Integrating Nitrogen, Water, and Other Management Practices to Improve Grain and Ratoon Forage Yields in Perennial Rice
Abstract
:1. Introduction
2. Results
2.1. Growth Duration of Perennial Rice
2.2. Grain Yield and Yield Components of Perennial Rice
2.3. Forage Yield and Nutrient Composition of Overwintered Rice
2.4. Effect of Stubble Height and Water Management on Overwintering Seedling Development
2.5. Effect of Soil Moisture Content on Overwintering Seedling Development and Uniformity
2.6. Integrated Technique for Perennial Rice in Field Demonstration
3. Discussion
3.1. Production Problems and Crop Management Countermeasures for Perennial Rice
3.2. Suitable Areas for the “Mid-Season Rice–Ratoon Forage” Planting Mode in the Perennial Rice System
3.3. Issues to Be Addressed by Future In-Depth Studies
4. Materials and Methods
4.1. Experimental Design and Performance
4.1.1. Experiment 1: Effect of Planting Density and N Rate on Grain Yield of Perennial Rice
4.1.2. Experiment 2: Effect of Stubble Height and Water Management on Overwintering Seedling Development of Perennial Rice
4.1.3. Experiment 3: Effect of Soil Moisture Content on Overwintering Seedling
Development and Uniformity
4.1.4. Experiment 4: Integrated Technique for Perennial Rice in Field Demonstration
- The overwintering whole seedling technique (OWST): Rice stubble was left at a height of 10–12 cm; water management began with natural drainage for 90 days starting on 1 November 2021, and shallow water (about 4 cm) was then applied after 1 February 2022.
- Overwintering local technology (CK1): Rice stubble was maintained at a height of 30–33 cm; water management involved maintaining a shallow level (3–4 cm) from 20 October 2021 to July 2022, following harvesting of the rice plants.
- The traditional technique (CK2): Pre-germinated seeds were sown on 5 March 2022, and thirty-day-old seedlings were transplanted at a spacing of 30 cm × 20 cm, with five seedlings per hill, on 17 April 2022.
4.2. Measurements
4.2.1. Growth Duration and Regrowth Tiller Development and Growth
4.2.2. Grain Yield and Yield Components
4.2.3. Regenerated Forage Yield and Its Nutrients
4.3. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, S.L.; Huang, G.F.; Zhang, Y.J.; Lv, X.T.; Wan, K.J.; Liang, J.; Feng, Y.P.; Dao, J.R.; Wu, S.K.; Zhang, L.; et al. Sustained productivity and agronomic potential of perennial rice. Nat. Sustain. 2022, 6, 28–38. [Google Scholar] [CrossRef]
- Guo, C.; Lin, W.; Gao, W.; Lan, C.; Xu, H.; Zou, J.; Fallah, N.; Wang, W.; Lin, W.F.; Chen, T.; et al. Physiological properties of perennial rice regenerating cultivation in two years with four harvests. Plants 2023, 12, 3910. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.F.; Qin, S.W.; Zhang, S.L.; Cai, X.L.; Wu, S.K.; Dao, J.R.; Zhang, J.; Huang, L.Y.; Harnpichitvitaya, D.; Wade, L.J.; et al. Performance, economics and potential impact of perennial rice PR23 relative to annual rice cultivars at multiple locations in Yunnan Province of China. Sustainability 2018, 10, 1086. [Google Scholar] [CrossRef]
- Batello, C.; Wade, L.J.; Cox, T.S.; Pogna, N.; Bozzini, A.; Chopianty, J. Perennial crops for food security. In Proceedings of the Experts Workshop, Rome, Italy, 28–30 August 2013; FAO: Rome, Italy, 2014; p. 390. [Google Scholar]
- Yan, F. Research status and prospects of overwintering rice. Crop Res. 2012, 26, 79–84. [Google Scholar]
- Glover, J.D.; Reganold, J.P. Perennial grains food security for the future. Issues Sci. Technol. 2010, 26, 41–47. [Google Scholar]
- Parker, L.E.; Abatzoglou, J.T. Projected changes in cold hardiness zones and suitable overwinter ranges of perennial crops over the United States. Environ. Res. Lett. 2016, 11, 034001. [Google Scholar] [CrossRef]
- Shen, K.; Qiu, J.X.; Xia, C.P.; Cao, D.M.; Yu, B.G. A study of the new production system for the asexual stock of hybrid japonica Rice. J. Nanjing Agric. Coll. 1980, 1, 13–25. [Google Scholar]
- Li, Q.X.; Zeng, X.P. Advance and prospect of breeding for perennial rice. Explor. Nat. 1997, 16, 38–41. [Google Scholar]
- Liu, C.G.; Wu, S.Z.; Ma, Z.L.; Wang, X.M.; Yang, X.B. Overwintering characteristic and application prospects of ratooning rice D. S89-1. China Rice 1997, 1, 13–15. [Google Scholar]
- Miu, G.M.; Shen, P.Q.; Xu, D.F. Sucessful cultivation of natural regnerating overwintering rice. Shanghai Agric. Sci. 2001, 3, 80–81. [Google Scholar]
- Chen, D.Z.; Xiao, Y.Q.; Pi, Y.H.; Wu, W.C.; Hu, L.X.; Luo, S.Y.; Wu, X.Y. Breeding japonica rice varieties overwinter of “Dongwild 1”. Crop Res. 2007, 21, 254. [Google Scholar]
- Li, X.B.; Huang, G.F.; Shi, J.F.; Wang, C.R.; Zhang, Y.J.; Cheng, M.; Hu, J.; Zhang, S.L.; Hu, F.Y. Yield potential analysis of perennial rice Yunda107. China Rice 2020, 26, 35–39. [Google Scholar]
- Zhao, Z.W.; Wang, S.M.; Li, S.P.; Yan, M.J.; Lei, S.F.; Lu, Z.W.; Yuan, X.C.; Ran, Y.X. A preliminary study on the overwintering glutinous rice 89-1. Hybrid Rice 2000, 16, 3–4. [Google Scholar]
- Chen, D.Z.; Deng, R.G.; Xiao, Y.Q.; Zhao, S.X.; Pi, Y.H. Utilization and prospect of the cold-resistance gene of Dongxiang wild rice. Acta Agric. Jiangxi 1998, 10, 65–68. [Google Scholar]
- Chen, D.Z.; Xiao, Y.Q.; Pi, Y.H.; Wu, W.C.; Hu, L.X.; Luo, S.Y.; Xie, J.S. The improvement of cold tolerance in japonica rice. Acta Agric. Univ. Jiangxi 2003, 25, 8–11. [Google Scholar]
- Zhao, Z.W.; Li, S.G.; Lei, S.F. Genetic analysis on overwintering character of glutinous rice 89-1. Sci. Agric. Sin. 2006, 39, 2399–2405. [Google Scholar] [CrossRef]
- Yan, C.; Zheng, J.; Duan, W.J.; Nan, W.B.; Qin, X.J.; Zhang, H.M.; Liang, Y.S. Locating QTL controlling yield traits in overwintering cultivated rice. Acta Agron. Sin. 2019, 45, 522–537. [Google Scholar] [CrossRef]
- Pimentel, D.; Cerasale, D.; Stanley, R.C.; Perlman, R.; Newman, E.M.; Brent, L.C.; Mullan, A.; Chang, D.T. Annual vs. perennial grain production. Agric. Ecosyst. Environ. 2012, 161, 1–9. [Google Scholar] [CrossRef]
- Fan, Z.Q.; Wang, K.; Rao, J.L.; Cai, Z.Q.; Tao, L.Z.; Fan, Y.R.; Yang, J.Y. Interactions among multiple quantitative trait loci underlie rhizome development of perennial rice. Front. Plant Sci. 2020, 11, 591157. [Google Scholar] [CrossRef]
- Liu, C.G.; Wu, S.Z.; Wang, X.M.; Yang, X.B. Preliminary study on overwintering mechanism of ratoon rice. Crop Res. 1999, 13, 12–13. [Google Scholar]
- Jiang, P.; Xie, X.B.; Huang, M.; Zhou, X.F.; Zhang, R.C.; Chen, J.N.; Wu, D.D.; Xia, B.; Xiong, H.; Xu, F.X.; et al. Potential yield increase of hybrid rice at five locations in southern China. Rice 2016, 9, 11. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.L.; Hu, J.; Yang, C.D.; Liu, H.T.; Yang, F.; Zhou, J.H.; Samson, B.K.; Boualaphanh, C.; Huang, L.Y.; Huang, G.F.; et al. Genotype by environment interactions for grain yield of perennial rice derivatives (Oryza sativa L./Oryza longistaminata) in southern China and Laos. Field Crops Res. 2017, 207, 62–70. [Google Scholar] [CrossRef]
- Zhang, S.L.; Huang, G.F.; Zhang, J.; Huang, L.Y.; Cheng, M.; Wang, Z.L.; Zhang, Y.N.; Wang, C.L.; Zhu, P.F.; Yu, X.L.; et al. Genotype by environment interactions for performance of perennial rice genotypes (Oryza sativa L./Oryza longistaminata) relative to annual rice genotypes over regrowth cycles and locations in southern China. Field Crops Res. 2019, 241, 107556. [Google Scholar] [CrossRef]
- Samson, B.K.; Voradeth, S.; Zhang, S.; Jackson, T.; Wade, L.J. Performance and survival of perennial rice derivatives (Oryza sativa L./Oryza longistaminata) in Lao PDR. Exp. Agric. 2018, 54, 592–603. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Huang, G.F.; Zhang, S.L.; Zhang, J.; Gan, S.X.; Cheng, M.; Hu, J.; Huang, L.Y.; Hu, F.Y. An innovated crop management scheme for perennial rice cropping system and its impacts on sustainable rice production. Eur. J. Agron. 2021, 122, 126186. [Google Scholar] [CrossRef]
- Ye, Y.S.; Liang, X.Q.; Chen, Y.G.; Liu, J.; Gu, J.T.; Guo, R.; Li, L. Alternate wetting and drying irrigation and controlled-release nitrogen fertilizer in late-season rice. Effects on dry matter accumulation, yield, water and nitrogen use. Field Crops Res. 2013, 144, 212–224. [Google Scholar] [CrossRef]
- Jayakumar, B.; Subathra, C.; Velu, V.; Ramanathan, S. Effect of integrated crop management practices on rice (Oryza sativa L.) volume and rhizosphere redox potential. J. Agron. 2005, 40, 311–314. [Google Scholar] [CrossRef]
- Zhang, H.; Xue, Y.G.; Wang, Z.Q.; Yang, J.C.; Zhang, J.H. An alternate wetting and moderate soil drying regime improves root and shoot growth in rice. Crop Sci. 2009, 49, 2246–2260. [Google Scholar] [CrossRef]
- Xu, F.X.; Zhang, L.; Zhou, X.B.; Guo, X.Y.; Zhu, Y.C.; Liu, M.; Xiong, H.; Jiang, P. The ratoon rice system with high yield and high efficiency in China: Progress, trend of theory and technology. Field Crops Res. 2021, 272, 10828. [Google Scholar] [CrossRef]
- Zhao, Y.Z.; Jiang, Z.W.; Li, X.P.; Li, Y.Z. Morphological diagnosis of tiller pollen development process of ratoon rice. Fujian Sci. Technol. Rice Wheat 2012, 30, 21–23. [Google Scholar]
- Harrell, D.L.; Bond, J.A.; Blanche, S. Evaluation of main-crop stubble height on ratoon rice growth and development. Field Crops Res. 2009, 114, 396–403. [Google Scholar] [CrossRef]
- Dong, C.F.; Xu, N.X.; Ding, C.L.; Gu, H.R.; Zhang, W.J.; Lei, S. Developing ratoon rice as forage in subtropical and temperate areas. Field Crops. Res. 2020, 245, 107660. [Google Scholar] [CrossRef]
- Xu, F.X.; Zhou, X.B.; Liu, M.; Jiang, P.; Zhang, L.; Guo, X.y.; Zhu, Y.C.; Xiong, H. Interaction effects of mid-season hybrid rice varieties and meteorological factors on rice quality in South Sichuan winter paddy fields. Chin. J. Eco-Agric. 2018, 26, 1137–1148. [Google Scholar]
- Phan, T.T.T.; Ishibashi, Y.; Miyazaki, M.; Tran, H.T.; Okamura, K.; Tanaka, S.; Nakamura, J.; Yuasa, T.; Iwaya-Inoue, M. High temperature-induced repression of the rice sucrose transporter (OsSUT1) and starch synthesis-related genes in sink and source organs at milky ripening stage causes chalky grains. J. Agron. Crop Sci. 2013, 199, 178–188. [Google Scholar] [CrossRef]
Cropping System (Year) | Sowing/Sprouting (Day/Month) | Full Heading (Day/Month) | Ripening (Day/Month) | Growth Duration (Day) |
---|---|---|---|---|
First season (2017F) | 5/3 | 5/7 | 11/8 | 159 |
Second season (2017S) | 23/8 | 26/9 | 12/11 | 81 |
Third season (2018F) | 25/3 | 7/7 | 20/8 | 148 |
Fourth season (2018S) | 25/8 | 28/9 | 18/11 | 85 |
Fifth season (2019F) | 28/3 | 9/7 | 25/8 | 150 |
Sixth season (2019S) | 26/8 | 30/9 | 21/11 | 87 |
Treatment | Regrowth Rate (X1, %) | Panicles per m2 (X2) | Spikelets per Panicle (X3) | Grain Filling (X4, %) | Grain Weight (X5, mg) | Grain Yield (kg ha−1) |
---|---|---|---|---|---|---|
Year (Y) | ||||||
2017F | 100.00 c | 281.65 a | 158.69 c | 84.19 a | 23.50 b | 8394.49 a |
2018F | 81.98 b | 186.86 b | 170.75 a | 83.65 a | 23.83 a | 6029.04 b |
2019F | 54.12 a | 111.18 c | 163.73 b | 83.84 a | 23.38 b | 3289.40 c |
N rate (kg ha−1) | ||||||
90 | 78.63 a | 182.65 c | 168.72 a | 84.47 a | 23.65 a | 5808.01 b |
150 | 78.62 a | 194.28 b | 165.42 b | 83.32 a | 23.48 a | 5893.84 ab |
210 | 78.85 a | 202.76 a | 159.03 c | 83.89 a | 23.57 a | 6011.08 a |
Planting density (hills per m2) | ||||||
9.0 | 77.98 a | 159.87 d | 177.06 a | 83.96 a | 23.54 a | 5319.65 c |
13.5 | 78.32 a | 185.78 c | 167.52 b | 83.58 a | 23.44 a | 5713.27 b |
18.0 | 79.00 a | 206.18 b | 160.28 c | 84.45 a | 23.69 a | 6284.55 a |
22.5 | 78.62 a | 221.08 a | 152.70 d | 83.58 a | 23.61 a | 6299.77 a |
Analysis of variance | ||||||
Year (Y) | ** | ** | ** | ns | ** | ** |
N rate (N) | ns | ** | ** | ns | ns | * |
Planting density (PD) | ns | ** | ** | ns | ns | ** |
Y × N | ns | ns | * | ns | ns | ns |
Y × PD | ** | ** | ** | ns | ns | * |
N × PD | ns | ns | ns | ns | ns | ns |
Y × N × PD | ns | ns | ns | ns | ns | ns |
Factor | Correlation | Direct Contribution | Indirect Contribution | |||||
---|---|---|---|---|---|---|---|---|
Total | X1 | X2 | X3 | X4 | X5 | |||
X1 | −0.9786 ** | −0.0991 | −0.8795 | −0.8895 | 0.0270 | −0.0053 | −0.0117 | |
X2 | 0.9678 ** | 0.9628 | 0.0051 | 0.0916 | −0.0972 | 0.0040 | 0.0067 | |
X3 | −0.2858 | 0.1983 | −0.4841 | −0.0135 | −0.4720 | −0.0029 | 0.0043 | |
X4 | 0.1353 | 0.0496 | 0.0857 | 0.0105 | 0.0772 | −0.0116 | 0.0096 | |
X5 | 0.2463 | 0.0441 | 0.2023 | 0.0264 | 0.1455 | 0.0195 | 0.0109 |
Year | Average Daily Temperature after Heading in the Ratoon Forage Season (°C) | Grain Filling (%) | Grain Plumpness (%) | Index of Grain Plumpness (%) | ||||
---|---|---|---|---|---|---|---|---|
1–10 d | 11–20 d | 21–30 d | 31–40 d | Average | ||||
2017 | 21.4 | 18.1 | 17.3 | 17.0 | 18.5 | 28.73 a | 38.66 a | 11.11a |
2018 | 18.0 | 16.8 | 16.8 | 16.6 | 13.3 | 26.68 b | 31.09 b | 8.29 b |
2019 | 21.7 | 19.0 | 16.6 | 16.6 | 18.5 | 29.71 a | 39.82 a | 11.83 a |
Average | 20.4 | 18.0 | 16.9 | 16.7 | 16.8 | 28.37 | 36.52 | 10.41 |
Treatment | Regrowth Rate (%) | Ratoon Forage (kg ha−1) | Total N (g/100 g) | Crude Protein (g/100 g) | Crude Fat (g/kg) | Crude Fiber (g/100 g) | Calcium (g/100 g) | Phosphorus (g/100 g) | Potassium (g/100 g) |
---|---|---|---|---|---|---|---|---|---|
Year | |||||||||
2017S | 97.23 a | 5663.78 a | 0.78 a | 4.96 a | 16.89 a | 23.75 a | 0.27 a | 0.16 a | 1.06 a |
2018S | 75.27 b | 4021.00 b | 0.76 b | 4.66 b | 16.72 a | 21.95 b | 0.25 b | 0.15 a | 0.93 b |
2019S | 46.57 c | 2676.64 b | 0.72 c | 4.43 c | 15.35 b | 20.87 c | 0.25 b | 0.14 b | 0.88 c |
N rate (kg ha−1) | |||||||||
90 | 72.95 a | 3902.24 b | 0.70 c | 4.32 c | 15.30 c | 22.15 b | 0.25 b | 0.15 b | 0.95 b |
150 | 72.92 a | 4412.35 a | 0.77 b | 4.74 b | 16.12 b | 21.85 b | 0.25 b | 0.15 b | 0.93 b |
210 | 73.23 a | 4046.83 b | 0.79 a | 5.00 a | 17.54 a | 22.58 a | 0.27 a | 0.16 a | 0.99 a |
Planting density (hills per m2) | |||||||||
9.0 | 73.82 a | 3832.90 c | 0.74 b | 4.54 b | 15.57 c | 21.84 b | 0.24 c | 0.15 a | 0.97 a |
13.5 | 72.12 a | 4225.02 ab | 0.75 ab | 4.67 ab | 16.14 b | 22.45 a | 0.26 b | 0.15 a | 0.95 ab |
18.0 | 73.50 a | 4086.47 b | 0.76 a | 4.73 a | 16.56 ab | 22.30 a | 0.25 b | 0.15 a | 0.92 b |
22.5 | 72.70 a | 4337.50 a | 0.77 a | 4.80 a | 17.01 a | 22.17 ab | 0.28 a | 0.16 a | 0.99 a |
Analysis of variance | |||||||||
Year (Y) | ** | ** | ** | ** | ** | ** | ** | ** | ** |
N rate (N) | ns | ** | ** | ** | ** | ** | ** | ** | ** |
Planting density (PD) | ns | ** | * | * | ** | * | ** | ns | * |
Y × N | ns | * | ns | ns | ns | ** | ns | ns | ** |
Y × PD | ** | ns | ns | ns | ns | ns | ns | ns | ns |
N × PD | ns | * | ns | ns | ns | ** | ** | ns | ns |
Y × N × PD | ns | ns | ns | ns | ns | ns | ns | ns | ns |
Year | Stubble Height (cm) | Regrowth Rate (%) | Maximum Tiller (Tillers per Hill) | ||
---|---|---|---|---|---|
Shallow Irrigation | Dry and Wet Alternation | Shallow Irrigation | Dry and Wet Alternation | ||
2018 | 0 | 0.00 b | 0.00 d | 0.00 c | 0.00 d |
10 | 73.35 a | 100.00 a | 10.41 a | 16.64 a | |
20 | 74.22 a | 100.00 a | 10.68 a | 17.38 a | |
30 | 75.15 a | 97.29 b | 7.14 b | 13.91 b | |
40 | 74.53 a | 94.71 c | 7.62 b | 11.27 c | |
2019 | 0 | 0.00 b | 0.00 d | 0.00 c | 0.00 d |
10 | 80.37 a | 100.00 a | 12.64 a | 18.32 a | |
20 | 81.16 a | 100.00 a | 12.91 a | 19.15 a | |
30 | 81.11 a | 95.24 b | 9.57 b | 15.77 b | |
40 | 82.51 a | 96.65 c | 8.80 b | 12.03 c | |
Analysis of variance | |||||
Year (Y) | * | ** | |||
Water management (W) | ** | ** | |||
Stubble height (H) | ** | ** | |||
Y × W | * | ** | |||
Y × H | ns | ** | |||
W × H | ** | ** | |||
Y × W × H | ** | ** |
Year | Drought (Days) | Relative Water Content (%) | Regrowth Rate (%) | Sprouting Bud Stem Rate (%) | Seedling Development Index (%) | Initiation Heading to Full Heading (Days) | First-Season Yield (kg/ha) | Second-Season Forage Yield (kg ha−1) |
---|---|---|---|---|---|---|---|---|
2019 | CK | 99.99 a | 77.31 d | 68.24 d | 52.76 d | 22.36 c | 4929.30 d | 5376.90 d |
D30 | 92.36 b | 82.65 c | 76.89 c | 63.55 c | 19.72 b | 6625.95 c | 5592.15 c | |
D60 | 85.22 c | 92.87 b | 81.06 b | 75.28 b | 16.94 a | 7788.90 b | 6278.25 b | |
D90 | 78.85 d | 99.34 a | 85.44 ab | 84.83 a | 14.68 a | 8612.25 a | 6845.40 a | |
D120 | 67.91 e | 100.00 a | 86.48 a | 86.48 a | 14.85 a | 8546.70 a | 6900.60 a | |
2020 | CK | 99.99 a | 83.17 d | 71.43 d | 59.41 d | 20.57 c | 4608.45 d | 4906.05 d |
D30 | 88.45 b | 86.26 c | 79.18 c | 68.30 c | 17.33 b | 6201.91 c | 5208.90 c | |
D60 | 81.31 c | 95.87 b | 85.67 b | 82.13 b | 14.56 a | 7300.05 b | 5976.75 b | |
D90 | 74.77 d | 100.00 a | 88.03 ab | 88.03 a | 13.94 a | 8296.24 a | 6540.45 a | |
D120 | 68.84 e | 100.00 a | 91.92 a | 91.92 a | 13.67 a | 8227.82 a | 6772.65 a | |
Analysis of variance | ||||||||
Year (Y) | ns | ns | ** | ** | ** | ** | ** | |
Drought treatment (D) | ** | ** | ** | ** | ** | ** | ** | |
Y × D | ns | ns | ** | ** | ** | ** | ** |
Treatment | Regrowth Rate (%) | Panicles per m2 | Spikelets per Panicle | Grain Filling (%) | Grain Weight (mg) | Grain Yield (kg/hm2) | Ratoon Forage Yield (kg ha−1) |
---|---|---|---|---|---|---|---|
OWST | 99.17 | 288.60 | 153.82 | 85.70 | 23.69 | 8495.43 | 7310.74 |
CK1 | 70.29 | 234.15 | 148.56 | 85.71 | 23.62 | 6489.75 | 5496.32 |
CK2 | 100.00 | 309.15 | 142.56 | 85.21 | 23.59 | 8631.45 | 7383.75 |
Year | ADT (°C) | AMT (°C) | AMT1 (°C) | DSH (h) | TP (mm) | ARH (%) |
---|---|---|---|---|---|---|
2017 | 18.8 | 22.8 | 16.0 | 1232.0 | 878.1 | 82.9 |
2018 | 18.7 | 22.8 | 15.8 | 1358.2 | 1004.3 | 83.1 |
2019 | 18.3 | 22.2 | 15.8 | 983.1 | 1185.6 | 81.9 |
2020 | 18.5 | 22.4 | 15.9 | 1050.2 | 1446.6 | 79.8 |
2021 | 18.6 | 22.6 | 15.9 | 1038.1 | 1018.8 | 80.8 |
2022 | 19.8 | 23.8 | 16.7 | 1429.0 | 1138.0 | 77.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, F.; Wang, D.; Zhou, X.; Zhang, L.; Guo, X.; Liu, M.; Zhu, Y.; Xiong, H.; Guo, C.; Jiang, P. Integrating Nitrogen, Water, and Other Management Practices to Improve Grain and Ratoon Forage Yields in Perennial Rice. Plants 2024, 13, 3157. https://doi.org/10.3390/plants13223157
Xu F, Wang D, Zhou X, Zhang L, Guo X, Liu M, Zhu Y, Xiong H, Guo C, Jiang P. Integrating Nitrogen, Water, and Other Management Practices to Improve Grain and Ratoon Forage Yields in Perennial Rice. Plants. 2024; 13(22):3157. https://doi.org/10.3390/plants13223157
Chicago/Turabian StyleXu, Fuxian, Dingbing Wang, Xingbing Zhou, Lin Zhang, Xiaoyi Guo, Mao Liu, Yongchuan Zhu, Hong Xiong, Changchun Guo, and Peng Jiang. 2024. "Integrating Nitrogen, Water, and Other Management Practices to Improve Grain and Ratoon Forage Yields in Perennial Rice" Plants 13, no. 22: 3157. https://doi.org/10.3390/plants13223157
APA StyleXu, F., Wang, D., Zhou, X., Zhang, L., Guo, X., Liu, M., Zhu, Y., Xiong, H., Guo, C., & Jiang, P. (2024). Integrating Nitrogen, Water, and Other Management Practices to Improve Grain and Ratoon Forage Yields in Perennial Rice. Plants, 13(22), 3157. https://doi.org/10.3390/plants13223157