Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (187)

Search Parameters:
Keywords = paste fill material

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1897 KB  
Article
Enabling Industrial Re-Use of Large-Format Additive Manufacturing Molding and Tooling
by Matthew Korey, Amber M. Hubbard, Gregory Haye, Robert Bedsole, Zachary Skelton, Neeki Meshkat, Ashish L. S. Anilal, Kathryn Slavny, Katie Copenhaver, Tyler Corum, Don X. Bones, William M. Gramlich, Chad Duty and Soydan Ozcan
Polymers 2025, 17(22), 2981; https://doi.org/10.3390/polym17222981 (registering DOI) - 10 Nov 2025
Abstract
Large-format additive manufacturing (LFAM) is an enabling manufacturing technology capable of producing large parts with highly complex geometries for a wide variety of applications, including automotive, infrastructure/construction, and aerospace mold and tooling. In the past decade, the LFAM industry has seen widespread use [...] Read more.
Large-format additive manufacturing (LFAM) is an enabling manufacturing technology capable of producing large parts with highly complex geometries for a wide variety of applications, including automotive, infrastructure/construction, and aerospace mold and tooling. In the past decade, the LFAM industry has seen widespread use of bio-based, glass, and/or carbon fiber reinforced thermoplastic composites which, when printed, serve as a lower-cost alternative to metallic parts. One of the highest-volume materials utilized by the industry is carbon fiber (CF)-filled polycarbonate (PC), which in out-of-autoclave applications can achieve comparable mechanical performance to metal at a significantly lower cost. Previous work has shown that if this material is recovered at various points throughout the manufacturing process for both the lab and pilot scale, it can be mechanically recycled with minimal impacts on the functional performance and printability of the material while significantly reducing the feedstock costs. End-of-life (EOL) CF-PC components were processed through industrial shredding, melt compounding, and LFAM equipment, followed by evaluation of the second-life material properties. Experimental assessments included quantitative analysis of fiber length attrition, polymer molecular weight degradation using gel permeation chromatography (GPC), density changes via pycnometry, thermal performance using dynamic mechanical analysis (DMA), and mechanical performance (tensile properties) in both the X- and Z-directions. Results demonstrated a 24.6% reduction in average fiber length compared to virgin prints, accompanied by a 21% decrease in X-direction tensile strength and a 39% reduction in tensile modulus. Despite these reductions, Z-direction tensile modulus improved by 4%, density increased by 6.8%, and heat deflection temperature (HDT) under high stress retained over 97% of its original value. These findings underscore the potential for integrating mechanically recycled CF-PC into industrial LFAM applications while highlighting the need for technological innovations to mitigate fiber degradation and enhance material performance for broader adoption. This critical step toward circular material practices in LFAM offers a pathway to reducing feedstock costs and environmental impact while maintaining functional performance in industrial applications. Full article
(This article belongs to the Special Issue Additive Manufacturing of Polymer Based Materials)
Show Figures

Figure 1

25 pages, 8960 KB  
Article
Analysis on Durability of Bentonite Slurry–Steel Slag Foam Concrete Under Wet–Dry Cycles
by Guosheng Xiang, Feiyang Shao, Hongri Zhang, Yunze Bai, Yuan Fang, Youjun Li, Ling Li and Yang Ming
Buildings 2025, 15(19), 3550; https://doi.org/10.3390/buildings15193550 - 2 Oct 2025
Viewed by 493
Abstract
Wet–dry cycles are a key factor aggravating the durability degradation of foam concrete. To address this issue, this study prepared bentonite slurry–steel slag foam concrete (with steel slag and cement as main raw materials, and bentonite slurry as admixture) using the physical foaming [...] Read more.
Wet–dry cycles are a key factor aggravating the durability degradation of foam concrete. To address this issue, this study prepared bentonite slurry–steel slag foam concrete (with steel slag and cement as main raw materials, and bentonite slurry as admixture) using the physical foaming method. Based on 7-day unconfined compressive strength tests with different mix proportions, the optimal mix proportion was determined as follows: mass ratio of bentonite to water 1:15, steel slag content 10%, and mass fraction of bentonite slurry 5%. Based on this optimal mix proportion, dry–wet cycle tests were carried out in both water and salt solution environments to systematically analyze the improvement effect of steel slag and bentonite slurry on the durability of foam concrete. The results show the following: steel slag can act as fine aggregate to play a skeleton role; after fully mixing with cement paste, it wraps the outer wall of foam, which not only reduces foam breakage but also inhibits the formation of large pores inside the specimen; bentonite slurry can densify the interface transition zone, improve the toughness of foam concrete, and inhibit the initiation and propagation of matrix cracks during the dry–wet cycle process; the composite addition of the two can significantly enhance the water erosion resistance and salt solution erosion resistance of foam concrete. The dry–wet cycle in the salt solution environment causes more severe erosion damage to foam concrete. The main reason is that, after chloride ions invade the cement matrix, they erode hydration products and generate expansive substances, thereby aggravating the matrix damage. Scanning Electron Microscopy (SEM) analysis shows that, whether in water environment or salt solution environment, the fractal dimension of foam concrete decreased slightly with an increasing number of wet–dry cycle times. Based on fractal theory, this study established a compressive strength–porosity prediction model and a dense concrete compressive strength–dry–wet cycle times prediction model, and both models were validated against experimental data from other researchers. The research results can provide technical support for the development of durable foam concrete in harsh environments and the high-value utilization of steel slag solid waste, and are applicable to civil engineering lightweight porous material application scenarios requiring resistance to dry–wet cycle erosion, such as wall bodies and subgrade filling. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

25 pages, 6014 KB  
Article
Research on Synergistic Enhancement of UHPC Cold Region Repair Performance by Steel Fibers and Early-Strength Agent
by Ming Xie, Zhangdong Wang, Li’e Yin and Hao Li
Buildings 2025, 15(15), 2630; https://doi.org/10.3390/buildings15152630 - 25 Jul 2025
Cited by 1 | Viewed by 575
Abstract
This study looked at the performance requirements of repair materials for concrete structures in cold regions, systematically analyzing the effects of steel fiber dosage (0.7–2.1%), early-strength agent PRIORITY dosage (6–10%), and their coupling effects on the workability, interfacial bond strength, and freeze–thaw resistance [...] Read more.
This study looked at the performance requirements of repair materials for concrete structures in cold regions, systematically analyzing the effects of steel fiber dosage (0.7–2.1%), early-strength agent PRIORITY dosage (6–10%), and their coupling effects on the workability, interfacial bond strength, and freeze–thaw resistance of rapid-hardening ultra-high-performance concrete (UHPC). Through fluidity testing, bond interface failure analysis, freeze–thaw cycle testing, and pore analysis, the mechanism of steel fibers and early-strength agent on the multi-dimensional performance of fast-hardening UHPC was revealed. The results showed that when the steel fiber dosage exceeded 1.4%, the flowability was significantly reduced, while a PRIORITY dosage of 8% improved the flowability by 20.5% by enhancing the paste lubricity. Single addition of steel fibers decreased the interfacial bond strength, but compound addition of 8% PRIORITY offset the negative impact by optimizing the filling effect of hydration products. Under freeze–thaw cycles, excessive steel fibers (2.1%) exacerbated the mass loss (1.67%), whereas a PRIORITY dosage of 8% increased the retention rate of relative dynamic elastic modulus by 10–15%. Pore analysis shows that the synergistic effect of 1.4% steel fiber and 8% PRIORITY can reduce the number of pores, optimize the pore distribution, and make the structure denser. The study determined that the optimal compound mixing ratio was 1.4% steel fibers and 8% PRIORITY. This combination ensures construction fluidity while significantly improving the interfacial bond durability and freeze–thaw resistance, providing a theoretical basis for the design of concrete repair materials in cold regions. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

25 pages, 4980 KB  
Article
In Memory of Mysticism: Kabbalistic Modes of (Post)Memory in W.G. Sebald’s Austerlitz
by Jo Klevdal
Religions 2025, 16(8), 954; https://doi.org/10.3390/rel16080954 - 23 Jul 2025
Viewed by 925
Abstract
As first-hand testimonies and accounts of the Holocaust fade, scholars and artists alike have struggled to depict and contextualize the genocide’s monumental violence. But depicting violence and its aftermath poses several problems, including the question of how to recall loss without artificially filling [...] Read more.
As first-hand testimonies and accounts of the Holocaust fade, scholars and artists alike have struggled to depict and contextualize the genocide’s monumental violence. But depicting violence and its aftermath poses several problems, including the question of how to recall loss without artificially filling in or effacing the absence so central to its understanding. In essence, remembering the Holocaust is a paradox: the preservation of an absence. Marianne Hirsch’s influential concept of postmemory addresses this paradox and asks questions about memorial capacity in the twenty-first century. This essay considers Hirsch’s postmemory in the context of W.G. Sebald’s 2001 novel Austerlitz, which uses a combination of prose and photography to engage the difficulties inherent in memory work without access to eyewitnesses. Through the interaction of printed text and images, Austerlitz subtly references Lurianic mysticism’s concept of tikkun and Tree of Life (ilanot) diagrams. The result is a depiction of memory that is both process-based and embodies absence. My reading of Austerlitz traces a Jewish heritage within the work of a non-Jewish German author by attending to a tradition of mystical thought embedded in the novel. This situates Sebald’s fiction in a much longer Jewish history that stretches out on either end of the event of the Holocaust. Structurally, Sebald develops a tikkun-like process of (re)creation which relies on gathering material scraps of the past and imaginatively engaging with their absences in the present. Images, just as much as text, are central to this process. Reading Austerlitz in the context of Kabbalah reveals an intellectual and artistic link to a Jewish history that, while predating the Holocaust, nonetheless sheds light on post-Holocaust memories of loss. Full article
(This article belongs to the Special Issue Jewish Thought in Times of Crisis)
Show Figures

Figure 1

21 pages, 4856 KB  
Article
Mechanical Properties of Recycled Concrete with Carbide Slag Slurry Pre-Immersed and Carbonated Recycled Aggregate
by Xiangfei Wang, Guoliang Guo, Jinglei Liu, Chun Lv and Mingyan Bi
Materials 2025, 18(14), 3281; https://doi.org/10.3390/ma18143281 - 11 Jul 2025
Viewed by 506
Abstract
This research focuses on improving the characteristics of recycled concrete and utilizing solid waste resources through the combination of industrial waste pre-impregnation and the carbonation process. A novel pre-impregnation–carbonation aggregate method is proposed to increase the content of carbonatable components in the surface-bonded [...] Read more.
This research focuses on improving the characteristics of recycled concrete and utilizing solid waste resources through the combination of industrial waste pre-impregnation and the carbonation process. A novel pre-impregnation–carbonation aggregate method is proposed to increase the content of carbonatable components in the surface-bonded mortar of recycled coarse aggregate by pre-impregnating it with carbide slag slurry (CSS). This approach enhances the subsequent carbonation effect and thus the properties of recycled aggregates. The experimental results showed that the method significantly improved the water absorption, crushing value, and apparent density of the recycled aggregate. Additionally, it enhanced the compressive strength, split tensile strength, and flexural strength of the recycled concrete produced using the aggregate improved by this method. Microanalysis revealed that CO2 reacts with calcium hydroxide and hydrated calcium silicate (C-S-H) to produce calcite-type calcium carbonate and amorphous silica gel. These reaction products fill microcracks and pores on the aggregate and densify the aggregate–paste interfacial transition zone (ITZ), thereby improving the properties of recycled concrete. This study presents a practical approach for the high-value utilization of construction waste and the production of low-carbon building materials by enhancing the quality of recycled concrete. Additionally, carbon sequestration demonstrates broad promise for engineering applications. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Graphical abstract

27 pages, 2895 KB  
Article
Experimental Study on the Preparation of Paste Filling Materials from Coal-Based Solid Wastes
by Chaowen Hu, Xiaojie Yang, Feng Zhang, Bo Pan, Ruifeng Huang, Bing Hu, Yongyuan Li, Lei Zhang, Bingshan Wang, Jianxun Gao, Huifeng Wang and Yun Yu
Materials 2025, 18(14), 3244; https://doi.org/10.3390/ma18143244 - 9 Jul 2025
Viewed by 557
Abstract
To reduce the cost of coal mine filling materials, a novel composite cementitious material was developed by utilizing coal-based solid waste materials, including fly ash, desulfurized gypsum, and carbide slag, along with cement and water as raw materials. Initially, a comprehensive analysis of [...] Read more.
To reduce the cost of coal mine filling materials, a novel composite cementitious material was developed by utilizing coal-based solid waste materials, including fly ash, desulfurized gypsum, and carbide slag, along with cement and water as raw materials. Initially, a comprehensive analysis of the physical and chemical properties of each raw material was conducted. Subsequently, proportioning tests were systematically carried out using the single-variable method. During these tests, multiple crucial performance indicators were measured. Specifically, the fluidity and bleeding rate of the slurry were evaluated to assess its workability, while the compressive strength and chemically bound water content of the hardened sample were tested to determine its mechanical properties and hydration degree. Through in-depth analysis of the test results, the optimal formulation of the composite cementitious material was determined. In the basic group, the mass ratio of fly ash to desulfurized gypsum was set at 70:30. In the additional group, the carbide slag addition amount accounted for 20% of the total mass, the cement addition amount was 15%, and the water–cement ratio was fixed at 0.65. Under these optimal proportioning conditions, the composite cementitious material exhibited excellent performance: its fluidity ranged from 180 to 220 mm, the bleeding rate within 6 h was less than 5%, and the 28-day compressive strength reached 17.69 MPa. The newly developed composite cementitious material features good fluidity and high strength of the hardened sample, fully meeting the requirements for mine filling materials. Full article
Show Figures

Figure 1

22 pages, 6793 KB  
Article
Effect of Nano-Modified Recycled Wood Fibers on the Micro/Macro Properties of Rapid-Hardening Sulfoaluminate Cement-Based Composites
by Chunyu Ma, Liang Wang, Yujiao Li, Qiuyi Li, Gongbing Yue, Yuanxin Guo, Meinan Wang and Xiaolong Zhou
Nanomaterials 2025, 15(13), 993; https://doi.org/10.3390/nano15130993 - 26 Jun 2025
Viewed by 583
Abstract
Recycled wood fiber (RWF) obtained through the multi-stage processing of waste wood serves as an eco-friendly green construction material, exhibiting lightweight, porous, and high toughness characteristics that demonstrate significant potential as a cementitious reinforcement, offering strategic advantages for environmental protection and resource recycling. [...] Read more.
Recycled wood fiber (RWF) obtained through the multi-stage processing of waste wood serves as an eco-friendly green construction material, exhibiting lightweight, porous, and high toughness characteristics that demonstrate significant potential as a cementitious reinforcement, offering strategic advantages for environmental protection and resource recycling. In this study, high-performance sulfoaluminate cement (SAC)-RWF composites prepared by modifying RWFs with nano-silica (NS) and a silane coupling agent (KH560) were developed and their effects on mechanical properties, shrinkage behavior, hydration characteristics, and microstructure of SAC-RWF composites were systematically investigated. Optimal performance was achieved at water–cement ratio of 0.5 with 20% RWF content, where the KH560-modified samples showed superior improvement, with 8.5% and 14.3% increases in 28 d flexural and compressive strength, respectively, compared to the control groups, outperforming the NS-modified samples (3.6% and 8.6% enhancements). Both modifiers improved durability, reducing water absorption by 6.72% (NS) and 7.1% (KH560) while decreasing drying shrinkage by 4.3% and 27.2%, respectively. The modified SAC composites maintained favorable thermal properties, with NS reducing thermal conductivity by 6.8% through density optimization, whereas the KH560-treated specimens retained low conductivity despite slight density increases. Micro-structural tests revealed accelerated hydration without new hydration product formation, with both modifiers enhancing cementitious matrix hydration product generation by distinct mechanisms—with NS acting through physical pore-filling, while KH560 established Si-O-C chemical bonds at paste interfaces. Although both modifications improved mechanical properties and durability, the KH560-modified SAC composite group demonstrated superior overall performance than the NS-modified group, providing a technical pathway for developing sustainable, high-performance recycled wood fiber cement-based materials with balanced functional properties for low-carbon construction applications. Full article
(This article belongs to the Special Issue Nanocomposite Modified Cement and Concrete)
Show Figures

Graphical abstract

19 pages, 3569 KB  
Article
Comprehensive Assessment and Freeze–Thaw Durability Prediction of Wet-Sprayed Concrete for Cold-Region Tunnels
by Haiyan Wang, Yanli Wang, Zhaohui Sun, Lichuan Wang, Hongtao Zhang, Wenhua Zheng and Qianqian Wang
Materials 2025, 18(13), 2955; https://doi.org/10.3390/ma18132955 - 22 Jun 2025
Viewed by 827
Abstract
This study examines freeze–thaw deterioration patterns and predicts the service life of wet-sprayed concrete with composite cementitious materials in cold-region tunnels. The microstructure and particle size distribution of four materials (cement, fly ash, silica fume, and mineral powder) were analyzed. Subsequent tests evaluated [...] Read more.
This study examines freeze–thaw deterioration patterns and predicts the service life of wet-sprayed concrete with composite cementitious materials in cold-region tunnels. The microstructure and particle size distribution of four materials (cement, fly ash, silica fume, and mineral powder) were analyzed. Subsequent tests evaluated the rebound rate, mechanical properties, and durability of wet-sprayed concrete with various compositions and proportions of cementitious materials, emphasizing freeze–thaw resistance under cyclic freezing and thawing. A freeze–thaw deterioration equation was developed using damage mechanics theory to predict the service life of early-stage wet-sprayed concrete in tunnels. The results indicate that proportionally combining cementitious materials with different particle sizes and gradations can enhance concrete compactness. Adding mineral admixtures increases concrete viscosity, effectively reducing rebound rates and dust generation during wet spraying. Concrete incorporating binary and ternary mineral admixtures shows reduced early-age strength but significantly enhanced later-age strength. Its frost resistance is also improved to varying degrees. The ternary composite binder fills voids between cement particles and at the interface between paste and aggregate, resulting in a dense microstructure due to a ‘composite superposition effect.’ This significantly enhances the frost resistance of wet-mixed shotcrete, enabling it to withstand up to 200 freeze–thaw cycles, compared to failure after 75 cycles in plain cement concrete. The relative dynamic modulus of elasticity of wet-shotcrete follows a parabolic deterioration trend with increasing freeze–thaw cycles. Except for specimen P5 (R2 = 0.89), the correlation coefficients of deterioration models exceed 0.94, supporting their use in durability prediction. Simulation results indicate that, across all regions of China, the service life of wet-shotcrete with ternary admixtures can exceed 100 years, while that of plain cement concrete remains below 41 years. Full article
Show Figures

Figure 1

16 pages, 3429 KB  
Article
The Effects of Sand Incorporation on the Pore Structure, Strength, and Fractal Characteristics of Alkali-Activated Slag Cementitious Materials
by Yuchen Ye, Zhenyuan Gu, Yi Wang, Ying Sun, Chenhui Zhu and Jie Yang
Materials 2025, 18(12), 2797; https://doi.org/10.3390/ma18122797 - 13 Jun 2025
Viewed by 512
Abstract
Sand content plays a critical role in regulating the structural compactness and strength development of alkali-activated slag cementitious materials. In this study, three types of specimens—pure slag paste, standard sand mortar, and fine sand mortar—were prepared to investigate the effects of sand incorporation [...] Read more.
Sand content plays a critical role in regulating the structural compactness and strength development of alkali-activated slag cementitious materials. In this study, three types of specimens—pure slag paste, standard sand mortar, and fine sand mortar—were prepared to investigate the effects of sand incorporation on pore structure and fractal characteristics. Mechanical properties, pore structure, and micro-morphology were systematically evaluated at different curing ages. Mercury intrusion porosimetry (MIP) was employed to measure porosity, pore size distribution, and the threshold pore diameter, while fractal dimensions were calculated to quantify pore complexity and compactness. The results showed that the pure slag paste achieved the highest compressive strength at all ages but posed environmental concerns due to high resource consumption. In contrast, sand-incorporated mortars exhibited stable strength development and continuous pore structure refinement. Notably, the use of fine sand in Group C reduced slag content by approximately 5.6% compared to Group A, contributing to lower CO2 emissions and enhanced sustainability. Fractal analysis revealed a strong correlation between fractal dimension, pore compactness, and compressive strength. A higher fractal dimension indicated a more complex and interconnected pore network, promoting matrix densification. At 90 days, Group C achieved the highest fractal dimension and lowest porosity, attributed to the micro-filling effect of fine sand, which facilitated the formation of a denser and more continuous gel network. These findings provide a theoretical foundation for the multiscale characterization of alkali-activated cementitious systems and support the design of more sustainable mix formulations. Full article
Show Figures

Figure 1

32 pages, 14098 KB  
Article
Characteristics and Climatic Indications of Ice-Related Landforms at Low Latitudes (0°–±30°) on Mars
by Yan Zhou, Yu-Yan Sara Zhao, Xiaoting Xu and Yiran Wang
Remote Sens. 2025, 17(11), 1939; https://doi.org/10.3390/rs17111939 - 4 Jun 2025
Viewed by 1356
Abstract
The deposition and evolution of ice-rich materials on Martian surfaces offer valuable insights into climatic evolution and the potential driving forces behind global climate change. Substantial evidence indicates that the mid-latitudes of Mars played a crucial role in the formation and development of [...] Read more.
The deposition and evolution of ice-rich materials on Martian surfaces offer valuable insights into climatic evolution and the potential driving forces behind global climate change. Substantial evidence indicates that the mid-latitudes of Mars played a crucial role in the formation and development of glacial and periglacial landforms during the Amazonian period. However, few studies have comprehensively examined ice-related landforms in the low-latitude region of Mars. Whether extensive glacial activity has occurred in the equatorial region of Mars and whether there are any potential geological records of such activities remain unclear. In this study, we analyzed remote sensing data from the Martian equatorial region (0°–±30°) and identified existing glacial/periglacial features, as well as remnant landforms of past glaciation. Our findings reveal that glaciation at low latitudes is more widespread than previously thought, with ice-related remnants extending as far equatorward as 13°N in the northern hemisphere and 19°S in the southern hemisphere, highlighting a broader latitudinal range for ice-related landforms. These landforms span multiple episodes of Martian geological history, supporting the hypothesis on the occurrence of repeated glaciation and various high-obliquity events. Evidence of dynamic interactions between ice deposition and sublimation in low-latitude regions demonstrates substantial ice loss over time, leaving ice-related remnants that provide valuable insights into Mars’ climatic evolution. Based on volumetric estimates of the concentric crater fill (CCF), the low-latitude regions of Mars may contain up to 1.05 × 103 km3 of ice. This corresponds to a global equivalent ice layer thickness ranging from 21.7 mm (assuming a pore ice with 30% ice content) to 65.1 mm (assuming glacial ice with 90% ice content), suggesting a potentially greater low-latitude ice reservoir than previously recognized. Full article
(This article belongs to the Special Issue Planetary Geologic Mapping and Remote Sensing (Second Edition))
Show Figures

Figure 1

13 pages, 3526 KB  
Article
Development of a Sustainable Bone Regeneration Material Using Apatite Paste Derived from Eggshell Waste
by Masatsugu Hirota, Chihiro Mochizuki, Toshitsugu Sakurai, Hiroyuki Mishima, Chikahiro Ohkubo and Takatsugu Yamamoto
J. Funct. Biomater. 2025, 16(6), 201; https://doi.org/10.3390/jfb16060201 - 1 Jun 2025
Cited by 1 | Viewed by 1536
Abstract
Apatite pastes derived from eggshell waste (BAp) were implanted onto the calvarial bone of rats, and bone formation was evaluated using X-ray μ-computed tomography (CT) and histological evaluation. BAp was mixed with distilled water to prepare a paste. Monoclinic hydroxyapatite of mineral resources [...] Read more.
Apatite pastes derived from eggshell waste (BAp) were implanted onto the calvarial bone of rats, and bone formation was evaluated using X-ray μ-computed tomography (CT) and histological evaluation. BAp was mixed with distilled water to prepare a paste. Monoclinic hydroxyapatite of mineral resources (HAp) was used as a control. A 5 mm diameter PTFE (polytetrafluoroethylene) tube was filled with apatite pastes and implanted in the calvarial bone of 9-week-old Sprague Dawley rats for 8 weeks. A larger radiopaque area, similar to that of native bone, was observed in the BAp paste-implanted specimens than that of HAp paste. The bone mineral density (BMD) value of the BAp paste was significantly higher than that of the HAp paste (p < 0.05). In the histological evaluation, new bone formation was noticed from the calvarial side for both apatite specimens, and HAp remained in the PTFE unlike BAp. The bone mass (BM) value of the BAp paste was significantly higher than that of the HAp paste (p < 0.05). SEM and XRD analyses revealed that BAp was microcrystalline and poorly crystalline. The promotion of new bone formation may contribute to the crystallinity and Mg content of BAp. BAp was found to be useful as a bone regeneration material. Full article
(This article belongs to the Section Bone Biomaterials)
Show Figures

Graphical abstract

21 pages, 5770 KB  
Article
Numerical Simulation-Based Study on the Arching Effect in Subsequent Backfill
by Xuebin Xie and Wei Wang
Appl. Sci. 2025, 15(10), 5649; https://doi.org/10.3390/app15105649 - 19 May 2025
Cited by 1 | Viewed by 774
Abstract
To explore the influence of the arching effect on stress distribution in jointed backfill structures, this study employs three-dimensional numerical modeling to systematically analyze the mechanical behavior of backfill materials. A finite-difference approach was adopted to establish a representative stope model incorporating interface [...] Read more.
To explore the influence of the arching effect on stress distribution in jointed backfill structures, this study employs three-dimensional numerical modeling to systematically analyze the mechanical behavior of backfill materials. A finite-difference approach was adopted to establish a representative stope model incorporating interface elements to simulate rock–backfill interactions. The methodology involved parametric studies examining key material properties (internal friction angle, cohesion, elastic modulus, Poisson’s ratio) and geometric configurations, with boundary conditions derived from typical mining scenarios. The results demonstrate that stress distribution follows nonlinear relationships with all investigated parameters. Increasing the internal friction angle and the cohesion reduce internal stresses, though the arch effect exhibits a distinct upper limit. Mechanical properties significantly influence stress transfer characteristics, with the elastic modulus governing stiffness response and the Poisson’s ratio affecting lateral stress development. Geometric parameters control the spatial extent of arching, with larger dimensions modifying the stress redistribution pattern. This research quantitatively establishes the operational limits of arching in backfill structures, providing crucial thresholds to prevent stability risks from overestimating its benefits. The findings offer practical guidelines for optimizing backfill design in deep mining and paste filling applications, contributing both technical solutions for mine safety and fundamental insights for geomechanical theory. The developed methodology serves as a robust framework for future studies on complex backfill behavior under various loading conditions. Full article
Show Figures

Figure 1

37 pages, 12068 KB  
Review
Preparation of High-Belite Calcium Sulfoaluminate Cement and Calcium Sulfoaluminate Cement from Industrial Solid Waste: A Review
by Huaiqin Liu, Chengjian Liu, Jing Wu, Yanjiao Gao, Jianwen Shao, Chenxia Wang, Tian Su, Fubo Cao, Weishen Zhang, Qifan Yang and Yutong Li
Sustainability 2025, 17(10), 4269; https://doi.org/10.3390/su17104269 - 8 May 2025
Cited by 5 | Viewed by 2358
Abstract
To address the high carbon emissions and resource dependency associated with conventional ordinary Portland cement (OPC) production, this study systematically investigated the preparation processes, hydration mechanisms, and chemical properties of high-belite calcium sulfoaluminate (HBCSA) and calcium sulfoaluminate (CSA) cements based from industrial solid [...] Read more.
To address the high carbon emissions and resource dependency associated with conventional ordinary Portland cement (OPC) production, this study systematically investigated the preparation processes, hydration mechanisms, and chemical properties of high-belite calcium sulfoaluminate (HBCSA) and calcium sulfoaluminate (CSA) cements based from industrial solid wastes. The results demonstrate that substituting natural raw materials (e.g., limestone and gypsum) with industrial solid wastes—including fly ash, phosphogypsum, steel slag, and red mud—not only reduces raw material costs but also mitigates land occupation and pollution caused by waste accumulation. Under optimized calcination regimes, clinkers containing key mineral phases (C4A3S and C2S) were successfully synthesized. Hydration products, such as ettringite (AFt), aluminum hydroxide (AH3), and C-S-H gel, were identified, where AFt crystals form a three-dimensional framework through disordered growth, whereas AH3 and C-S-H fill the matrix to create a dense interfacial transition zone (ITZ), thereby increasing the mechanical strength. The incorporation of steel slag and granulated blast furnace slag was found to increase the setting time, with low reactivity contributing to reduced strength development in the hardened paste. In contrast, Solid-waste gypsum did not significantly differ from natural gypsum in stabilizing ettringite (AFt). Furthermore, this study clarified key roles of components in HBCSA/CSA systems; Fe2O3 serves as a flux but substitutes some Al2O3, reducing C4A3S content. CaSO4 retards hydration while stabilizing strength via sustained AFt formation. CaCO3 provides nucleation sites and CaO but risks AFt expansion, degrading strength. These insights enable optimized clinker designs balancing reactivity, stability, and strength. Full article
Show Figures

Figure 1

15 pages, 3438 KB  
Article
One-Part Alkali-Activated Wood Biomass Binders for Cemented Paste Backfill
by Kunlei Zhu, Haijun Wang, Lu Dong, Xulin Zhao, Junchao Jin, Yang Liu, Jianbo Liu and Dingchao Lv
Minerals 2025, 15(3), 273; https://doi.org/10.3390/min15030273 - 7 Mar 2025
Viewed by 1223
Abstract
This study developed a one-part alkali-activated slag/wood biomass fly ash (WBFA) binder (AAS) for preparing cemented paste backfill (CPB) as an alternative to traditional cement. Through multi-scale characterizations (XRD, FTIR, TGA, rheological testing, and MIP) and performance analyses, the regulation mechanisms of slag/WBFA [...] Read more.
This study developed a one-part alkali-activated slag/wood biomass fly ash (WBFA) binder (AAS) for preparing cemented paste backfill (CPB) as an alternative to traditional cement. Through multi-scale characterizations (XRD, FTIR, TGA, rheological testing, and MIP) and performance analyses, the regulation mechanisms of slag/WBFA ratios on hydration behavior, microstructure, and mechanical properties were systematically revealed. Results demonstrate that high slag proportions significantly enhance slurry rheology and mechanical strength, primarily through slag hydration generating dense gel networks of hydration products and promoting particle aggregation via reduced zeta potential. Although inert components in WBFA inhibit early hydration, the long-term reactivity of slag effectively counteracts these negative effects, achieving comparable 28-day compressive strength between slag/WBFA-based CPB (4.11 MPa) and cement-based CPB (4.16 MPa). Microstructural analyses indicate that the disordered gels in AAS systems exhibit silicon–oxygen bond polymerization degrees (950 cm−1) comparable to cement, while WBFA regulates Ca/Si ratios to induce bridging site formation (900 cm−1), significantly reducing porosity and enhancing structural compactness. This research provides theoretical support and process optimization strategies for developing low-cost, high-performance mine filling materials using industrial solid wastes, advancing sustainable green mining practices. Full article
Show Figures

Figure 1

15 pages, 9745 KB  
Article
Study on Preparation and Performance of Aerated Concrete Using Spodumene Mining Residue as Silicious Material
by Xiaoying Li, Qiang Zeng, Zhongtao Zhu, Jie Ren and Zhongyuan Lu
Materials 2025, 18(5), 957; https://doi.org/10.3390/ma18050957 - 21 Feb 2025
Cited by 1 | Viewed by 679
Abstract
In this research, the spodumene mining residue was used as siliceous material, completely replacing quartz sand, to prepare aerated concrete. The mechanical properties, pore structure, hydration characteristics of the aerated concrete, and the spodumene mining residue–cement paste interaction mechanism were studied by orthogonal [...] Read more.
In this research, the spodumene mining residue was used as siliceous material, completely replacing quartz sand, to prepare aerated concrete. The mechanical properties, pore structure, hydration characteristics of the aerated concrete, and the spodumene mining residue–cement paste interaction mechanism were studied by orthogonal experiment, X-ray diffraction, Fourier-Transform Infrared Spectroscopy, thermogravimetry, and mercury-injection test methods. The result showed that the water–cement ratio significantly affected the mechanical properties and dry density of the aerated concrete. The content of aluminum powder paste, spodumene mining residue, and water-cement ratio significantly affected the pore structure of aerated concrete. The pore size was mainly distributed in the range of less than 100 nm in hardened samples. The main hydration products of the aerated concrete containing spodumene mining residue were xonotlite, tobermolite, and C-S-H gel (or its derivatives). Spodumene mining residue had a small amount of active silicon and aluminum components, which could be motivated by an alkaline environment. In the simulation pore solution, the weak pozzolanic reaction was produced to generate C-S-H and its derivatives, which adhered to the surface of the spodumene mining-residue particle and filled in the interface between spodumene mining residue and cement paste, to improve the density of aerated concrete. Full article
(This article belongs to the Special Issue Research on Properties of Polymers and Their Engineering Applications)
Show Figures

Figure 1

Back to TopTop