Effects of Irrigation Water Amount and Humic Acid on β-Glucan Synthesis in Post-Anthesis Grains of Naked Oats
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental Design and Set-Up
2.3. Sampling and Handling
2.4. Analytical Procedures
2.4.1. Quantification of Dry Matter
2.4.2. Quantification of β-Glucan Content
2.4.3. Quantification of Soluble Sugars and Sucrose Content
2.4.4. Quantification of Glucose and Fructose Content
2.5. Statistical Analysis
3. Results
3.1. Dry Matter Profiling
3.2. β-Glucan Content Profiling
Days Post-Anthesis | Treatment | Soluble Sugar Content | Sucrose Content | Glucose Content | Fructose Content | β-Glucan Content | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Stem | Leaf | Panicle | Stem | Leaf | Panicle | Stem | Leaf | Panicle | Stem | Leaf | Panicle | Grain | ||
5 | Irrigation amount | ns | * | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | ns |
Humic acid | ns | ** | ** | ns | *** | *** | *** | *** | * | ns | *** | ns | * | |
Interaction | ns | ns | ns | ns | * | ns | *** | * | ns | ns | ** | ns | ns | |
10 | Irrigation amount | *** | *** | *** | *** | *** | *** | *** | *** | ns | ** | *** | ns | - |
Humic acid | ** | ** | ** | *** | *** | ns | *** | *** | *** | *** | ** | ns | - | |
Interaction | ns | ** | ns | ns | ns | ns | * | * | ns | ns | ns | ns | - | |
15 | Irrigation amount | *** | ** | *** | ** | *** | *** | *** | *** | *** | ** | ns | *** | ** |
Humic acid | * | * | *** | ns | ns | *** | ** | ns | ** | ns | ns | ns | ns | |
Interaction | ns | ns | ns | ns | ns | *** | * | ns | * | ns | ns | ns | ns | |
20 | Irrigation amount | * | *** | * | ** | *** | ns | ns | ns | ns | ns | ns | ns | - |
Humic acid | ** | ** | ** | ** | ns | *** | * | ** | ns | ns | * | ns | - | |
Interaction | * | * | ** | ns | ns | ns | ns | ns | ns | ns | ns | ns | - | |
25 | Irrigation amount | *** | *** | * | *** | *** | *** | *** | *** | ** | *** | *** | ** | ns |
Humic acid | *** | *** | ** | * | *** | *** | *** | *** | ns | *** | *** | ns | ns | |
Interaction | ns | *** | ns | ns | *** | ns | *** | *** | ns | *** | * | ns | ns |
3.3. Soluble Sugar Content Profiling
3.4. Content of Sucrose, Glucose, and Fructose Profiling
3.5. Relative Importance of Variables of RF Models on the β-Glucan Content
3.6. Structural Equation Model (SEM) for β-Glucan Content
4. Discussion
4.1. β-Glucan Content Response to Irrigation Amount
4.2. β-Glucan Content Response to Foliar Application Humic Acid
4.3. Effects of Carbohydrates on β-Glucan Formation in Oat Grains
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lu, D.B. Oat. Crops 1985, 1, 28. [Google Scholar]
- Channell, G.A.; Adams, G.G.; Lu, Y.D.; Gillis, R.B.; Dinu, V.; Grundy, M.M.; Bajka, B.; Butterworth, P.J.; Ellis, P.R.; Mackie, A.; et al. Use of the extended Fujita method for representing the molecular weight and molecular weight distributions of native and processed oat Beta-glucans. Sci. Rep. 2018, 8, 11809. [Google Scholar] [CrossRef]
- Gunness, P.; Michiels, J.; Vanhaecke, L.; De, S.S.; Kravchuk, O.; Van, M.A.; Gidley, M.J. Reduction in circulating bile acid and restricted diffusion across the intestinal epithelium are associated with a decrease in blood cholesterol in the presence of oat β-glucan. FASEB J. 2016, 30, 4227–4238. [Google Scholar] [CrossRef]
- Shu, H.; Jiang, X.; Wang, X.K.; Li, H.H.; Yuan, J.L.; Chen, H.B.; Gao, J.Y. Analysis of physicochemical properties of twin-screw extruded oats of the cultivar ‘Baiyan No. 2’. Food Sci. 2016, 37, 83–87. [Google Scholar]
- Wood, J.P.; Weisz, J.; Beer, U.M.; Newman, C.W.; Newman, R.K. Structure of (1-3)(1-4)-β-d-glucan in waxy and nonwaxy Barley. Cereal Chem. 2003, 80, 329–332. [Google Scholar] [CrossRef]
- Wu, B.; Zhang, Q.; Song, G.Y.; Chen, X.; Zhang, Z.W. Construction of SSR genetic linkage map and analysis of QTLs related to β-glucan content of naked oat (Avena nuda L.). Sci. Agric. Sin. 2014, 47, 1208–1215. [Google Scholar]
- Bhatty, R.S. Relationship between acid extract viscosity and total soluble and insoluble β-glucan content of hulled and hulless barley. Can. J. Plant Sci. 1997, 67, 997–1008. [Google Scholar] [CrossRef]
- Fastnaught, C.E.; Berglund, P.T.; Holm, E.T.; Fox, G.J. Genetic and environmental variation in β-glucan content and quality parameters of barley for food. Crop Sci. 1996, 36, 941–946. [Google Scholar] [CrossRef]
- Amador, H.V.; Guridi, I.F.; Padrón, V.V. Revisión bibliográfica las sustancias húmicas como bioestimulantes de plantas bajo condiciones de estrés ambiental. Cult. Trop. 2018, 39, 102–109. [Google Scholar]
- Vioratti, T.M.O.; Luiz, L.B.R.; França, O.T.D.; Fernanda, O.D.S.H.; Augusto, T.C.T.; Carlos, H.T.O.; Fernandes, R.N.; Zonta, E.; Azevedo, S.L.; Calderín, G.A. Humic foliar application as sustainable technology for improving the growth, yield, and abiotic stress protection of agricultural crops. A review. J. Saudi Soc. Agric. Sci. 2023, 22, 493–513. [Google Scholar]
- Shen, J.; Guo, M.J.; Wang, Y.G.; Yuan, X.Y.; Dong, S.Q.; Song, X.E.; Guo, P.Y. An investigation into the beneficial effects and molecular mechanisms of humic acid on foxtail millet under drought conditions. PLoS ONE 2020, 15, e0234029. [Google Scholar] [CrossRef]
- Zhou, L.P.; Yuan, L.; Zhao, B.Q.; Li, Y.T. Effects of single-sided application of humic acid on maize root growth. Sci. Agric. Sin. 2022, 55, 339–349. [Google Scholar]
- Lv, B.; Wang, Y.H.; Xia, H.; Yao, Z.H.; Jiang, C.C. Effects of biochar and other amendments on the cabbage growth and soil fertility in yellow-brown soil and red soil. Sci. Agric. Sin. 2018, 51, 4306–4315. [Google Scholar]
- Zhang, X.F.; Zhang, L.X.; Gao, M.; Wei, C.C.; Ma, Y.M.; Wang, P.P.; Geng, W. Effects of different nitrogen fertilizer types and humic acid (HA) on chemical composition, yield and quality of flue-cured tobacco traits in typical ecological zones of Shaanxi province. Acta Pratacult. Sin. 2013, 22, 60–67. [Google Scholar]
- Pei, R.J.; Yuan, T.Y.; Wang, J.Z.; Hu, Y.; Li, Y.N. Effects of application of humic acid on yield, nitrogen use efficiency of summer maize. Sci. Agric. Sin. 2017, 50, 2189–2198. [Google Scholar]
- Lamlom, S.F.; Irshad, A.; Mosa, W.F.A. The biological and biochemical composition of wheat (Triticum aestivum) as affected by the bio and organic fertilizers. BMC Plant Biol. 2023, 23, 111. [Google Scholar] [CrossRef]
- Wang, Y.H.; Fan, Z.Q.; Guo, X.S.; Li, X.F.; Song, X.W.; Yang, M.; Ding, F.J. Effect of humic acid on growth characteristics, yield and quality of wheat varieties with different gluten. J. Triticeae Crops 2022, 42, 1240–1246. [Google Scholar]
- Dharini, P.; Ramesh, N.; Sundari, A.; Thangavel, P. Effect of biostimulants on the growth attributes and yield of rice. J. Adv. Biol. Biotechnol. 2024, 27, 697–702. [Google Scholar] [CrossRef]
- Anand, N.; Bindraban, P.S.; Pandey, R. Foliar application of humic acid with Fe supplement improved rice, soybean, and lettuce iron fortification. Agriculture 2023, 13, 132. [Google Scholar] [CrossRef]
- Alabdulla, S.A. Effect of foliar application of humic acid on fodder and grainyield of oat (Avena sativa L.). Crops Res. 2019, 20, 880–885. [Google Scholar]
- Jiang, D.; Yue, H.; Wollenweber, B.; Tan, W.; Mu, H.; Bo, Y.; Dai, T.; Jing, Q.; Cao, W. Effects of post-anthesis drought and water-logging on accumulation of high-molecular-weight glutenin subunits and glutenin macropolymers content in wheat grain. J. Agron. Crop Sci. 2009, 195, 89–97. [Google Scholar] [CrossRef]
- Ashraf, M. Stress-induced changes in wheat grain composition and quality. Crit. Rev. Food Sci. Nutr. 2014, 54, 1576–1583. [Google Scholar] [CrossRef]
- Barnabás, B.; Jäger, K.; Fehér, A. The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ. 2008, 31, 11–38. [Google Scholar] [CrossRef]
- Balla, K.; Rakszegi, M.; Li, Z.; Bekes, F.; Bencze, S.; Veisz, O. Quality of winter wheat in relation to heat and drought shock after anthesis. Czech J. Food Sci. 2011, 2, 117–128. [Google Scholar] [CrossRef]
- Marianna, R.; Éva, D.; Alison, L.; István, M.; László, L.; Zoltán, B.; Márta, M.; Peter, S. Drought stress affects the protein and dietary fiber content of wholemeal wheat flour in wheat/Aegilops addition lines. PLoS ONE 2019, 14, e0211892. [Google Scholar]
- Li, Y.H.; Wang, Q.; Zhao, B.P.; Liu, Y.D.; Mi, J.Z.; Wu, J.Y.; Liu, J.H. Synergistic effect of moisture and foliar-applied humic acid on oat grain yield and β-glucan content. Acta Agron. Sin. 2022, 48, 2663–2670. [Google Scholar]
- Hao, S.; Song, Y.L.; Sun, S.; Wang, C.Y. Review on the impacts of climate change on highland barley production in tibet plateau. Chin. J. Agrometeorol. 2023, 44, 398–409. [Google Scholar]
- Guler, M. Nitrogen and irrigation effects on grain beta-glucan content of oats (Avena sativa L.). Aust. J. Crop Sci. 2011, 5, 239–244. [Google Scholar]
- Li, P.C.; Dong, H.L.; Zheng, C.S.; Sun, M.; Liu, A.Z.; Wang, G.P. Optimizing nitrogen application rate and plant density for improving cotton yield and nitrogen use efficiency in the North China Plain. PLoS ONE 2017, 12, 15. [Google Scholar] [CrossRef]
- Liu, J.R.; Ma, Y.N.; Lv, F.J.; Chen, J.; Zhou, Z.G.; Wang, Y.H.; Abudurezike, A.; Oosterhuis, D.M. Changes of sucrose metabolism in leaf subtending to cotton boll under cool temperature due to late planting. Field Crops Res. 2013, 144, 200–211. [Google Scholar] [CrossRef]
- Feng, X.J.; Wang, L.J.; Wang, T.; Hou, L.P.; Li, M.L. Comparison of sugar content and expression analysis of genesrelated to sugar metabolism in different parts of Chinese flowering cabbage. Sci. Agric. Sin. 2023, 56, 2158–2171. [Google Scholar]
- Li, X.N. Sugar content dynamics during flowering and fruit formation in cornus officinalis. Chin. J. Chin. Mater. Med. 2001, 26, 29–31. [Google Scholar]
- Qi, B.J.; Ji, M.X.; He, Z.Q. Using transcriptome sequencing (RNA-Seq) to screen genes involved in β-glucan biosynthesis and accumulation during oat seed development. PeerJ 2024, 12, e17804. [Google Scholar] [CrossRef]
- Zhang, G.P.; Chen, J.X.; Wang, J.M.; Ding, S.R. Cultivar and environmental variation of β-glucan content in Chinese barleys. Sci. Agric. Sin. 2002, 35, 53–58. [Google Scholar]
- Bertin, N.; Génard, M. Tomato quality as influenced by preharvest factors. Sci. Hortic. 2018, 233, 264–276. [Google Scholar] [CrossRef]
- Wei, N.; Ci, D.; Zhang, T.W. Effects of geography and climatic factors on special nutrients of highland barley in tibet plateau. J. Agric. Sci. Technol. 2018, 20, 115–121. [Google Scholar]
- Zhang, J.L.; Wang, Z.H.; Zong, R.; Wang, T.Y.; Wen, Y.; Chen, R.; Wu, X.D. Effects of water and air interaction on growth and quality of drip-irrigated processing tomato. Jiangsu Agric. Sci. 2022, 38, 453–461. [Google Scholar]
- Etienne, A.; Génard, M.; Lobit, P.; Mbeguié-A-Mbéguié, D.; Bugaud, C. What controls fleshy fruit acidity? A review of malate and citrate accumulation in fruit cells. J. Exp. Bot. 2013, 64, 1451–1469. [Google Scholar] [CrossRef]
- Rakszegi, M.; Lovegrove, A.; Balla, K.; Láng, L.; Bedő, Z.; Veisz, O.; Shewry, P.R. Effect of heat and drought stress on the structure and composition of arabinoxylan and β-glucan in wheat grain. Carbohydr. Polym. 2014, 102, 557–565. [Google Scholar] [CrossRef]
- Bakry, A.B.; Sadak, S.H.; Moamen, H.T.; Abd El Lateef, E.M. Influence of humic acid and organic fertilizer on growth, chemical constituents, yield and quality of two flax seed cultivars grown under newly reclaimed sandy soils. Int. J. Acad. Res. 2013, 5, 125–134. [Google Scholar] [CrossRef]
- Alshamlat, R.A.; Makhoul Makhoul, G.; Naddaf, M.; Zidan, A. Effect of foliar application of humic acid and the element, boron and zinc in the components of the olive leaves (khodeiry variety). Int. J. Agric. Environ. Inf. 2020, 7, 9–16. [Google Scholar]
- Altaf, A.; Nawaz, F.; Majeed, S.; Ahsan, M.; Ahmad, K.S.; Akhtar, G.; Shehzad, M.A.; Javeed, H.M.R.; Farman, M. Foliar humic acid and salicylic acid application stimulates physiological responses and antioxidant systems to improve maize yield under water limitations. JSFA Rep. 2023, 3, 119–128. [Google Scholar]
- Doroodian, M.; Sharghi, Y.; Alipour, A.; Zahedi, H. Yield and yield components of wheat as influenced by sowing date and humic acid. Int. J. Nat. Sci. 2015, 5, 8–14. [Google Scholar] [CrossRef]
- Marcotuli, L.; Houston, K.; Schwerdt, J.G.; Waugh, R.; Fincher, G.B.; Burton, R.A.; Blanco, A.; Gadaleta, A. Genetic diversity and genome wide association study of β-glucan content in tetraploid wheat grains. PLoS ONE 2016, 11, e0152590. [Google Scholar] [CrossRef]
- Geng, L.; He, X.Y.; Ye, L.Z.; Zhang, G.P. Identification of the genes associated with β-glucan synthesis and accumulation during grain development in barley. Food Chem. Mol. Sci. 2022, 5, 100136. [Google Scholar] [CrossRef]
- Rose, M.T.; Patti, A.F.; Little, K.R.; Brown, A.L.; Jackson, W.R.; Cavagnaro, T.R. Ameta-analysis and review of plant-growth response to humic substances: Practical implications for agriculture. Adv. Agron. 2014, 124, 37–89. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, C.; Wang, Q.; Sun, W.; Wu, J.; Gao, S.; Liu, Y.; Zhao, B. Effects of Irrigation Water Amount and Humic Acid on β-Glucan Synthesis in Post-Anthesis Grains of Naked Oats. Life 2025, 15, 343. https://doi.org/10.3390/life15030343
Sun C, Wang Q, Sun W, Wu J, Gao S, Liu Y, Zhao B. Effects of Irrigation Water Amount and Humic Acid on β-Glucan Synthesis in Post-Anthesis Grains of Naked Oats. Life. 2025; 15(3):343. https://doi.org/10.3390/life15030343
Chicago/Turabian StyleSun, Chunxiang, Qi Wang, Wen Sun, Junying Wu, Shihua Gao, Yandi Liu, and Baoping Zhao. 2025. "Effects of Irrigation Water Amount and Humic Acid on β-Glucan Synthesis in Post-Anthesis Grains of Naked Oats" Life 15, no. 3: 343. https://doi.org/10.3390/life15030343
APA StyleSun, C., Wang, Q., Sun, W., Wu, J., Gao, S., Liu, Y., & Zhao, B. (2025). Effects of Irrigation Water Amount and Humic Acid on β-Glucan Synthesis in Post-Anthesis Grains of Naked Oats. Life, 15(3), 343. https://doi.org/10.3390/life15030343