Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,923)

Search Parameters:
Keywords = path generator

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 4191 KB  
Review
Recent Progress of AI-Based Intelligent Air-Confrontation Technology Test and Verification Framework
by Feng Wang, Biao Chen, Yan Wang, Zhekai Pang, Zhu Shao, Yanhui Liu and Heyuan Huang
Aerospace 2025, 12(11), 959; https://doi.org/10.3390/aerospace12110959 (registering DOI) - 27 Oct 2025
Abstract
Artificial intelligence technology is profoundly reshaping the aviation field, driving the accelerated evolution of air confrontation patterns toward intelligence and autonomy. Given that experimental aircraft platforms are key means to verify intelligent air confrontation technologies, this paper—on the basis of systematically sorting out [...] Read more.
Artificial intelligence technology is profoundly reshaping the aviation field, driving the accelerated evolution of air confrontation patterns toward intelligence and autonomy. Given that experimental aircraft platforms are key means to verify intelligent air confrontation technologies, this paper—on the basis of systematically sorting out the progress of intelligent technologies in the air confrontation domain at home and abroad—first focuses on analyzing the connotation, technological evolution path, and application prospects of experimental aircraft platforms, and deeply interprets the technological breakthroughs and application practices of typical experimental platforms such as X-37B and X-62A in the field of artificial intelligence integration. Furthermore, through the analysis of three typical air confrontation projects, it reveals the four core advantages of experimental aircraft platforms in intelligent technology research: efficient iterative verification, risk reduction, promotion of capability emergence, and provision of flexible carriers. Finally, this paper focuses on constructing a technical implementation framework for the deep integration of intelligent technologies and flight tests, covering key links such as requirement analysis and environmental test design, construction of intelligent test aircraft platforms and capability generation, ground verification, and test evaluation, and summarizes various key technologies involved in the technical implementation framework. This study can provide theoretical support for the deep integration of artificial intelligence technology and the aviation field, including an engineering path from intelligent algorithm design, verification to iterative optimization, supporting the transformation of air confrontation patterns from “human-in-the-loop” to “autonomous gaming,” thereby enhancing the intelligence level and actual confrontation effectiveness in the aviation field. Full article
(This article belongs to the Special Issue Advanced Aircraft Structural Design and Applications)
19 pages, 3047 KB  
Article
Thermal Management of Wide-Bandgap Power Semiconductors: Strategies and Challenges in SiC and GaN Power Devices
by Gyuyeon Han, Junseok Kim, Sanghyun Park and Wongyu Bae
Electronics 2025, 14(21), 4193; https://doi.org/10.3390/electronics14214193 (registering DOI) - 27 Oct 2025
Abstract
Wide-Bandgap (WBG) semiconductors—silicon carbide (SiC) and gallium nitride (GaN)— enable high-power-density conversion, but performance is limited by where heat is generated and how it is removed. This review links device-level loss mechanisms (conduction and switching, including output-capacitance hysteresis and dynamic on-resistance) to structure-driven [...] Read more.
Wide-Bandgap (WBG) semiconductors—silicon carbide (SiC) and gallium nitride (GaN)— enable high-power-density conversion, but performance is limited by where heat is generated and how it is removed. This review links device-level loss mechanisms (conduction and switching, including output-capacitance hysteresis and dynamic on-resistance) to structure-driven hot spots within the ultra-thin (tens of nanometers) two-dimensional electron gas (2DEG) channel of GaN HEMTs and to thermal boundary resistance at layer interfaces. We compare wire-bondless package concepts—double-sided cooling, embedded packaging, and interleaved planar layouts—and survey system-level cooling that shortens the conduction path and raises heat-transfer coefficients. The impact on reliability is discussed using temperature-sensitive electrical parameters (e.g., on-state VDS, threshold voltage, drain leakage, di/dt, and gate current) for real-time junction-temperature estimation and compact electro-thermal RC models for remaining-useful-life prediction. Evidence from recent literature points to interface resistance in GaN-on-SiC as a primary bottleneck, while near-junction cooling and advanced packages are effective mitigations. We argue for integrated co-design—devices, packaging, electromagnetic interference (EMI)-aware layout, and cooling—together with interface engineering and health monitoring to deliver reliable, high-density WBG systems. Full article
(This article belongs to the Topic Wide Bandgap Semiconductor Electronics and Devices)
Show Figures

Figure 1

13 pages, 1343 KB  
Article
Transient Waves in Linear Dispersive Media with Dissipation: An Approach Based on the Steepest Descent Path
by Francesco Mainardi, Andrea Mentrelli and Juan Luis González-Santander
Mathematics 2025, 13(21), 3418; https://doi.org/10.3390/math13213418 (registering DOI) - 27 Oct 2025
Abstract
In the study of linear dispersive media, it is of primary interest to gain knowledge of the impulse response of the material. The standard approach to compute the response involves a Laplace transform inversion, i.e., the solution of a Bromwich integral, which can [...] Read more.
In the study of linear dispersive media, it is of primary interest to gain knowledge of the impulse response of the material. The standard approach to compute the response involves a Laplace transform inversion, i.e., the solution of a Bromwich integral, which can be a notoriously troublesome problem. In this paper we propose a novel approach to the calculation of the impulse response, based on the well-assessed method of the steepest descent path, which results in the replacement of the Bromwich integral with a real line integral along the steepest descent path. In this exploratory investigation, the method is explained and applied to the case study of the Klein–Gordon equation with dissipation, for which analytical solutions of the Bromwich integral are available, so as to compare the numerical solutions obtained by the newly proposed method to exact ones. Since the newly proposed method, at its core, consists of replacing a Laplace transform inverse with a potentially much less demanding real line integral, the method presented here could be of general interest in the study of linear dispersive waves in the presence of dissipation, as well as in other fields in which Laplace transform inversion comes into play. Full article
(This article belongs to the Section C1: Difference and Differential Equations)
Show Figures

Figure 1

25 pages, 18310 KB  
Article
A Multimodal Fusion Method for Weld Seam Extraction Under Arc Light and Fume Interference
by Lei Cai and Han Zhao
J. Manuf. Mater. Process. 2025, 9(11), 350; https://doi.org/10.3390/jmmp9110350 (registering DOI) - 26 Oct 2025
Abstract
During the Gas Metal Arc Welding (GMAW) process, intense arc light and dense fumes cause local overexposure in RGB images and data loss in point clouds, which severely compromises the extraction accuracy of circular closed-curve weld seams. To address this challenge, this paper [...] Read more.
During the Gas Metal Arc Welding (GMAW) process, intense arc light and dense fumes cause local overexposure in RGB images and data loss in point clouds, which severely compromises the extraction accuracy of circular closed-curve weld seams. To address this challenge, this paper proposes a multimodal fusion method for weld seam extraction under arc light and fume interference. The method begins by constructing a weld seam edge feature extraction (WSEF) module based on a synergistic fusion network, which achieves precise localization of the weld contour by coupling image arc light-removal and semantic segmentation tasks. Subsequently, an image-to-point cloud mapping-guided Local Point Cloud Feature extraction (LPCF) module was designed, incorporating the Shuffle Attention mechanism to enhance robustness against noise and occlusion. Building upon this, a cross-modal attention-driven multimodal feature fusion (MFF) module integrates 2D edge features with 3D structural information to generate a spatially consistent and detail-rich fused point cloud. Finally, a hierarchical trajectory reconstruction and smoothing method is employed to achieve high-precision reconstruction of the closed weld seam path. The experimental results demonstrate that under severe arc light and fume interference, the proposed method achieves a Root Mean Square Error below 0.6 mm, a maximum error not exceeding 1.2 mm, and a processing time under 5 s. Its performance significantly surpasses that of existing methods, showcasing excellent accuracy and robustness. Full article
Show Figures

Figure 1

22 pages, 8072 KB  
Article
Enhanced Dynamic Obstacle Avoidance for UAVs Using Event Camera and Ego-Motion Compensation
by Bahar Ahmadi and Guangjun Liu
Drones 2025, 9(11), 745; https://doi.org/10.3390/drones9110745 (registering DOI) - 25 Oct 2025
Viewed by 51
Abstract
To navigate dynamic environments safely, UAVs require accurate, real time onboard perception, which relies on ego motion compensation to separate self-induced motion from external dynamics and enable reliable obstacle detection. Traditional ego-motion compensation techniques are mainly based on optimization processes and may be [...] Read more.
To navigate dynamic environments safely, UAVs require accurate, real time onboard perception, which relies on ego motion compensation to separate self-induced motion from external dynamics and enable reliable obstacle detection. Traditional ego-motion compensation techniques are mainly based on optimization processes and may be computationally expensive for real-time applications or lack the precision needed to handle both rotational and translational movements, leading to issues such as misidentifying static elements as dynamic obstacles and generating false positives. In this paper, we propose a novel approach that integrates an event camera-based perception pipeline with an ego-motion compensation algorithm to accurately compensate for both rotational and translational UAV motion. An enhanced warping function, integrating IMU and depth data, is constructed to compensate camera motion based on real-time IMU data to remove ego motion from the asynchronous event stream, enhancing detection accuracy by reducing false positives and missed detections. On the compensated event stream, dynamic obstacles are detected by applying a motion aware adaptive threshold to the normalized mean timestamp image, with the threshold derived from the image’s spatial mean and standard deviation and adjusted by the UAV’s angular and linear velocities. Furthermore, in conjunction with a 3D Artificial Potential Field (APF) for obstacle avoidance, the proposed approach generates smooth, collision-free paths, addressing local minima issues through a rotational force component to ensure efficient UAV navigation in dynamic environments. The effectiveness of the proposed approach is validated through simulations, and its application for UAV navigation, safety, and efficiency in environments such as warehouses is demonstrated, where real-time response and precise obstacle avoidance are essential. Full article
Show Figures

Figure 1

25 pages, 48582 KB  
Article
Parametric Surfaces for Elliptic and Hyperbolic Geometries
by László Szirmay-Kalos, András Fridvalszky, László Szécsi and Márton Vaitkus
Mathematics 2025, 13(21), 3403; https://doi.org/10.3390/math13213403 (registering DOI) - 25 Oct 2025
Viewed by 39
Abstract
Background/Objectives: In computer graphics, virtual worlds are constructed and visualized through algorithmic processes. These environments are typically populated with objects defined by mathematical models, traditionally based on Euclidean geometry. However, there is increasing interest in exploring non-Euclidean geometries, which require adaptations of [...] Read more.
Background/Objectives: In computer graphics, virtual worlds are constructed and visualized through algorithmic processes. These environments are typically populated with objects defined by mathematical models, traditionally based on Euclidean geometry. However, there is increasing interest in exploring non-Euclidean geometries, which require adaptations of the modeling techniques used in Euclidean spaces. Methods: This paper focuses on defining parametric curves and surfaces within elliptic and hyperbolic geometries. We explore free-form splines interpreted as hierarchical motions along geodesics. Translation, rotation, and ruling are managed through supplementary curves to generate surfaces. We also discuss how to compute normal vectors, which are essential for animation and lighting. The rendering approach we adopt aligns with physical principles, assuming that light follows geodesic paths. Results: We extend the Kochanek–Bartels spline to both elliptic and hyperbolic geometries using a sequence of geodesic-based interpolations. Simple recursive formulas are introduced for derivative calculations. With well-defined translation and rotation in these curved spaces, we demonstrate the creation of ruled, extruded, and rotational surfaces. These results are showcased through a virtual reality application designed to navigate and visualize non-Euclidean spaces. Full article
Show Figures

Figure 1

22 pages, 319 KB  
Article
Integrated Spatiotemporal Life Cycle Assessment Framework for Hydroelectric Power Generation in Brazil
by Vanessa Cardoso de Albuquerque, Rodrigo Flora Calili, Maria Fatima Ludovico de Almeida, Rodolpho Albuquerque, Tarcisio Castro and Rafael Kelman
Energies 2025, 18(21), 5606; https://doi.org/10.3390/en18215606 (registering DOI) - 24 Oct 2025
Viewed by 154
Abstract
This study proposes and empirically validates a spatiotemporal life cycle assessment (LCA) framework for hydroelectric power generation applied to the Sinop Hydroelectric Power Plant in Brazil. Unlike conventional LCA, which assumes spatial and temporal homogeneity, the framework incorporates annual temporal discretisation and geographically [...] Read more.
This study proposes and empirically validates a spatiotemporal life cycle assessment (LCA) framework for hydroelectric power generation applied to the Sinop Hydroelectric Power Plant in Brazil. Unlike conventional LCA, which assumes spatial and temporal homogeneity, the framework incorporates annual temporal discretisation and geographically differentiated impacts across all phases of assessment. The methodology combines the Enhanced Structural Path Analysis (ESPA) method with temporal modeling and region-specific inventory data. The results indicate that environmental impacts peak in the fourth year of the ‘Construction and Assembly’ stage, primarily due to the intensive production of concrete and steel. A spatial analysis shows that these impacts extend beyond Brazil, with notable contributions from international supply chains. By identifying temporal and geographical hotspots, the framework offers a refined understanding of impact dynamics and drivers. Uncertainty analysis further demonstrates that temporal discretisation significantly affects impact attribution, with the ‘Construction and Assembly’ stage results varying by up to ±15%, depending on scheduling assumptions. Overall, the study advances the LCA methodology while offering robust empirical evidence to guide sustainable decision-making in Brazil’s power sector and to inform global debates on low-carbon energy transitions. Full article
(This article belongs to the Section A: Sustainable Energy)
26 pages, 3199 KB  
Article
A Compact Concrete Mixing System for High Quality Specimen Production in Space: Automated MASON Concrete Mixer
by Julian H. Mertsch, Julian T. I. Müller, Stefan Kleszczynski, Bernd Rattenbacher and Martina Schnellenbach-Held
Aerospace 2025, 12(11), 954; https://doi.org/10.3390/aerospace12110954 (registering DOI) - 24 Oct 2025
Viewed by 62
Abstract
Establishing a sustainable human presence on the Moon and Mars will require the use of locally available resources for construction. A binder material similar to concrete is a promising candidate, provided that its production and performance under reduced gravity can be reliably understood. [...] Read more.
Establishing a sustainable human presence on the Moon and Mars will require the use of locally available resources for construction. A binder material similar to concrete is a promising candidate, provided that its production and performance under reduced gravity can be reliably understood. Previous microgravity investigations demonstrated the feasibility of mixing cementitious materials in space but produced irregular or low-quality specimens that limited standardized mechanical testing. To address these limitations, the MASON (Material Science on Solidification of Concrete) team developed the first-generation MASON Concrete Mixer (MCM), which enabled the safe production of cylindrical specimens aboard the International Space Station (ISS). However, its fully manual operation introduced variability and required significant astronaut time. Building on this foundation, the development of an automated MCM prototype is presented in this study. It integrates motorized mixing and programmable process control into the established containment architecture. This system enables reproducible specimen production by eliminating operator-dependent variations while reducing crew workload. In comparison to manually mixed samples, the automated MCM demonstrated reduced variability in the tested concrete properties. The automated MCM represents a first step toward autonomous space instrumentation for high-quality materials research and provides a scalable path to uncrewed missions and future extraterrestrial construction technologies. Full article
(This article belongs to the Special Issue Lunar Construction)
40 pages, 33004 KB  
Article
Sampling-Based Path Planning and Semantic Navigation for Complex Large-Scale Environments
by Shakeeb Ahmad and James Sean Humbert
Robotics 2025, 14(11), 149; https://doi.org/10.3390/robotics14110149 (registering DOI) - 24 Oct 2025
Viewed by 80
Abstract
This article proposes a multi-agent path planning and decision-making solution for high-tempo field robotic operations, such as search-and-rescue, in large-scale unstructured environments. As a representative example, the subterranean environments can span many kilometers and are loaded with challenges such as limited to no [...] Read more.
This article proposes a multi-agent path planning and decision-making solution for high-tempo field robotic operations, such as search-and-rescue, in large-scale unstructured environments. As a representative example, the subterranean environments can span many kilometers and are loaded with challenges such as limited to no communication, hazardous terrain, blocked passages due to collapses, and vertical structures. The time-sensitive nature of these operations inherently requires solutions that are reliably deployable in practice. Moreover, a human-supervised multi-robot team is required to ensure that mobility and cognitive capabilities of various agents are leveraged for efficiency of the mission. Therefore, this article attempts to propose a solution that is suited for both air and ground vehicles and is adapted well for information sharing between different agents. This article first details a sampling-based autonomous exploration solution that brings significant improvements with respect to the current state of the art. These improvements include relying on an occupancy grid-based sample-and-project solution to terrain assessment and formulating the solution-search problem as a constraint-satisfaction problem to further enhance the computational efficiency of the planner. In addition, the demonstration of the exploration planner by team MARBLE at the DARPA Subterranean Challenge finals is presented. The inevitable interaction of heterogeneous autonomous robots with human operators demands the use of common semantics for reasoning across the robot and human teams making use of different geometric map capabilities suited for their mobility and computational resources. To this end, the path planner is further extended to include semantic mapping and decision-making into the framework. Firstly, the proposed solution generates a semantic map of the exploration environment by labeling position history of a robot in the form of probability distributions of observations. The semantic reasoning solution uses higher-level cues from a semantic map in order to bias exploration behaviors toward a semantic of interest. This objective is achieved by using a particle filter to localize a robot on a given semantic map followed by a Partially Observable Markov Decision Process (POMDP)-based controller to guide the exploration direction of the sampling-based exploration planner. Hence, this article aims to bridge an understanding gap between human and a heterogeneous robotic team not just through a common-sense semantic map transfer among the agents but by also enabling a robot to make use of such information to guide its lower-level reasoning in case such abstract information is transferred to it. Full article
(This article belongs to the Special Issue Autonomous Robotics for Exploration)
Show Figures

Figure 1

22 pages, 4380 KB  
Article
Midcourse Guidance via Variable-Discrete-Scale Sequential Convex Programming
by Jinlin Zhang, Jiong Li, Lei Shao, Jikun Ye and Yangchao He
Aerospace 2025, 12(11), 952; https://doi.org/10.3390/aerospace12110952 (registering DOI) - 24 Oct 2025
Viewed by 66
Abstract
To address the challenges of strong nonlinearity, stringent terminal constraints, and the trade-off between computational efficiency and accuracy in the midcourse guidance trajectory optimization problem of aerodynamically controlled interceptors, this paper proposes a variable-discrete-scale sequential convex programming (SCP) method. Firstly, a dynamic model [...] Read more.
To address the challenges of strong nonlinearity, stringent terminal constraints, and the trade-off between computational efficiency and accuracy in the midcourse guidance trajectory optimization problem of aerodynamically controlled interceptors, this paper proposes a variable-discrete-scale sequential convex programming (SCP) method. Firstly, a dynamic model is established by introducing the range domain to replace the traditional time domain, thereby reducing the approximation error of the planned trajectory. Second, to overcome the critical issues of solution space restriction and trajectory divergence caused by terminal equality constraints, a terminal error-proportional relaxation approach is proposed. Subsequently, an improved second-order cone programming (SOCP) formulation is developed through systematic integration of three key techniques: terminal error-proportional relaxation, variable trust region, and path normalization. Finally, an initial trajectory generation algorithm is proposed, upon which a variable-discrete-scale optimization framework is constructed. This framework incorporates a residual-driven discrete-scale adaptation mechanism, which balances discretization errors and computational load. Numerical simulation results indicate that under large discretization scales, the computation time required by the improved SOCP is only about 5.4% of that of GPOPS-II. For small-discretization-scale optimization, the SCP method with the variable discretization framework demonstrates high efficiency, achieving comparable accuracy to GPOPS-II while reducing the computation time to approximately 7.4% of that required by GPOPS-II. Full article
(This article belongs to the Special Issue New Perspective on Flight Guidance, Control and Dynamics)
Show Figures

Figure 1

24 pages, 895 KB  
Article
The Flowing Pantheon: A Study on the Origins of the Wutong Deity and the Five Road Deities of Wealth, with a Discussion on the Pluralistic Harmony of Daoism
by Qi Zhang
Religions 2025, 16(11), 1342; https://doi.org/10.3390/rel16111342 - 24 Oct 2025
Viewed by 199
Abstract
The origin of the Wutong deity, a controversial figure in Chinese folk religion, has long been an unresolved academic issue, hindering a clear understanding of its complex godhead and its derivative cults, such as the Five Road Deities of Wealth. This study aims [...] Read more.
The origin of the Wutong deity, a controversial figure in Chinese folk religion, has long been an unresolved academic issue, hindering a clear understanding of its complex godhead and its derivative cults, such as the Five Road Deities of Wealth. This study aims to provide a comprehensive etymological solution to this long-standing problem. Through a systematic investigation combining cross-cultural linguistic analysis, comparative mythology, and socio-historical contextualization, this paper traces the deity’s evolution from its prototype to its final forms. The study argues that the Wutong deity’s prototype is the Buddhist Yakṣa General Pañcika, known in early China as the “Wudao Dashen” (Great Deity of the Five Paths). Its core godhead was formed by inheriting Pañcika’s attribute as a wealth deity, while degrading his myth of prolificacy into a licentious characteristic by conflating it with indigenous stereotypes of Yakṣas. Its name resulted from an orthographic corruption of “Wudao” to “Wutong,” and its “one-legged” image from a phono-semantic misreading of its transliterated name, “Banzhijia (半支迦).” This transformation was catalyzed by the severance of the Tangmi (唐密) lineage and the concurrent rise of commercialism in Song-dynasty Jiangnan. This evolutionary chain reveals the complete process by which a foreign deity was seamlessly integrated into the indigenous Chinese belief system, a “Flowing Pantheon,” through misreading and reconstruction, vividly illustrating the pluralistic and harmonious nature of Chinese religion. Full article
(This article belongs to the Special Issue The Diversity and Harmony of Taoism: Ideas, Behaviors and Influences)
23 pages, 13661 KB  
Review
Ultra-Deep Oil and Gas Geological Characteristics and Exploration Potential in the Sichuan Basin
by Gang Zhou, Zili Zhang, Zehao Yan, Qi Li, Hehe Chen and Bingjie Du
Appl. Sci. 2025, 15(21), 11380; https://doi.org/10.3390/app152111380 - 24 Oct 2025
Viewed by 197
Abstract
Judging from the current global exploration trend, ultra-deep layers have become the main battlefield for energy exploration. China has made great progress in the ultra-deep field in recent decades, with the Tarim Basin and Sichuan Basin as the focus of exploration. The Sichuan [...] Read more.
Judging from the current global exploration trend, ultra-deep layers have become the main battlefield for energy exploration. China has made great progress in the ultra-deep field in recent decades, with the Tarim Basin and Sichuan Basin as the focus of exploration. The Sichuan Basin is a large superimposed gas-bearing basin that has experienced multiple tectonic movements and has developed multiple sets of reservoir–caprock combinations vertically. Notably, the multi-stage platform margin belt-type reservoirs of the Sinian–Lower Paleozoic exhibit inherited and superimposed development. Source rocks from the Qiongzhusi, Doushantuo, and Maidiping formations are located in close proximity to reservoirs, creating a complex hydrocarbon supply system, resulting in vertical and lateral migration paths. The structural faults connect the source and reservoir, and the source–reservoir–caprock combination is complete, with huge exploration potential. At the same time, the ultra-deep carbonate rock structure in the basin is weakly deformed, the ancient closures are well preserved, and the ancient oil reservoirs are cracked into gas reservoirs in situ, with little loss, which is conducive to the large-scale accumulation of natural gas. Since the Nvji well produced 18,500 cubic meters of gas per day in 1979, the study of ultra-deep layers in the Sichuan Basin has begun. Subsequently, further achievements have been made in the Guanji, Jiulongshan, Longgang, Shuangyushi, Wutan and Penglai gas fields. Since 2000, two trillion cubic meters of exploration areas have been discovered, with huge exploration potential, which is an important area for increasing production by trillion cubic meters in the future. Faced with the ultra-deep high-temperature and high-pressure geological environment and the complex geological conditions formed by multi-stage superimposed tectonic movements, how do we understand the special geological environment of ultra-deep layers? What geological processes have the generation, migration and enrichment of ultra-deep hydrocarbons experienced? What are the laws of distribution of ultra-deep oil and gas reservoirs? Based on the major achievements and important discoveries made in ultra-deep oil and gas exploration in recent years, this paper discusses the formation and enrichment status of ultra-deep oil and gas reservoirs in the Sichuan Basin from the perspective of basin structure, source rocks, reservoirs, caprocks, closures and preservation conditions, and provides support for the optimization of favorable exploration areas in the future. Full article
Show Figures

Figure 1

19 pages, 16122 KB  
Article
Estimating Fire Response Times and Planning Optimal Routes Using GIS and Machine Learning Techniques
by Tuğrul Urfalı and Abdurrahman Eymen
Geomatics 2025, 5(4), 58; https://doi.org/10.3390/geomatics5040058 (registering DOI) - 23 Oct 2025
Viewed by 117
Abstract
This study proposes an integrated, data-driven framework that couples Geographic Information Systems (GIS) with machine-learning techniques to improve fire-department response efficiency in an urban setting. Using an initial archive of 10,421 geocoded fire incident reports collected in Kayseri, Turkey (2018–2023), together with an [...] Read more.
This study proposes an integrated, data-driven framework that couples Geographic Information Systems (GIS) with machine-learning techniques to improve fire-department response efficiency in an urban setting. Using an initial archive of 10,421 geocoded fire incident reports collected in Kayseri, Turkey (2018–2023), together with an OpenStreetMap-derived road network, we first generated an “ideal route-time” feature for every incident via Dijkstra shortest-path analysis. After data cleaning and routability checks, 7421 high-quality cases formed the modelling base. Two regression models—eXtreme Gradient Boosting (XGBoost) and Support Vector Regression (SVR)—were trained to predict dispatch-to-arrival times. On the held-out test set, XGBoost yielded the best performance, achieving a mean absolute error of 1.67 min, a root-mean-square error of 2.21 min, a coefficient of determination (R2) of 0.46, and 78.41% accuracy within a ±3 min tolerance. Predicted times were combined with real-time Dijkstra routing to visualize fastest paths and station service areas in GIS, revealing that densely populated districts are reachable within five minutes while peripheral zones exceed ten. The results demonstrate that embedding network-derived features within advanced ML models markedly improves temporal forecasts and that the combined GIS-ML framework can support rapid, evidence-based decision-making, ultimately helping to minimize loss of life and property in urban fire emergencies. Full article
Show Figures

Figure 1

41 pages, 35771 KB  
Article
A Two-Stage Generative Optimization Framework for “Daylighting Schools”: A Case Study in the Lingnan Region of China
by Haoming Song, Yubo Liu and Qiaoming Deng
Buildings 2025, 15(21), 3821; https://doi.org/10.3390/buildings15213821 - 23 Oct 2025
Viewed by 270
Abstract
Within the framework of the Healthy China strategy, daylighting in primary and secondary schools is crucial for students’ health and learning efficiency. Most schools in China still face insufficient and uneven daylighting, along with limited outdoor solar exposure, underscoring the need for systematic [...] Read more.
Within the framework of the Healthy China strategy, daylighting in primary and secondary schools is crucial for students’ health and learning efficiency. Most schools in China still face insufficient and uneven daylighting, along with limited outdoor solar exposure, underscoring the need for systematic optimization. Guided by the “Daylighting School” concept, this study proposes a campus design model that integrates indoor daylighting with outdoor activity opportunities and explores a generative optimization approach. The research reviews daylighting and thermal performance metrics, summarizes European and American “Daylighting School” experiences, and develops three classroom prototypes—Standard Side-Lit, High Side-Lit, and Skylight-Lit—together with corresponding campus layout models. A two-stage optimization experiment was conducted on a high school site in Guangzhou. Stage 1 optimized block location and functional layout using solar radiation illuminance and activity accessibility distance. Stage 2 refined classroom configurations based on four key performance indicators: sDA, sGA, UOD, and APMV-mean. Results show that optimized layouts improved activity path efficiency and daylight availability. High Side-Lit and Skylight-Lit classrooms outperformed traditional Side-Lit in illuminance, uniformity, and glare control. To improve efficiency, an ANN-based prediction model was introduced to replace conventional simulation engines, enabling rapid large-scale assessment of complex classroom clusters and providing architects with real-time decision support for daylight-oriented educational building design. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

37 pages, 12943 KB  
Article
Natural Disaster Information System (NDIS) for RPAS Mission Planning
by Robiah Al Wardah and Alexander Braun
Drones 2025, 9(11), 734; https://doi.org/10.3390/drones9110734 - 23 Oct 2025
Viewed by 265
Abstract
Today’s rapidly increasing number and performance of Remotely Piloted Aircraft Systems (RPASs) and sensors allows for an innovative approach in monitoring, mitigating, and responding to natural disasters and risks. At present, there are 100s of different RPAS platforms and smaller and more affordable [...] Read more.
Today’s rapidly increasing number and performance of Remotely Piloted Aircraft Systems (RPASs) and sensors allows for an innovative approach in monitoring, mitigating, and responding to natural disasters and risks. At present, there are 100s of different RPAS platforms and smaller and more affordable payload sensors. As natural disasters pose ever increasing risks to society and the environment, it is imperative that these RPASs are utilized effectively. In order to exploit these advances, this study presents the development and validation of a Natural Disaster Information System (NDIS), a geospatial decision-support framework for RPAS-based natural hazard missions. The system integrates a global geohazard database with specifications of geophysical sensors and RPAS platforms to automate mission planning in a generalized form. NDIS v1.0 uses decision tree algorithms to select suitable sensors and platforms based on hazard type, distance to infrastructure, and survey feasibility. NDIS v2.0 introduces a Random Forest method and a Critical Path Method (CPM) to further optimize task sequencing and mission timing. The latest version, NDIS v3.8.3, implements a staggered decision workflow that sequentially maps hazard type and disaster stage to appropriate survey methods, sensor payloads, and compatible RPAS using rule-based and threshold-based filtering. RPAS selection considers payload capacity and range thresholds, adjusted dynamically by proximity, and ranks candidate platforms using hazard- and sensor-specific endurance criteria. The system is implemented using ArcGIS Pro 3.4.0, ArcGIS Experience Builder (2025 cloud release), and Azure Web App Services (Python 3.10 runtime). NDIS supports both batch processing and interactive real-time queries through a web-based user interface. Additional features include a statistical overview dashboard to help users interpret dataset distribution, and a crowdsourced input module that enables community-contributed hazard data via ArcGIS Survey123. NDIS is presented and validated in, for example, applications related to volcanic hazards in Indonesia. These capabilities make NDIS a scalable, adaptable, and operationally meaningful tool for multi-hazard monitoring and remote sensing mission planning. Full article
Show Figures

Figure 1

Back to TopTop