Lunar Construction

A special issue of Aerospace (ISSN 2226-4310). This special issue belongs to the section "Astronautics & Space Science".

Deadline for manuscript submissions: 31 December 2025 | Viewed by 3872

Special Issue Editor


E-Mail Website
Guest Editor
Institute for Aerospace Studies, University of Toronto, Toronto, ON, Canada
Interests: space systems engineering; concurrent engineering; mechatronics; space manipulators; planetary rovers; space systems miniaturization; spacecraft formation flying; asteroid engineering; intelligent robot teams; reconfigurable manipulators; legged locomotion for exploratory rovers
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue is a response to the recent renewal of global interest in lunar missions, which aim at not only scientific opportunities and prospects of deep space exploration, but also at demonstrating technologies that will extend our reach throughout the Solar System. A steppingstone for such goals is to establish a lunar base for human’s sustained presence on the Moon, through the development of viable and scalable lunar construction technologies as well as rules and regulations. The Special Issue attempts to present the state-of-the-art in the research and development of lunar construction methods, materials, systems, and codes and policies. Researchers and experts from multidisciplinary backgrounds are encouraged to submit their original research, review articles, and conceptual studies on topics that may include but are not limited to:

  • unique challenges posed by the lunar environment, such as extreme temperature variations, high radiation exposure, micrometeorite impacts, abrasive and electrostatically charged lunar regolith, etc.;
  • critical infrastructure required for a sustainable lunar base, including habitats, power stations, communication stations, landing pads, blast berms, etc.;
  • methods and materials that can be utilized for building the lunar base and its infrastructure, including additive manufacturing, regolith bonding, and raw materials, with an emphasis on in situ resource utilization;
  • machines, mechanisms and systems for lunar construction, such as excavators, cranes and conveyors, robot manipulators, etc.;
  • autonomous robotic operations for handling unplanned and unpredictable situations and enhancing performance through learning capabilities, using artificial intelligence technologies;
  • planning, systems engineering and execution of lunar construction missions, including costs, resources, logistics, programmatics, etc.; and
  • engineering codes, guidelines, regulations and international policies for lunar construction.

By bringing together cutting-edge research and diverse perspectives, this Special Issue aims to foster collaboration and drive innovation in the field of lunar construction.

Prof. Dr. M. Reza Emami
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Aerospace is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Journal Information

Aerospace is a peer-reviewed, open access journal of aeronautics and astronautics published monthly online by MDPI. The European Aerospace Science Network (EASN), and the ECATS International Association are affiliated with Aerospace and their members receive a discount on the article processing charges.

  • Open Access: free for readers, with article processing charges (APC) paid by authors or their institutions.
  • High Visibility: indexed within Scopus, SCIE (Web of Science), Inspec, Ei Compendex, and other databases.
  • Journal Rank: JCR - Q2 (Engineering, Aerospace) / CiteScore - Q2 (Aerospace Engineering)
  • Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 21.3 days after submission; acceptance to publication is undertaken in 2.6 days (median values for papers published in this journal in the second half of 2024).
  • Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
  • Impact Factor: 2.1 (2023); 5-Year Impact Factor: 2.4 (2023)

Keywords

  • lunar missions
  • deep space exploration
  • lunar construction
  • lunar environment

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

25 pages, 3417 KB  
Article
A Compact Concrete Mixing System for High Quality Specimen Production in Space: Automated MASON Concrete Mixer
by Julian H. Mertsch, Julian T. I. Müller, Stefan Kleszczynski, Bernd Rattenbacher and Martina Schnellenbach-Held
Aerospace 2025, 12(11), 954; https://doi.org/10.3390/aerospace12110954 - 24 Oct 2025
Viewed by 489
Abstract
Establishing a sustainable human presence on the Moon and Mars will require the use of locally available resources for construction. A binder material similar to concrete is a promising candidate, provided that its production and performance under reduced gravity can be reliably understood. [...] Read more.
Establishing a sustainable human presence on the Moon and Mars will require the use of locally available resources for construction. A binder material similar to concrete is a promising candidate, provided that its production and performance under reduced gravity can be reliably understood. Previous microgravity investigations demonstrated the feasibility of mixing cementitious materials in space but produced irregular or low-quality specimens that limited standardized mechanical testing. To address these limitations, the MASON (Material Science on Solidification of Concrete) team developed the first-generation MASON Concrete Mixer (MCM), which enabled the safe production of cylindrical specimens aboard the International Space Station (ISS). However, its fully manual operation introduced variability and required significant astronaut time. Building on this foundation, the development of an automated MCM prototype is presented in this study. It integrates motorized mixing and programmable process control into the established containment architecture. This system enables reproducible specimen production by eliminating operator-dependent variations while reducing crew workload. In comparison to manually mixed samples, the automated MCM demonstrated reduced variability in the tested concrete properties. The automated MCM represents a first step toward autonomous space instrumentation for high-quality materials research and provides a scalable path to uncrewed missions and future extraterrestrial construction technologies. Full article
(This article belongs to the Special Issue Lunar Construction)
Show Figures

Graphical abstract

52 pages, 10234 KB  
Article
Lunar Robotic Construction System Using Raw Regolith: Design Conceptualization
by Ketan Vasudeva and M. Reza Emami
Aerospace 2025, 12(11), 947; https://doi.org/10.3390/aerospace12110947 - 22 Oct 2025
Cited by 1 | Viewed by 1615
Abstract
This paper outlines the inception, conceptualization and primary morphological selection of a robotic system that employs raw lunar regolith for constructing protective berms and shelters on the Moon’s surface. The lunar regolith is considered the most readily available material for in situ resource [...] Read more.
This paper outlines the inception, conceptualization and primary morphological selection of a robotic system that employs raw lunar regolith for constructing protective berms and shelters on the Moon’s surface. The lunar regolith is considered the most readily available material for in situ resource utilization on the Moon. The lunar environment is characterized, and the operational task is defined, informing the development of high-level system requirements and a functional analysis through the glass-box method. The key morphological areas are identified, and candidate concepts are evaluated using the Analytic Hierarchy Process (AHP). The evaluation process employs a new approach to aggregating expert data through the ZMII method to establish priorities of the design criteria, which eliminates the need for pairwise comparisons in data collection. Each criterion is associated with a specific and quantifiable metric, which is then used to evaluate the morphologies during the AHP. The selected morphologies are determined as: a vibrating hopper for intake (normalized decision value of 27.5% out of 5 candidate solutions), a roller system for container deployment and filling (26.2% out of 7), a magnetic RCU interface (22.6% out of 7), and a 4-DoF manipulator to place the RCUs in the environment (23.6% out of 5). The final morphology is selected by combining the decision values across the primary morphological areas into a unified decision metric. This is followed by the preliminary selection of the system’s surrounding architecture. The design conceptualization is performed within a real-life operational scenario, namely, to create a blast berm for the landing pad using the lunar regolith provided by an existing excavator. The next phase of the work will include the system’s detailed design, as well as investigations on the requirements for a variety of construction tasks on the lunar surface. Full article
(This article belongs to the Special Issue Lunar Construction)
Show Figures

Figure 1

20 pages, 2544 KB  
Article
A Lunar Landing Pad from IRSU Materials: Design and Validation of a Structural Element
by A. Pastore, M. Agozzino and C. G. Ferro
Aerospace 2025, 12(9), 781; https://doi.org/10.3390/aerospace12090781 - 29 Aug 2025
Viewed by 1207
Abstract
A lunar landing pad (LLP) represents essential initial infrastructure for establishing sustainable lunar settlements. This study investigates the feasibility of constructing LLPs through in situ resource utilization (ISRU), focusing on an innovative composite material comprising lunar regolith and the high-performance thermoplastic Polyether Ether [...] Read more.
A lunar landing pad (LLP) represents essential initial infrastructure for establishing sustainable lunar settlements. This study investigates the feasibility of constructing LLPs through in situ resource utilization (ISRU), focusing on an innovative composite material comprising lunar regolith and the high-performance thermoplastic Polyether Ether Ketone (PEEK). The proposed manufacturing approach involves mechanically blending regolith with PEEK granules, compacting the mixture in a mold, and thermally processing it to induce polymer melting and binding. Experimental analysis indicates that a modest binder fraction (15 wt. % PEEK) yields a robust composite with a flexural strength of 14.6 MPa, although exhibiting inherently brittle characteristics. Compaction pressure emerges as a crucial factor influencing material performance. Utilizing these findings, hexagonal modular tiles were designed as the fundamental LLP elements, specifically engineered to optimize manufacturing simplicity, mechanical robustness, stackability for redundancy, and ease of replacement or repair. The tile geometry strategically mitigates brittleness-induced vulnerabilities by avoiding stress concentrations. Explicit finite element analyses validated tile performance under simulated lunar landing conditions corresponding to the European Large Logistic Lander specifications. Results demonstrated safe landing velocities between 0.1 and 0.7 m/s, governed by the binder content and compaction pressure. A clearly identified linear correlation between the binder fraction and permissible impact velocity enables predictive tailoring of the material composition, confirming the suitability and scalability of thermoplastic–regolith composites for future lunar infrastructure development. Full article
(This article belongs to the Special Issue Lunar Construction)
Show Figures

Figure 1

Back to TopTop