristics (wettability measured by contact angle θ and IR spectroscopy), thermal stability (by DTA–TG analysis), environmental stress cracking resistance (ESCR in hours), and the amplitude of the third harmonic β of the ultrasonic back-wall signal. The IR spectroscopy and contact angle results indicate that adding rPE and pigment slightly increases the composite’s surface hydrophilicity. The results show that PIAT strongly influences all the characteristics of the composites studied. Depending on its percentage, the introduction of rPE can either improve or worsen these composite properties. A correlation was found between β, ESCR, MFEsp, and E, demonstrating that β can serve as a quantitative indicator of internal stress (IS) in rotomolded parts. The recommended optimal composition is rPE 30%, Cp 0.5%, and PIAT 195 °C. Under these conditions, the composite exhibits minimal internal stress and optimal performance, which in turn extends the service life of rotomolded products. Four nomograms were developed: rPE = f(MFEsp, Cp, PIAT) and rPE = f(β, Cp, PIAT), which make it possible to quickly determine MFEsp and β of a product based on the actual PIAT, taking into account rPE and pigment content in the composite (they also allow selecting the rPE and pigment content in the composition depending on the required MFEsp). Full article
(This article belongs to the Special Issue Chemical Recycling of Polymers, 2nd Edition)
Show Figures

Figure 1

19 pages, 13161 KB  
Article
Estimation of the Shear Stress (WSS) at the Wall of Tracheal Bifurcation
by Nicoleta-Octavia Tanase, Ciprian-Stefan Mateescu, Doru-Daniel Cristea and Corneliu Balan
Appl. Sci. 2025, 15(24), 13055; https://doi.org/10.3390/app152413055 - 11 Dec 2025
Viewed by 290
Abstract
The paper is concerned with experimental investigations and numerical simulations of airflow in a rigid model of human tracheal bifurcation during a respiratory cycle in the presence of cough. The main goal of the study is to calculate the velocity and tracheal wall [...] Read more.
The paper is concerned with experimental investigations and numerical simulations of airflow in a rigid model of human tracheal bifurcation during a respiratory cycle in the presence of cough. The main goal of the study is to calculate the velocity and tracheal wall shear stress (WSS) distributions under the time variation in the pressure difference. A sequence of inspiration-expiration of measured flow rates and pressure is used to calibrate the 3D unsteady numerical solutions for different imposed boundary conditions at the edges of the bifurcation. The experimental data are obtained using commercial medical devices: (i) a spirometer and (ii) a mechanical ventilator, respectively. CT images of the lung airways were used to reconstruct the tracheal test geometry by 3D printing techniques. Flow spectrum, vortical structures, and the wall stresses are analyzed for the computed cases. Four turbulence models (kɛ, kω SST, kɛ R, and LES) are compared, and all indicate an increase in peak WSS and vortex intensity during coughing versus normal expiration. The present work confirms the importance of CFD simulations to model and quantify airflow throughout the respiratory cycle. The paper proposes a method to calculate wall shear stress, one of the most relevant parameters for characterizing airway function and the mechanical response of tracheal endothelial cells. Full article
(This article belongs to the Special Issue Recent Advances and Emerging Trends in Computational Fluid Dynamics)
Show Figures

Figure 1

Back to TopTop