Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (57)

Search Parameters:
Keywords = panicle water contents

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1473 KiB  
Article
Stimulation of Maize Growth and Development and Improvement of Soil Properties Using New Specialised Organic-Mineral Materials
by Marzena S. Brodowska, Mirosław Wyszkowski and Ryszard Grzesik
Molecules 2025, 30(14), 3050; https://doi.org/10.3390/molecules30143050 - 21 Jul 2025
Viewed by 224
Abstract
The use of mineral fertilisers has increased in recent years, but this has had a negative effect on the environment, including causing the water in rivers and lakes to become too rich in nutrients, a process known as eutrophication. Current research focuses on [...] Read more.
The use of mineral fertilisers has increased in recent years, but this has had a negative effect on the environment, including causing the water in rivers and lakes to become too rich in nutrients, a process known as eutrophication. Current research focuses on producing fertiliser materials that are environmentally friendly. The aim of this study was to examine the impact of novel specialised organic-mineral fertilisers (OMFs: NP 24-12, NP 10-10, and NP 10-10 Zn+) on the yield and chemical composition of maize. These fertilisers were compared with a control (no fertiliser) and with other fertilisers (mixture of commercial fertilisers (MCFs): NP 24-12 and NP 10-10) that were used as a reference. All fertilisers increased the SPAD index at the fifth leaf unfolded stage of maize, with the majority (apart from OMF NP 10-10) also increasing it at the panicle emergence stage. MCF NP 10-10 had the most positive effect on the plant height, while OMF NP 10-10 had the least positive effect. All fertilisers had a positive effect on maize growth and development, with MCFs NP 10-10 and NP 24-12 having by far the strongest effect on increasing crop yields. The yield of plants fertilised with OMFs NP 24-12, NP 10-10, and NP 10-10 Zn+ was lower than the yields of plants fertilised with MCF NP 24-12 and MCF NP 10-10. OMF NP 10-10 caused a greater increase in the contents of all elements, and OMF NP 24-12 caused a greater increase in most elements (except P and Ca) in maize than MCFs did at an identical NP ratio. OMF NP 10-10 Zn+ was found to have a significant impact on the mineral composition of maize, resulting in a decline in Ca and P levels, along with a notable increase in Mg, Zn, and Cu concentrations. The most significant differences were observed for Cu and Zn. The OMFs, notably NP 24-12 and NP 10-10, exhibited a comparatively diminished acidifying impact in comparison with the MCFs. The application of fertilisers resulted in a significant increase in soil nutrient levels, with most fertilisers increasing the soil N, P, and Zn contents. Additionally, the OMFs led to an increase in Cu. However, MCFs NP 24-12 and NP 10-10 reduced the soil Cu and Mn contents. Studies should include other species as they have different needs. Field experiments are also needed. Full article
(This article belongs to the Special Issue Applied Chemistry in Europe)
Show Figures

Figure 1

18 pages, 2947 KiB  
Article
Evaluation of the Comprehensive Effects of Biodegradable Mulch Films on the Soil Hydrothermal Flux, Root Architecture, and Yield of Drip-Irrigated Rice
by Zhiwen Song, Guodong Wang, Quanyou Hao, Xin Zhu, Qingyun Tang, Lei Zhao, Qifeng Wu and Yuxiang Li
Agronomy 2025, 15(6), 1292; https://doi.org/10.3390/agronomy15061292 - 25 May 2025
Viewed by 613
Abstract
Biodegradable mulch films not only provide similar field benefits to conventional mulch films but also degrade naturally, rendering them an effective alternative to traditional polyethylene mulch films for mitigating “white pollution”. However, recent studies have focused on the material selection and soil ecological [...] Read more.
Biodegradable mulch films not only provide similar field benefits to conventional mulch films but also degrade naturally, rendering them an effective alternative to traditional polyethylene mulch films for mitigating “white pollution”. However, recent studies have focused on the material selection and soil ecological impacts of biodegradable mulch films, while their effects on soil water temperature regulation and root architecture in drip-irrigated rice cultivation remain unclear. To address this research gap, in this study, various treatments including no mulch (NM), conventional plastic mulch (PM), and four types of biodegradable mulch films (BM-W1, BM-B1, BM-B2, and BM-B3) were established, and their effects on the soil hydrothermal flux, root architecture, biomass accumulation, and resource use efficiency of drip-irrigated rice were analyzed at different growth stages. The results indicated the following: (1) Compared with the NM treatment, film mulching increased the soil hydrothermal fluxes and water retention capacity, thereby promoting root growth and biomass accumulation, ultimately increasing the effective panicle number and grain yield. (2) Among the biodegradable film treatments, BM-B3 (with a degradation period of 105 days) maintained relatively higher soil temperature for a longer duration, which increased surface root distribution in the mid-to-late growth stages, further improving fine root growth and biomass accumulation, consequently enhancing both yield and water use efficiency. In contrast, BM-B1 and BM-B2 exhibited excessively rapid degradation rates, leading to significant fluctuations in soil moisture and temperature, thereby negatively affecting water supply and nutrient uptake and ultimately restricting root growth and development. (3) The entropy weight (EW) technique for order of preference by similarity to ideal solution (TOPSIS) model results revealed that although the PM treatment was more advantageous in terms of soil temperature, root dry weight, and soil moisture content, BM-B3 provided a slightly higher yield than the PM treatment did and offered the advantage of biodegradability, making it a preferred alternative to conventional mulch film. In summary, this study revealed the mechanism by which biodegradable mulch films enhanced biomass accumulation and yield formation in drip-irrigated rice production by optimizing soil hydrothermal dynamics and root architecture, thereby exploring their potential as replacements for conventional mulch films. These findings provide a theoretical basis for the efficient and sustainable production of drip-irrigated rice in arid regions. Full article
(This article belongs to the Special Issue Crop Management in Water-Limited Cropping Systems)
Show Figures

Figure 1

23 pages, 5648 KiB  
Article
The Effect of Two Irrigation Regimes on Yield and Water Use Efficiency of Rice Varieties in Eastern China
by Qinghao Meng, Wenjiang Jing, Nan Zhang, Rumeng Sun, Jia Yin, Ying Zhang, Junyao Shi, Feng He, Lijun Liu, Jianhua Zhang and Hao Zhang
Agronomy 2025, 15(4), 978; https://doi.org/10.3390/agronomy15040978 - 18 Apr 2025
Cited by 1 | Viewed by 781
Abstract
The way in which alternate wetting and drying irrigation (AWD), as a water-saving practice promoted in rice (Oryza sativa L.) production systems, could enhance the productivity and water use efficiency (WUE) attracts broad attention. This study selected six mid-season indica rice varieties [...] Read more.
The way in which alternate wetting and drying irrigation (AWD), as a water-saving practice promoted in rice (Oryza sativa L.) production systems, could enhance the productivity and water use efficiency (WUE) attracts broad attention. This study selected six mid-season indica rice varieties to investigate the impacts of AWD and conventional irrigation (CI) on grain yield, WUE, grain filling, and root traits. A two-year field experiment demonstrated that grain yields and WUE were significantly increased with varietal improvements. With the improvement of varieties, the maximum grain filling rate and mean grain filling rate for both apical superior and basal inferior spikelets were progressively enhanced during the grain filling stage. Compared to CI, AWD significantly enhanced grain yield and WUE. Flag leaf photosynthetic rate and root characteristics, including root weight, root length, root absorbing surface area, root oxidation activity, and zeatin (Z) + zeatin riboside (ZR) contents in panicles, roots, and root bleeding, were superior under AWD across early, mid, and late grain filling stages. Correlation and path analysis showed that improved grain filling in basal inferior spikelets was attributed to delayed root senescence during the grain filling stage under AWD. These results indicated that AWD would be a better irrigation regime to improve yield and WUE by optimizing grain filling and root growth for modern varieties. Full article
Show Figures

Figure 1

19 pages, 7901 KiB  
Article
Impact of Standing Water Level and Observation Time on Remote-Sensed Canopy Indices for Rice Nitrogen Status Monitoring
by Gonzalo Carracelas, John Hornbuckle and Carlos Ballester
Remote Sens. 2025, 17(6), 1045; https://doi.org/10.3390/rs17061045 - 16 Mar 2025
Cited by 1 | Viewed by 985
Abstract
The observation time and water background can affect the remote sensing estimates of the nitrogen (N) content in rice crops. This makes the use of vegetation indices (VIs) for N status monitoring and topdressing recommendations challenging, as the timing of panicle initiation and [...] Read more.
The observation time and water background can affect the remote sensing estimates of the nitrogen (N) content in rice crops. This makes the use of vegetation indices (VIs) for N status monitoring and topdressing recommendations challenging, as the timing of panicle initiation and the water level in bays usually differ between farms even when managed using the same irrigation technique. This study aimed to investigate the influence of standing water levels (from 0 to 20 cm) and the time of image acquisition on a set of N-sensitive VIs to identify those less affected by these factors. The experiment was conducted using a split-plot experimental design with two side-by-side bays (main plots) where rice was grown ponded for most of the growing season and aerobically (not permanently ponded), each with four fertilization N rates. The SCCCI and SCCCI2 were the only indices that did not vary depending on the time of the day when the multispectral images were collected. These indices showed the lowest variation among water layer treatments (5%), while the Clg index showed the highest (20%). All VIs were significantly correlated with N uptake (average R2 = 0.73). However, the SCCCI2 was the index that showed the lowest variation in N-uptake estimates resulting in equal N-fertilizer recommendations across water level treatments. The consistent performance of SCCCI2 across different water levels makes this index of interest for different irrigation strategies, including aerobic management, which is gaining increasing attention to improve the sustainability of the rice industry. Full article
Show Figures

Graphical abstract

15 pages, 2393 KiB  
Article
Effects of Irrigation Water Amount and Humic Acid on β-Glucan Synthesis in Post-Anthesis Grains of Naked Oats
by Chunxiang Sun, Qi Wang, Wen Sun, Junying Wu, Shihua Gao, Yandi Liu and Baoping Zhao
Life 2025, 15(3), 343; https://doi.org/10.3390/life15030343 - 21 Feb 2025
Viewed by 662
Abstract
Naked oats offer substantial nutritional and health benefits, primarily due to their main dietary fiber component, soluble β-(1,3)(1,4)-D-glucan (β-glucan). In a pool experiment, humic acid (HA) was applied once during both the booting and anthesis stages at varying irrigation amounts (60 mm, 120 [...] Read more.
Naked oats offer substantial nutritional and health benefits, primarily due to their main dietary fiber component, soluble β-(1,3)(1,4)-D-glucan (β-glucan). In a pool experiment, humic acid (HA) was applied once during both the booting and anthesis stages at varying irrigation amounts (60 mm, 120 mm, and 180 mm) to assess changes in β-glucan content in grains post-anthesis. Results indicated that at 5 days post-anthesis (DPA), the β-glucan content (3.14% W/W) in grains increased by 16%with the application of HA, compared to the control treatment of spraying an equal volume of water (p < 0.01). The β-glucan content (4.13%, 4.51%) at 15 and 25 DPA reflects increases of 9% and 5% compared to the control. Overall, the application of HA enhanced the β-glucan content in grains, with levels gradually increasing at 5, 15, and 25 DPA; however, the amplitude of the increase gradually declined over time. The β-glucan content in grains at 5 and 15 DPA, along with glucose content in panicles at 20 DPA, directly influenced the β-glucan content in grains at 25 DPA. At 10 DPA, the distribution of sucrose in the leaves and panicles influences the soluble sugar content, subsequently regulating the β-glucan content in the grains at 15 DPA. Specifically, the sucrose content in the leaves exerts a positive regulatory effect, whereas in the panicles exerts a negative regulatory effect. Full article
(This article belongs to the Special Issue Advances in Dryland Agriculture Science)
Show Figures

Figure 1

18 pages, 7504 KiB  
Article
Effects of Nitrogen Fertilizer Types and Planting Density on the Yield and Nitrogen Use Efficiency of Salt-Tolerant Rice Under Salt Stress Conditions
by Tingcheng Zhao, Jianbo Wang, Rongyi Li, Pengfei Zhang, Xiayu Guo, Yucheng Qi, Yusheng Li, Shenghai Cheng, Junchao Ji, Aibin He and Zhiyong Ai
Plants 2025, 14(4), 501; https://doi.org/10.3390/plants14040501 - 7 Feb 2025
Cited by 1 | Viewed by 1238
Abstract
Soil salinization poses a serious threat to global food security, as high Na+ contents in soils hinder nitrogen use efficiency (NUE), affecting the growth and yield of crop plants. The present study aims to explore the effects of different nitrogen fertilizer types [...] Read more.
Soil salinization poses a serious threat to global food security, as high Na+ contents in soils hinder nitrogen use efficiency (NUE), affecting the growth and yield of crop plants. The present study aims to explore the effects of different nitrogen fertilizer types viz., NO3 (N1) and NH4+ (N2) and planting densities, viz., D1: 30 × 10 cm, D2: 20 × 20 cm, and D3: 30 × 20 cm, on growth and development, nitrogen absorption and utilization, and yield formation. The salt-tolerant rice variety ‘Jingliangyou 3261’ was exposed to 0.3% salt irrigation water. Results revealed that N2 substantially improved the rice yield by increasing the number of effective panicles and the rate of grain-setting compared to N1. In addition, the N2 also increased leaf chlorophyll content, dry matter accumulation, antioxidant enzyme activity such as superoxide dismutase, peroxidase, and catalase activity and reduced the content of malondialdehyde. In comparison with N1, the N2 treatment resulted in an increase of 12.21%, 31.89%, and 37.53% in total nitrogen accumulation, nitrogen recovery efficiency (NRE), and nitrogen agronomic efficiency (NAE), respectively. This increase can be attributed to enhanced leaf nitrogen metabolic enzyme activity, including nitrate reductase and glutamine synthetase, and a more robust root system. Under N1 and N2 conditions, compared to D3, D1 resulted in an increase in the number of tillers but decreased the percentage of productive tillers, the grains per panicle, the grain-filling rate, and the thousand-grain weight, thereby reducing yield. Additionally, the D3 treatment also significantly improved NRE and NAE compared to the D1 treatment. Therefore, the rational selection of nitrogen fertilizer type (N2) and planting density (D3) is crucial for improving the yield and nitrogen use efficiency of salt-tolerant rice. This would broaden the scope of agricultural solutions for saline soils, potentially improving food security in regions where soil salinization is a widespread issue. Full article
Show Figures

Figure 1

17 pages, 2340 KiB  
Article
Agro-Physiological and Morphological Responses of Pearl Millet to Varying Water Regimes in Semi-Arid Conditions of Namibia
by Ofentse Moseki, Grace Kangueehi, Vasco Chiteculo, Matthias Zink and Maliata Athon Wanga
Agronomy 2025, 15(2), 381; https://doi.org/10.3390/agronomy15020381 - 31 Jan 2025
Viewed by 1051
Abstract
Pearl millet (Pennisetum glaucum (L.) R. BR.) is a C4 plant adapted to semi-arid climates and is one of the primary staple foods in Sub-Saharan Africa, including in Namibia. The decline in yields associated with water scarcity over the years has been [...] Read more.
Pearl millet (Pennisetum glaucum (L.) R. BR.) is a C4 plant adapted to semi-arid climates and is one of the primary staple foods in Sub-Saharan Africa, including in Namibia. The decline in yields associated with water scarcity over the years has been a national concern in the country. An experimental field trial was conducted at the Mannheim Crop Research Station, Namibia, during the 2023 and 2024 cropping seasons to investigate the response of two local pearl millet cultivars (Kangara and Okashana 2) to different water regimes (100%, 75%, and 50% crop evapotranspiration [ETc]) according to morpho-physiological and yield parameters. Pearl millet was planted in a split-plot factorial design with four rows per plot under the three water regimes, and the genotypes were planted in subplots. The results revealed that the water regime had a significant effect on plant height, number of leaves, tillers, chlorophyll content, stomatal conductance, leaf temperature, stem thickness, number of productive tillers, panicle diameter, panicle length, dry panicle weight, biomass, grain weight, and 1000-seed weight of the two pearl millet cultivars (p < 0.001). At 50% ETc, the water regime significantly reduced the growth and yield parameters compared with the 75% ETc and 100% ETc water regimes, highlighting the significance of water in plant development and growth. The findings highlighted that both cultivars responded similarly to water stress. Seventy-five percent of ETc is recommended to be applied in pearl millet systems in semi-arid conditions. This research has significant implications for the planning and producing of pearl millet under water-limited environments under changing climatic conditions. Full article
(This article belongs to the Section Water Use and Irrigation)
Show Figures

Figure 1

13 pages, 2540 KiB  
Article
Exogenous Application of Lanthanum Chloride to Rice at Booting Stage Can Increase Chlorophyll Content, Modulate Chlorophyll Fluorescence and Promote Grain Yield Under Deficit Irrigation
by Peng Liu, Xilin Fang, Yue Wang, Xin Yang and Qiang Li
Agronomy 2025, 15(1), 32; https://doi.org/10.3390/agronomy15010032 - 26 Dec 2024
Cited by 1 | Viewed by 1106
Abstract
To sustain agricultural productivity and safeguard global food security, and confront the escalating challenges posed by climate change and water scarcity, it is essential to enhance the growth and productivity of rice under water stress. This study investigated the effects of lanthanum chloride [...] Read more.
To sustain agricultural productivity and safeguard global food security, and confront the escalating challenges posed by climate change and water scarcity, it is essential to enhance the growth and productivity of rice under water stress. This study investigated the effects of lanthanum chloride on the chlorophyll fluorescence characteristics and grain yield of rice under different irrigation modes. The rice cultivar H You 518 was selected and sprayed 20, 100, or 200 mg·L−1 lanthanum chloride at the booting and heading stages under deficit irrigation (where no rewatering was applied after the initiation of stress, allowing the water layer to evaporate naturally under high temperatures) or conventional irrigation (with daily rewatering to maintain a consistent water level). The results showed that the application of low concentrations lanthanum chloride promoted the chlorophyll content, whereas high concentrations decreased the chlorophyll content, under deficit irrigation, the effect of lanthanum chloride on the green fluorescence parameters of rice leaves at the booting stage was greater than that at the heading stage, and the booting stage was more sensitive to water deficit. The application of 100 mg·L−1 lanthanum chloride reduced the initial fluorescence (F0) and the non-photochemical quenching coefficient (qN); promoted the activity of leaf photosynthetic system II (PSII); and maximized the photochemical quantum yield (Fv/Fm), photochemical quenching coefficient (qP), and PSII relative electron transfer efficiency (ETR). Under deficit irrigation, this treatment significantly enhanced grain yield by increasing the thousand-grain weight, spikelet filling rate, and number of grains per panicle. These results suggest that spraying 100 mg·L−1 lanthanum chloride at the booting stage under deficit irrigation can effectively increase the chlorophyll content, thereby increasing the light energy conversion efficiency of the PS II reaction center, ultimately resulting in increased spikelet filling rate and grain yields. Full article
Show Figures

Figure 1

16 pages, 5693 KiB  
Article
Potential Effects on the Quinoa Cultivation Yield Based on Different Hydric Scenarios of the Chilean Altiplano
by Matías Sánchez-Monje and Jorge Olave
Horticulturae 2024, 10(12), 1378; https://doi.org/10.3390/horticulturae10121378 - 22 Dec 2024
Viewed by 908
Abstract
This study evaluates the impact of different irrigation scenarios on the yield of quinoa (Chenopodium quinoa) in the Chilean Altiplano. The research was conducted in Ancovinto, Tarapacá, Chile, using “Pandela” quinoa seeds. Four irrigation treatments were implemented: rainfed (T0) and irrigation at 100% [...] Read more.
This study evaluates the impact of different irrigation scenarios on the yield of quinoa (Chenopodium quinoa) in the Chilean Altiplano. The research was conducted in Ancovinto, Tarapacá, Chile, using “Pandela” quinoa seeds. Four irrigation treatments were implemented: rainfed (T0) and irrigation at 100% ETc (T1), 66% ETc (T2), and 33% ETc (T3). Various climatic variables, the soil moisture content, and agromorphological parameters were measured. The results indicated that rainfed conditions (T0) led to higher dry matter production in roots, stems, leaves, and panicles at the end of the growth cycle compared to irrigated treatments. The Leaf Area Index (LAI) was also higher in rainfed conditions during the flowering stage, demonstrating the crop’s adaptability to adverse water conditions. Additionally, the ability of quinoa plants under rainfed conditions to tolerate frost during critical growth stages was a key factor in their superior performance, contributing to a higher grain yield and harvest indices. Plants under rainfed conditions reached greater heights and showed higher harvest indices (HI) and grain yield than those under irrigation. The Water Use Efficiency (WUE) was significantly higher in rainfed conditions, suggesting more effective water utilization under water scarcity. This research represents a one-year study that provides orientations for future research, considering the interannual variability of precipitation in the region. The results obtained show that quinoa plants under traditional management (rainfed) exhibited the best response in the measured growth, development, and production variables, leading to higher production and harvest rates. Additionally, there was greater efficiency in water use, equivalent to 15.87 and 12.7 times that of the 100% and 33% ETc treatments, respectively. These findings highlight quinoa’s remarkable adaptability to harsh hydric conditions and the efficiency of traditional rainfed farming practices in the Altiplano. Full article
(This article belongs to the Section Protected Culture)
Show Figures

Figure 1

17 pages, 2826 KiB  
Article
Effects of Drought Stress at the Booting Stage on Leaf Physiological Characteristics and Yield of Rice
by Xiaolong Yang, Xiuxiu Wang, Yang Li, Lantian Yang, Long Hu, Yuling Han and Benfu Wang
Plants 2024, 13(24), 3464; https://doi.org/10.3390/plants13243464 - 11 Dec 2024
Cited by 2 | Viewed by 1473
Abstract
Drought stress is a major environmental constraint that limits rice (Oryza sativa L.) production worldwide. In this study, we investigated the effects of drought stress at the booting stage on rice leaf physiological characteristics and yield. The results showed that drought stress [...] Read more.
Drought stress is a major environmental constraint that limits rice (Oryza sativa L.) production worldwide. In this study, we investigated the effects of drought stress at the booting stage on rice leaf physiological characteristics and yield. The results showed that drought stress would lead to a significant decrease in chlorophyll content and photosynthesis in rice leaves, which would affect rice yield. Three different rice varieties were used in this study, namely Hanyou73 (HY73), Huanghuazhan (HHZ), and IRAT109. Under drought stress, the chlorophyll content of all cultivars decreased significantly: 11.1% and 32.2% decreases in chlorophyll a and chlorophyll b in HHZ cultivars, 14.1% and 28.5% decreases in IRAT109 cultivars, and 22.9% and 18.6% decreases in HY73 cultivars, respectively. In addition, drought stress also led to a significant decrease in leaf water potential, a significant increase in antioxidant enzyme activity, and an increase in malondialdehyde (MDA) content, suggesting that rice activated a defense mechanism to cope with drought-induced oxidative stress. This study also found that drought stress significantly reduced the net photosynthetic rate and stomatal conductance of rice, which, in turn, affected the yield of rice. Under drought stress, the yield of the HHZ cultivars decreased most significantly, reaching 30.2%, while the yields of IRAT109 and HY73 cultivars decreased by 13.0% and 18.2%, respectively. The analysis of yield composition showed that the number of grains per panicle, seed-setting rate, and 1000-grain weight were the key factors affecting yield formation. A correlation analysis showed that there was a significant positive correlation between yield and net photosynthetic rate, stomatal conductance, chla/chlb ratio, Rubisco activity, and Fv/Fm, but there was a negative correlation with MDA and non-photochemical quenching (NPQ). In summary, the effects of drought stress on rice yield are multifaceted, involving changes in multiple agronomic traits. The results highlight the importance of selecting and nurturing rice varieties with a high drought tolerance, which should have efficient antioxidant systems and high photosynthetic efficiency. Future research should focus on the genetic mechanisms of these physiological responses in order to develop molecular markers to assist in the breeding of drought-tolerant rice varieties. Full article
(This article belongs to the Special Issue Cell Physiology and Stress Adaptation of Crops)
Show Figures

Figure 1

15 pages, 1097 KiB  
Communication
The Formation of Rice Tillers and Factors Influencing It
by Rong Yuan, Yuxin Mao, Dehai Zhang, Shun Wang, Huina Zhang, Meng Wu, Miao Ye and Zujian Zhang
Agronomy 2024, 14(12), 2904; https://doi.org/10.3390/agronomy14122904 - 5 Dec 2024
Cited by 4 | Viewed by 4893
Abstract
The number of effective rice tillers determines the number of effective panicles and then affects the final yield. Rice tillering ability shows great differences among cultivars and under different environmental conditions, but the underlying mechanisms are not clear. The present paper investigated the [...] Read more.
The number of effective rice tillers determines the number of effective panicles and then affects the final yield. Rice tillering ability shows great differences among cultivars and under different environmental conditions, but the underlying mechanisms are not clear. The present paper investigated the formation of rice tillers and examined its genetic regulation, the effects of plant hormones, several environmental factors affecting rice tillering, and nitrogen’s regulation of tillers. Finally, the utilization of the tillering ability of weedy and wild rice was investigated. We concluded that many genes are involved in manipulating rice tillering, including MOC1, MOC3, FON1, LAX1, LAX2, APC/CTE, D3, D10, D14, D17, D27, and D53, by altering associated hormone contents or coding signal substances. The plant hormones auxin (IAA), gibberellin (GA), and strigolactone (SL) inhibit rice tillering, while cytokinin (CTK) promotes rice tillering. Weak light (light intensity is lower than 200 μmol m−2 s−1) and low and high temperatures (below 15 °C and above 38 °C) inhibit rice tillering, while optimized water management, such as alternate wetting and moderate drying irrigation, can greatly promote rice tillering. In addition, increasing plant nitrogen concentration can effectively improve rice tillers by adjusting multiple nitrogen metabolism enzymes. Weedy rice and some wild rice showed obvious superiority in tillering ability with respect to cultivated rice, but the underlying mechanisms are not clear and should be further explored. This study can provide theoretical guidance for the breeding and cultivation of high-yield and high-efficiency rice cultivars. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

28 pages, 5123 KiB  
Article
Enhancing the Photosynthetic and Yield Performance of Rice in Saline Soil by Foliar-Applying Cost-Effective Compounds as Sources of Carbon Dioxide and Potassium
by Bassiouni A. Zayed, Salah El-Hendawy, Yuncai Hu, Amira M. Okasha, Mohamed M. Abdelhamed, Hasnaa A. Ghazy, Samah M. Aamer, Dalia E. El-Sharnobi, Saied A. Soltan, Abdelfatah A. Gaber and Salah Elsayed
Agronomy 2024, 14(12), 2850; https://doi.org/10.3390/agronomy14122850 - 28 Nov 2024
Cited by 3 | Viewed by 1104
Abstract
Although rice is highly sensitive to salinity, it is considered one of the best crops to grow in salt-affected mudflat soils to alleviate the salinity problem. Applying chemical compounds for an increase in leaf CO2 and nutrient levels can help mitigate the [...] Read more.
Although rice is highly sensitive to salinity, it is considered one of the best crops to grow in salt-affected mudflat soils to alleviate the salinity problem. Applying chemical compounds for an increase in leaf CO2 and nutrient levels can help mitigate the negative impact of salinity on plants in a cost-effective manner. To identify the benefits of using lithovit (Liv), ethanol (Eth), and potassium carbonate (KC) as a source of CO2 and K to enhance rice production in salt-affected soils, a field study was conducted to assess the effects of these compounds on the agro-physiological parameters of two rice genotypes (Giza178 and Giza179) in saline soils. The compounds were applied as a foliar spray at a concentration of 30 mM each before and after the heading growth stage. The results indicated that the genotype, application time, compounds, and their potential two-way interactions significantly influenced all agro-physiological parameters, with only a few exceptions. The genotype Giza 179 exhibited higher pigment contents, photosynthetic capacity, relative water content (RWC), grain yield, and most yield components compared to Giza 178, with increases ranging from 2.1% to 37.9%. Foliar application of different compounds resulted in a 9.7–37.9% increase in various parameters and a 34.6–43.2% decrease in the number of unfilled grains (NUFG) per panicle compared to untreated treatment. Foliar application of different compounds before heading resulted in an increase in various parameters by 4.8–16.1% and a decrease in the NUFG per panicle by 22.9% compared to those applied after heading. Heatmap clustering analysis revealed that foliar application of Liv before heading was the most effective treatment in enhancing various parameters for both genotypes and mitigating the negative effects of salinity stress on the NUFG. This was followed by Eth and KC before heading for Giza 179. Applying Eth and KC to the leaves after heading had a moderate positive impact on most parameters for Giza 179, outperforming the application after heading for Giza 178. Overall, our findings indicate that spraying readily available compounds that elevate CO2 and K levels in rice leaves can help alleviate the negative impacts of salt stress and improve rice production in salt-affected soils in a cost-effective manner. Full article
Show Figures

Figure 1

17 pages, 732 KiB  
Article
Integrating Nitrogen, Water, and Other Management Practices to Improve Grain and Ratoon Forage Yields in Perennial Rice
by Fuxian Xu, Dingbing Wang, Xingbing Zhou, Lin Zhang, Xiaoyi Guo, Mao Liu, Yongchuan Zhu, Hong Xiong, Changchun Guo and Peng Jiang
Plants 2024, 13(22), 3157; https://doi.org/10.3390/plants13223157 - 10 Nov 2024
Cited by 1 | Viewed by 1235
Abstract
Perennial rice has recently garnered global attention due to its potential to save on seeds and labor costs and its high production efficiency. The “mid-season rice–ratoon forage” mode is a new planting system that has emerged in recent years. However, detailed information is [...] Read more.
Perennial rice has recently garnered global attention due to its potential to save on seeds and labor costs and its high production efficiency. The “mid-season rice–ratoon forage” mode is a new planting system that has emerged in recent years. However, detailed information is still lacking on the regenerative characteristics, grain and ratoon forage yields, and forage nutrient content of perennial rice under different planting densities, nitrogen (N) rates, stubble heights, and water management practices. Four experiments with perennial rice were conducted in Sichuan Province, Southwest China, from 2017 to 2022. The results show that the rice grain and ratoon forage yields were significantly affected by year, planting density, and N. The grain yield was 28.18% and 60.81% lower in 2018F and 2019F, respectively, than in 2017F; similarly, the ratoon forage yield was 29.01% and 52.74% lower in 2018S and 2019S, respectively, than in 2017S. The low grain yield was mainly associated with lower numbers of spikelets per panicle and panicles per m2, which resulted from a lower regrowth rate, and the low ratoon forage yield was mainly attributed to the lower regrowth rate. The rice grain and ratoon forage yields increased with an increase in the N rate and planting density. The ratoon forage was found to be rich in crude protein, crude fat, crude fiber, calcium, nitrogen, phosphorus, potassium, and other nutrients. Moreover, the content of these nutrients increased significantly with an increase in the N rate. The regrowth rate and maximum tillers showed trends of first increasing and then decreasing with an increase in the stubble height under dry and wet alternation irrigation during the winter season. When the relative soil moisture decreased to below 80% during the winter season, the regrowth rate and seedling development index could reach more than 99% and 84%, respectively. Our results suggest that integrating N, water, and other management practices (including the combination of a 150 kg ha−1 N rate, 18.0 hills per m2, 10–20 cm rice stubble height, and alternating dry and wet irrigation during the winter season) is a feasible approach for achieving high grain and ratoon forage yields in perennial rice systems. Full article
(This article belongs to the Special Issue Physiology and Molecular Ecology of Ratoon Rice)
Show Figures

Figure 1

21 pages, 4515 KiB  
Article
Augmenting Rice Defenses: Exogenous Calcium Elevates GABA Levels Against WBPH Infestation
by Rahmatullah Jan, Sajjad Asaf, Lubna, Muhammad Farooq, Saleem Asif, Zakirullah Khan, Jae-Ryoung Park, Eun-Gyeong Kim, Yoon-Hee Jang and Kyung-Min Kim
Antioxidants 2024, 13(11), 1321; https://doi.org/10.3390/antiox13111321 - 30 Oct 2024
Cited by 1 | Viewed by 1297
Abstract
This study investigates the impact of exogenous calcium and gamma-aminobutyric acid (GABA) supplementation on rice growth and stress tolerance under white-backed planthopper (WBPH) infestation. We evaluated several phenotypic traits, including shoot/root length, leaf width, tiller number, panicle length, and relative water content, alongside [...] Read more.
This study investigates the impact of exogenous calcium and gamma-aminobutyric acid (GABA) supplementation on rice growth and stress tolerance under white-backed planthopper (WBPH) infestation. We evaluated several phenotypic traits, including shoot/root length, leaf width, tiller number, panicle length, and relative water content, alongside physiological markers such as oxidative stress indicators, antioxidant enzymes activities, hormonal levels, and amino acids biosynthesis. Our results indicate that WBPH stress significantly reduces growth parameters but calcium and GABA supplementation markedly enhance shoot length (by 26% and 36%) and root length (by 38% and 64%), respectively, compared to WBPH-infested plants. Both supplementations also reduced oxidative stress, as evidenced by decreased H2O2 and O2•− levels and a lower electrolyte leakage. Notably, calcium and GABA treatments increased antioxidant enzyme activities, with GABA boosting catalase (CAT) activity by 800%, peroxidase (POD) by 144%, and superoxide dismutase (SOD) by 62% under WBPH stress. Additionally, calcium and GABA enhanced the accumulation of stress hormones (abscisic acid ABA) and salicylic acid (SA) and promoted stomatal closure, contributing to improved water conservation. This study reveals that calcium regulates the GABA shunt pathway, significantly increasing GABA and succinate levels in both root and shoot. Furthermore, calcium and GABA supplementation enhance the biosynthesis of key amino acids and improve ion homeostasis, particularly elevating calcium (Ca), iron (Fe), and magnesium (Mg) levels under WBPH stress. Overall, this study highlights the potential of exogenous calcium and GABA as effective strategies for enhancing rice plant tolerance to WBPH infestation by modulating various physiological and biochemical mechanisms. Further research is warranted to fully elucidate the underlying mechanisms of action. Full article
Show Figures

Figure 1

15 pages, 2284 KiB  
Article
Application of Silica Nanoparticles Improved the Growth, Yield, and Grain Quality of Two Salt-Tolerant Rice Varieties under Saline Irrigation
by Wenyu Jin, Lin Li, Wenli He and Zhongwei Wei
Plants 2024, 13(17), 2452; https://doi.org/10.3390/plants13172452 - 2 Sep 2024
Cited by 12 | Viewed by 2057
Abstract
Salt stress significantly reduces rice yield and quality and is a global challenge, especially in arid and semi-arid regions with limited freshwater resources. The present study was therefore conducted to examine the potential of silica nanoparticles (SiO2 NPs) in mitigating the adverse [...] Read more.
Salt stress significantly reduces rice yield and quality and is a global challenge, especially in arid and semi-arid regions with limited freshwater resources. The present study was therefore conducted to examine the potential of silica nanoparticles (SiO2 NPs) in mitigating the adverse effects of saline irrigation water in salt-tolerant rice. Two salt-tolerant rice varieties, i.e., Y liangyou 957 (YLY957) and Jingliangyou 534 (JLY534), were irrigated with 0.6% salt solution to simulate high-salt stress and two SiO2 NPs were applied, i.e., control (CK) and SiO2 NPs (15 kg hm−2). The results demonstrated that the application of SiO2 NPs increased, by 33.3% and 23.3%, the yield of YLY957 and JLY534, respectively, compared with CK, which was primarily attributed to an increase in the number of grains per panicle and the grain-filling rate. Furthermore, the application of SiO2 NPs resulted in a notable enhancement in the chlorophyll content, leaf area index, and dry matter accumulation, accompanied by a pronounced stimulation of root system growth and development. Additionally, the SiO2 NPs also improved the antioxidant enzyme activities, i.e., superoxide dismutase, peroxidase, and catalase activity and reduced the malondialdehyde content. The SiO2 NPs treatment effectively improved the processing quality, appearance quality, and taste quality of the rice. Furthermore, the SiO2 NPs resulted in improvements to the rapid viscosity analyzer (RVA) pasting profile, including an increase in peak viscosity and breakdown values and a reduction in setback viscosity. The application of SiO2 NPs also resulted in a reduction in crystallinity and pasting temperature owing to a reduction in the proportion of B2 + B3 amylopectin chains. Overall, the application of silica nanoparticles improved the quality of rice yield under high-salt stress. Full article
(This article belongs to the Special Issue Nanomaterials on Plant Growth and Stress Adaptation)
Show Figures

Graphical abstract

Back to TopTop