Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,621)

Search Parameters:
Keywords = pancreatic tumor cells

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1850 KiB  
Article
Pancreatic Cancer with Liver Oligometastases—Different Patterns of Disease Progression May Suggest Benefits of Surgical Resection
by Nedaa Mahamid, Arielle Jacover, Angam Zabeda, Tamar Beller, Havi Murad, Yoav Elizur, Ron Pery, Rony Eshkenazy, Talia Golan, Ido Nachmany and Niv Pencovich
J. Clin. Med. 2025, 14(15), 5538; https://doi.org/10.3390/jcm14155538 - 6 Aug 2025
Abstract
Background: Pancreatic adenocarcinoma (PDAC) with liver oligometastases (LOM) presents a therapeutic challenge, with optimal management strategies remaining uncertain. This study evaluates the long-term outcomes, patterns of disease progression, and potential factors influencing prognosis in this patient subset. Methods: Patients diagnosed with PDAC and [...] Read more.
Background: Pancreatic adenocarcinoma (PDAC) with liver oligometastases (LOM) presents a therapeutic challenge, with optimal management strategies remaining uncertain. This study evaluates the long-term outcomes, patterns of disease progression, and potential factors influencing prognosis in this patient subset. Methods: Patients diagnosed with PDAC and LOM were retrospectively analyzed. Disease progression patterns, causes of death, and predictors of long-term outcomes were assessed. Results: Among 1442 patients diagnosed with metastatic PDAC between November 2009 and July 2024, 129 (9%) presented with LOM, defined as ≤3 liver lesions each measuring <2 cm. Patients with LOM had significantly improved overall survival (OS) compared to those with high-burden disease (p = 0.026). The cause of death (local regional disease vs. systemic disease) could be determined in 74 patients (57%), among whom age at diagnosis, history of smoking, and white blood cell (WBC) count differed significantly between groups. However, no significant difference in OS was observed between the two groups (p = 0.64). Sixteen patients (22%) died from local complications of the primary tumor, including 6 patients (7%) who showed no evidence of new or progressive metastases. In competing risk and multivariable analysis, a history of smoking remained the only factor significantly associated with death due to local complications. Conclusions: Approximately one in five patients with PDAC-LOM died from local tumor-related complications—some without metastatic progression—highlighting a potential role for surgical intervention. Further multicenter studies are warranted to refine diagnostic criteria and better identify patients who may benefit from surgery. Full article
(This article belongs to the Section General Surgery)
Show Figures

Figure 1

17 pages, 6254 KiB  
Article
Pro-Apoptotic Effects of Unsymmetrical Bisacridines in 3D Pancreatic Multicellular Tumor Spheroids
by Agnieszka Kurdyn, Ewa Paluszkiewicz and Ewa Augustin
Int. J. Mol. Sci. 2025, 26(15), 7557; https://doi.org/10.3390/ijms26157557 - 5 Aug 2025
Abstract
Pancreatic cancer (PC) is an aggressive malignancy with a poor prognosis, requiring innovative approaches to evaluate new therapies. Considering the high activity of unsymmetrical bisacridines (UAs) in PC monolayer cultures, we employed multicellular tumor spheroids (MCTS) to assess whether UAs retain pro-apoptotic activity [...] Read more.
Pancreatic cancer (PC) is an aggressive malignancy with a poor prognosis, requiring innovative approaches to evaluate new therapies. Considering the high activity of unsymmetrical bisacridines (UAs) in PC monolayer cultures, we employed multicellular tumor spheroids (MCTS) to assess whether UAs retain pro-apoptotic activity under more physiologically relevant conditions. Ultra-low attachment plates were used to form spheroids from three PC cell lines (Panc-1, MIA PaCa-2, and AsPC-1) with different genotypes and phenotypes. The effects of UA derivatives (C-2028, C-2045, and C-2053) were evaluated using microscopy and flow cytometry (7-AAD for viability and annexin V-FITC/PI for membrane integrity). UAs altered the morphology of the spheroids and reduced their growth. Notably, Panc-1 spheroids exhibited compromised integrity. The increase in 7-AAD+ cells confirmed diminished cell viability, and annexin V-FITC assays showed apoptosis as the dominant death pathway. Interestingly, the exact derivative was most active against a given cell line regardless of culture conditions. These results confirm that UAs maintain anticancer activity in 3D cultures and induce apoptosis, with varying efficacy across different cell lines. This underscores the value of diverse cellular models in compound evaluation and supports UAs as promising candidates for pancreatic cancer therapy. Full article
Show Figures

Graphical abstract

23 pages, 3521 KiB  
Article
Efficacy of NAMPT Inhibitors in Pancreatic Cancer After Stratification by MAP17 (PDZK1IP1) Levels
by Eva M. Verdugo-Sivianes, Julia Martínez-Pérez, Lola E Navas, Carmen Sáez and Amancio Carnero
Cancers 2025, 17(15), 2575; https://doi.org/10.3390/cancers17152575 - 5 Aug 2025
Abstract
Background/Objectives: Pancreatic cancer (PC) is the seventh leading cause of cancer-related deaths worldwide, with its incidence rising each year. Despite its relatively low incidence, the aggressiveness of pancreatic cancer results in high mortality, with only 12% of patients surviving five years post-diagnosis. [...] Read more.
Background/Objectives: Pancreatic cancer (PC) is the seventh leading cause of cancer-related deaths worldwide, with its incidence rising each year. Despite its relatively low incidence, the aggressiveness of pancreatic cancer results in high mortality, with only 12% of patients surviving five years post-diagnosis. Surgical resection remains the only potentially curative treatment, but the tumor is often diagnosed at an advanced stage. The goal of this work is to identify vulnerabilities that can affect the efficacy of treatments and improve the efficacy of therapy. Methods: MAP17 overexpression in pancreatic cancer cell lines, RT-qPCR analysis, xenografts, in vitro and in vivo treatments, analysis of data from pancreatic tumors in transcriptomic patient databases. Results: We studied the prognostic and predictive value of MAP17 (PDZK1IP1) expression in pancreatic cancer, and we found that high MAP17 mRNA expression was associated with poor prognosis. In addition, single-cell analysis revealed that high MAP17 expression was present only in tumor cells. We investigated whether the response to various antitumor agents depended on MAP17 expression. In 2D culture, MAP17-expressing pancreatic cancer cells responded better to gemcitabine and 5-fluorouracil. However, in vivo xenograft tumors with MAP17 expression showed resistance to all treatments. Additionally, MAP17-expressing cells had a high NAD pool, which seems to be effectively depleted in vivo by NAMPT inhibitors, the primary enzyme for NAD biosynthesis. Conclusions: Our findings suggest that MAP17 expression could enhance the prognostic stratification of pancreatic cancer patients. Moreover, the coadministration of NAMPT inhibitors with current treatments may sensitize tumors with high MAP17 expression to chemotherapy and improve the efficacy of chemotherapy. Full article
(This article belongs to the Section Molecular Cancer Biology)
Show Figures

Figure 1

14 pages, 548 KiB  
Review
Carboxypeptidase A4: A Biomarker for Cancer Aggressiveness and Drug Resistance
by Adeoluwa A. Adeluola, Md. Sameer Hossain and A. R. M. Ruhul Amin
Cancers 2025, 17(15), 2566; https://doi.org/10.3390/cancers17152566 - 4 Aug 2025
Viewed by 119
Abstract
Carboxypeptidase A4 (CPA4) is an exopeptidase that cleaves peptide bonds at the C-terminal domain within peptides and proteins. It preferentially cleaves peptides with terminal aromatic or branched chain amino acid residues such as phenylalanine, tryptophan, or leucine. CPA4 was first discovered in prostate [...] Read more.
Carboxypeptidase A4 (CPA4) is an exopeptidase that cleaves peptide bonds at the C-terminal domain within peptides and proteins. It preferentially cleaves peptides with terminal aromatic or branched chain amino acid residues such as phenylalanine, tryptophan, or leucine. CPA4 was first discovered in prostate cancer cells, but it is now known to be expressed in various tissues throughout the body. Its physiologic expression is governed by latexin, a noncompetitive endogenous inhibitor of CPA4. Nevertheless, the overexpression of CPA4 has been associated with the progression and aggressiveness of many malignancies, including prostate, pancreatic, breast and lung cancer, to name a few. CPA4’s role in cancer has been attributed to its disruption of many cellular signaling pathways, e.g., PI3K-AKT-mTOR, STAT3-ERK, AKT-cMyc, GPCR, and estrogen signaling. The dysregulation of these pathways by CPA4 could be responsible for inducing epithelial--mesenchymal transition (EMT), tumor invasion and drug resistance. Although CPA4 has been found to regulate cancer aggressiveness and poor prognosis, no comprehensive review summarizing the role of CPA4 in cancer is available so far. In this review, we provide a brief description of peptidases, their classification, history of CPA4, mechanism of action of CPA4 as a peptidase, its expression in various tissues, including cancers, its role in various tumor types, the associated molecular pathways and cellular processes. We further discuss the limitations of current literature linking CPA4 to cancers and challenges that prevent using CPA4 as a biomarker for cancer aggressiveness and predicting drug response and highlight a number of future strategies that can help to overcome the limitations. Full article
(This article belongs to the Special Issue Insights from the Editorial Board Member)
Show Figures

Figure 1

15 pages, 2024 KiB  
Article
Oxy210 Inhibits Hepatic Expression of Senescence-Associated, Pro-Fibrotic, and Pro-Inflammatory Genes in Mice During Development of MASH and in Hepatocytes In Vitro
by Feng Wang, Simon T. Hui, Frank Stappenbeck, Dorota Kaminska, Aldons J. Lusis and Farhad Parhami
Cells 2025, 14(15), 1191; https://doi.org/10.3390/cells14151191 - 2 Aug 2025
Viewed by 308
Abstract
Background: Senescence, a state of permanent cell cycle arrest, is a complex cellular phenomenon closely affiliated with age-related diseases and pathological fibrosis. Cellular senescence is now recognized as a significant contributor to organ fibrosis, largely driven by transforming growth factor beta (TGF-β) signaling, [...] Read more.
Background: Senescence, a state of permanent cell cycle arrest, is a complex cellular phenomenon closely affiliated with age-related diseases and pathological fibrosis. Cellular senescence is now recognized as a significant contributor to organ fibrosis, largely driven by transforming growth factor beta (TGF-β) signaling, such as in metabolic dysfunction-associated steatohepatitis (MASH), idiopathic pulmonary fibrosis (IPF), chronic kidney disease (CKD), and myocardial fibrosis, which can lead to heart failure, cystic fibrosis, and fibrosis in pancreatic tumors, to name a few. MASH is a progressive inflammatory and fibrotic liver condition that has reached pandemic proportions, now considered the largest non-viral contributor to the need for liver transplantation. Methods: We previously studied Oxy210, an anti-fibrotic and anti-inflammatory, orally bioavailable, oxysterol-based drug candidate for MASH, using APOE*3-Leiden.CETP mice, a humanized hyperlipidemic mouse model that closely recapitulates the hallmarks of human MASH. In this model, treatment of mice with Oxy210 for 16 weeks caused significant amelioration of the disease, evidenced by reduced hepatic inflammation, lipid deposition, and fibrosis, atherosclerosis and adipose tissue inflammation. Results: Here we demonstrate increased hepatic expression of senescence-associated genes and senescence-associated secretory phenotype (SASP), correlated with the expression of pro-fibrotic and pro-inflammatorygenes in these mice during the development of MASH that are significantly inhibited by Oxy210. Using the HepG2 human hepatocyte cell line, we demonstrate the induced expression of senescent-associated genes and SASP by TGF-β and inhibition by Oxy210. Conclusions: These findings further support the potential therapeutic effects of Oxy210 mediated in part through inhibition of senescence-driven hepatic fibrosis and inflammation in MASH and perhaps in other senescence-associated fibrotic diseases. Full article
Show Figures

Graphical abstract

30 pages, 955 KiB  
Review
Breaking Barriers with Sound: The Implementation of Histotripsy in Cancer
by Ashutosh P. Raman, Parker L. Kotlarz, Alexis E. Giff, Katherine A. Goundry, Paul Laeseke, Erica M. Knavel Koepsel, Mosa Alhamami and Dania Daye
Cancers 2025, 17(15), 2548; https://doi.org/10.3390/cancers17152548 - 1 Aug 2025
Viewed by 376
Abstract
Histotripsy is a novel, noninvasive, non-thermal technology invented in 2004 for the precise destruction of biologic tissue. It offers a powerful alternative to more conventional thermal or surgical interventions. Using short-pulse, low-duty cycle ultrasonic waves, histotripsy creates cavitation bubble clouds that selectively and [...] Read more.
Histotripsy is a novel, noninvasive, non-thermal technology invented in 2004 for the precise destruction of biologic tissue. It offers a powerful alternative to more conventional thermal or surgical interventions. Using short-pulse, low-duty cycle ultrasonic waves, histotripsy creates cavitation bubble clouds that selectively and precisely destroy targeted tissue in a predefined volume while sparing critical structures like bile ducts, ureters, and blood vessels. Such precision is of value when treating tumors near vital structures. The FDA has cleared histotripsy for the treatment of all liver tumors. Major medical centers are currently spearheading clinical trials, and some institutions have already integrated the technology into patient care. Histotripsy is now being studied for a host of other cancers, including primary kidney and pancreatic tumors. Preclinical murine and porcine models have already revealed promising outcomes. One of histotripsy’s primary advantages is its non-thermal mechanical actuation. This feature allows it to circumvent the limitations of heat-based techniques, including the heat sink effect and unpredictable treatment margins near sensitive tissues. In addition to its non-invasive ablative capacities, it is being preliminarily explored for its potential to induce immunomodulation and promote abscopal inhibition of distant, untreated tumors through CD8+ T cell responses. Thus, it may provide a multilayered therapeutic effect in the treatment of cancer. Histotripsy has the potential to improve precision and outcomes across a multitude of specialties, from oncology to cardiovascular medicine. Continued trials are crucial to further expand its applications and validate its long-term efficacy. Due to the speed of recent developments, the goal of this review is to provide a comprehensive and updated overview of histotripsy. It will explore its physics-based mechanisms, differentiating it from similar technologies, discuss its clinical applications, and examine its advantages, limitations, and future. Full article
Show Figures

Figure 1

19 pages, 4279 KiB  
Article
Identification of Anticancer Target Combinations to Treat Pancreatic Cancer and Its Associated Cachexia Using Constraint-Based Modeling
by Feng-Sheng Wang, Ching-Kai Wu and Kuang-Tse Huang
Molecules 2025, 30(15), 3200; https://doi.org/10.3390/molecules30153200 - 30 Jul 2025
Viewed by 246
Abstract
Pancreatic cancer is frequently accompanied by cancer-associated cachexia, a debilitating metabolic syndrome marked by progressive skeletal muscle wasting and systemic metabolic dysfunction. This study presents a systems biology framework to simultaneously identify therapeutic targets for both pancreatic ductal adenocarcinoma (PDAC) and its associated [...] Read more.
Pancreatic cancer is frequently accompanied by cancer-associated cachexia, a debilitating metabolic syndrome marked by progressive skeletal muscle wasting and systemic metabolic dysfunction. This study presents a systems biology framework to simultaneously identify therapeutic targets for both pancreatic ductal adenocarcinoma (PDAC) and its associated cachexia (PDAC-CX), using cell-specific genome-scale metabolic models (GSMMs). The human metabolic network Recon3D was extended to include protein synthesis, degradation, and recycling pathways for key inflammatory and structural proteins. These enhancements enabled the reconstruction of cell-specific GSMMs for PDAC and PDAC-CX, and their respective healthy counterparts, based on transcriptomic datasets. Medium-independent metabolic biomarkers were identified through Parsimonious Metabolite Flow Variability Analysis and differential expression analysis across five nutritional conditions. A fuzzy multi-objective optimization framework was employed within the anticancer target discovery platform to evaluate cell viability and metabolic deviation as dual criteria for assessing therapeutic efficacy and potential side effects. While single-enzyme targets were found to be context-specific and medium-dependent, eight combinatorial targets demonstrated robust, medium-independent effects in both PDAC and PDAC-CX cells. These include the knockout of SLC29A2, SGMS1, CRLS1, and the RNF20–RNF40 complex, alongside upregulation of CERK and PIKFYVE. The proposed integrative strategy offers novel therapeutic avenues that address both tumor progression and cancer-associated cachexia, with improved specificity and reduced off-target effects, thereby contributing to translational oncology. Full article
(This article belongs to the Special Issue Innovative Anticancer Compounds and Therapeutic Strategies)
Show Figures

Graphical abstract

20 pages, 3005 KiB  
Review
EUS-Guided Pancreaticobiliary Ablation: Is It Ready for Prime Time?
by Nina Quirk, Rohan Ahuja and Nirav Thosani
Immuno 2025, 5(3), 30; https://doi.org/10.3390/immuno5030030 - 25 Jul 2025
Viewed by 295
Abstract
Despite advances in surgery, chemotherapy, and radiation treatments for pancreatic ductal adenocarcinoma (PDAC), 5-year survival rates remain at nearly 11%. Cholangiocarcinoma, while not as severe, also possesses similar survival rates. Fewer than 20% of patients are surgical candidates at time of diagnosis; therefore, [...] Read more.
Despite advances in surgery, chemotherapy, and radiation treatments for pancreatic ductal adenocarcinoma (PDAC), 5-year survival rates remain at nearly 11%. Cholangiocarcinoma, while not as severe, also possesses similar survival rates. Fewer than 20% of patients are surgical candidates at time of diagnosis; therefore, it is imperative that alternative therapies are effective for non-surgical patients. There are several thermal ablative techniques, including radiofrequency ablation (RFA), high-intensity focused ultrasound (HIFU), microwave ablation (MWA), alcohol ablation, stereotactic body radiotherapy (SBRT), cryoablation, irreversible electroporation (IRE), biliary intraluminal brachytherapy, and biliary photodynamic therapy (PDT). Emerging literature in animal models and human patients has demonstrated that endoscopic ultrasound (EUS)-guided RFA (EUS-RFA) prevents tumor progression through coagulative necrosis, protein denaturation, and activation of anticancer immunity in local and distant tumor tissue (abscopal effect). RFA treatment has been shown to not only reduce tumor-associated immunosuppressive cells but also increase functional T cells in distant tumor cells not treated with RFA. The remarkable ability to reduce tumor progression and promote tumor microenvironment (TME) remodeling makes RFA a very promising non-surgical therapy technique that has the potential to reduce mortality in this patient population. EUS-RFA offers superior precision and safety compared to other ablation techniques for pancreatic and biliary cancers, due to real-time imaging capabilities and minimally invasive nature. Future research should focus on optimizing RFA protocols, exploring combination therapies with chemotherapy or immunotherapy, and expanding its use in patients with metastatic disease. This review article will explore the current data and underlying pathophysiology of EUS-RFA while also highlighting the role of ablative therapies as a whole in immune activation response. Full article
Show Figures

Figure 1

10 pages, 738 KiB  
Article
In Vitro Evaluation of Electrochemotherapy Combined with Sotorasib in Pancreatic Carcinoma Cell Lines Harboring Distinct KRAS Mutations
by Tanja Jesenko, Masa Omerzel, Tina Zivic, Gregor Sersa and Maja Cemazar
Int. J. Mol. Sci. 2025, 26(15), 7165; https://doi.org/10.3390/ijms26157165 - 24 Jul 2025
Viewed by 306
Abstract
Pancreatic cancer is among the deadliest malignancies, with limited treatment options and poor prognosis. Novel strategies are therefore urgently needed. Sotorasib, a KRAS G12C-specific inhibitor, offers targeted treatment for a small subset of patients with this mutation. Electrochemotherapy (ECT), which enhances the cytotoxicity [...] Read more.
Pancreatic cancer is among the deadliest malignancies, with limited treatment options and poor prognosis. Novel strategies are therefore urgently needed. Sotorasib, a KRAS G12C-specific inhibitor, offers targeted treatment for a small subset of patients with this mutation. Electrochemotherapy (ECT), which enhances the cytotoxicity of chemotherapeutic agents through electroporation-induced membrane permeabilization, has shown promise in various tumor types, including deep-seated malignancies such as pancreatic cancer. Combining ECT with sotorasib may potentiate antitumor effects in KRAS G12C-mutated pancreatic cancer; however, preclinical data on such combinations are lacking. This proof-of-concept study evaluated the cytotoxic effects of ECT using bleomycin (BLM) or cisplatin (CDDP) in combination with sotorasib in KRAS G12C-mutated MIA PaCa-2 and KRAS G12D-mutated PANC-1 pancreatic cancer cell lines. ECT alone significantly reduced cell viability, particularly in MIA PaCa-2 cells, where electric pulses induced approximately 75% cell death. Combining ECT with sotorasib resulted in an additive effect on KRAS G12C-mutated MIA PaCa-2 cells, though no synergy was observed, likely due to the high intrinsic sensitivity to electric pulses. These results support the potential of combining physical and molecular therapies in a subset of pancreatic cancer patients and lay the groundwork for further in vivo studies to optimize treatment parameters and explore clinical translatability. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

25 pages, 2959 KiB  
Article
Synthesis, Characterization, HSA/DNA Binding, and Cytotoxic Activity of [RuCl26-p-cymene)(bph-κN)] Complex
by Stefan Perendija, Dušan Dimić, Thomas Eichhorn, Aleksandra Rakić, Luciano Saso, Đura Nakarada, Dragoslava Đikić, Teodora Dragojević, Jasmina Dimitrić Marković and Goran N. Kaluđerović
Molecules 2025, 30(15), 3088; https://doi.org/10.3390/molecules30153088 - 23 Jul 2025
Viewed by 241
Abstract
A novel ruthenium(II) complex, [RuCl26-p-cymene)(bph-κN)] (1), was synthesized and structurally characterized using FTIR and NMR spectroscopy. Density functional theory (DFT) calculations supported the proposed geometry and allowed for comparative analysis of experimental and [...] Read more.
A novel ruthenium(II) complex, [RuCl26-p-cymene)(bph-κN)] (1), was synthesized and structurally characterized using FTIR and NMR spectroscopy. Density functional theory (DFT) calculations supported the proposed geometry and allowed for comparative analysis of experimental and theoretical spectroscopic data. The interaction of complex 1 with human serum albumin (HSA) and calf thymus DNA was investigated through fluorescence quenching experiments, revealing spontaneous binding driven primarily by hydrophobic interactions. The thermodynamic parameters indicated mixed quenching mechanisms in both protein and DNA systems. Ethidium bromide displacement assays and molecular docking simulations confirmed DNA intercalation as the dominant binding mode, with a Gibbs free binding energy of −34.1 kJ mol−1. Antioxidant activity, assessed by EPR spectroscopy, demonstrated effective scavenging of hydroxyl and ascorbyl radicals. In vitro cytotoxicity assays against A375, MDA-MB-231, MIA PaCa-2, and SW480 cancer cell lines revealed selective activity, with pancreatic and colorectal cells showing the highest sensitivity. QTAIM analysis provided insight into metal–ligand bonding characteristics and intramolecular stabilization. These findings highlight the potential of 1 as a promising candidate for further development as an anticancer agent, particularly against multidrug-resistant tumors. Full article
(This article belongs to the Special Issue Transition Metal Complexes with Bioactive Ligands)
Show Figures

Figure 1

22 pages, 1820 KiB  
Article
Supercharged Natural Killer (sNK) Cells Inhibit Melanoma Tumor Progression and Restore Endogenous NK Cell Function in Humanized BLT Mice
by Kawaljit Kaur, Paytsar Topchyan and Anahid Jewett
Cancers 2025, 17(15), 2430; https://doi.org/10.3390/cancers17152430 - 23 Jul 2025
Viewed by 342
Abstract
Background: We have previously shown the remarkable impact of a single infusion of supercharged NK cells (sNK) in preventing and eliminating oral, pancreatic, and uterine cancers implanted in humanized BLT (hu-BLT) mice. Objective: In this report, we extended the studies to melanoma tumors [...] Read more.
Background: We have previously shown the remarkable impact of a single infusion of supercharged NK cells (sNK) in preventing and eliminating oral, pancreatic, and uterine cancers implanted in humanized BLT (hu-BLT) mice. Objective: In this report, we extended the studies to melanoma tumors to observe whether there were differences in response to sNK cells. Methods: We investigated the safety and tissue biodistribution profile of sNK cells in hu-BLT mice. This included the effect of sNK cell therapy on the peripheral blood-derived PBMCs, bone marrow, and spleen of hu-BLT mice. Results: Our investigation showed promising outcomes, as sNK cell infusions effectively inhibited melanoma tumor growth in hu-BLT mice. These potent cells not only traversed through the peripheral blood, spleen, and bone marrow but also infiltrated the tumor site, triggering in vivo differentiation of melanoma tumors. Moreover, the infusion of sNK cells increased the percentages of NK cells in the peripheral blood of hu-BLT mice, restoring cytotoxicity and IFN-γ secretion within the peripheral blood, spleen, and bone marrow of melanoma-bearing mice. Conclusions: This therapeutic approach not only reversed tumor progression but also revitalized the functionality of endogenous NK cells, potentially reversing the immunosuppressive effects induced by tumor cells in cancer patients. Full article
Show Figures

Figure 1

19 pages, 1046 KiB  
Review
Roles of Peripheral Nerves in Tumor Initiation and Progression
by Claudia Giampietri, Elisa Pizzichini, Francesca Somma, Simonetta Petrungaro, Elena De Santis, Siavash Rahimi, Antonio Facchiano and Cinzia Fabrizi
Int. J. Mol. Sci. 2025, 26(15), 7064; https://doi.org/10.3390/ijms26157064 - 22 Jul 2025
Viewed by 465
Abstract
In recent years, a long list of relevant studies has highlighted the engagement of the nervous system in the fine-tuning of tumor development and progression. Several authors have shown that different types of nerve fibres (sympathetic, parasympathetic/vagal or somatosensory fibres) may contribute to [...] Read more.
In recent years, a long list of relevant studies has highlighted the engagement of the nervous system in the fine-tuning of tumor development and progression. Several authors have shown that different types of nerve fibres (sympathetic, parasympathetic/vagal or somatosensory fibres) may contribute to tumor innervation affecting cancer initiation, progression and metastasis. A large presence of nerve fibres is frequently observed in tumors with respect to the corresponding healthy tissues. In this regard, it is worth noting that in some cases a reduced innervation may associate with slow tumor growth in a tissue-specific manner. Current studies have begun to shed light over the role played in this specific process by Schwann cells (SCs), the most abundant glial cells of the peripheral nervous system. SCs observed in cancer tissues share strong similarities with repair SCs that appear after nerve injury. A large body of research indicates that SCs may have a role in shaping the microenvironment of tumors by regulating the immune response and influencing their invasiveness. In this review, we summarize data relevant to the role of peripheral innervation in general, and of SCs in particular, in defining the progression of different tumors: melanoma that originate in the skin with mainly sensory innervation; pancreatic and liver-derived tumors (e.g., pancreatic adenocarcinoma and cholangiocarcinoma) with mainly autonomous innervation. We conclude by summarizing data regarding hepatocarcinoma (with anatomical predominance of small autonomic nerve fibres) in which the potential relationship between innervation and tumor progression has been little explored, and largely remains to be defined. Full article
(This article belongs to the Special Issue Advances in Peripheral Nerve Regeneration)
Show Figures

Figure 1

45 pages, 4112 KiB  
Review
Recent Advances in Nanotechnology-Based Approaches for Ferroptosis Therapy and Imaging Diagnosis in Pancreatic Cancer
by Xiaoyan Yang, Wangping Luo, Yining Wang, Yongzhong Du and Risheng Yu
Pharmaceutics 2025, 17(7), 937; https://doi.org/10.3390/pharmaceutics17070937 - 20 Jul 2025
Viewed by 535
Abstract
Pancreatic cancer is a highly lethal malignant tumor characterized by challenges in early diagnosis and limited therapeutic options, leading to an exceptionally low clinical cure rate. With the advent of novel cancer treatment paradigms, ferroptosis—a form of iron-dependent regulated cell death driven by [...] Read more.
Pancreatic cancer is a highly lethal malignant tumor characterized by challenges in early diagnosis and limited therapeutic options, leading to an exceptionally low clinical cure rate. With the advent of novel cancer treatment paradigms, ferroptosis—a form of iron-dependent regulated cell death driven by lipid peroxidation—has emerged as a promising therapeutic strategy, particularly for tumors harboring RAS mutations. However, the poor bioavailability and insufficient tumor-targeting capabilities of conventional drugs constrain the efficacy of ferroptosis-based therapies. Recent advancements in nanotechnology and imaging-guided treatments offer transformative solutions through targeted drug delivery, real-time monitoring of treatment efficacy, and multimodal synergistic strategies. This article aims to elucidate the mechanisms underlying ferroptosis in pancreatic cancer and to summarize the latest identified therapeutic targets for ferroptosis in this context. Furthermore, it reviews the recent progress in nanotechnology-based ferroptosis therapy for pancreatic cancer, encompassing ferroptosis monotherapy, synergistic ferroptosis therapy, and endogenous ferroptosis therapy. Subsequently, the integration of imaging-guided nanotechnology in ferroptosis therapy is summarized. Finally, this paper discusses innovative strategies, such as stroma-targeted ferroptosis therapy, immune-ferroptosis synergy, and AI-driven nanomedicine development, offering new insights and directions for future research in pancreatic cancer treatment. Full article
Show Figures

Graphical abstract

19 pages, 7071 KiB  
Article
Differential Role of CD318 in Tumor Immunity Affecting Prognosis in Colorectal Cancer Compared to Other Adenocarcinomas
by Bhaumik Patel, Marina Curcic, Mohamed Ashraf Eltokhy and Sahdeo Prasad
J. Clin. Med. 2025, 14(14), 5139; https://doi.org/10.3390/jcm14145139 - 19 Jul 2025
Viewed by 403
Abstract
Background/Objectives: CD318 (also known as CDCP1) is a transmembrane protein that is overexpressed in many cancers and contributes to tumor progression, invasion, and metastasis by activating SRC family kinases through phosphorylation. Emerging evidence also suggests that CD318 plays a role in modulating [...] Read more.
Background/Objectives: CD318 (also known as CDCP1) is a transmembrane protein that is overexpressed in many cancers and contributes to tumor progression, invasion, and metastasis by activating SRC family kinases through phosphorylation. Emerging evidence also suggests that CD318 plays a role in modulating the tumor immune microenvironment, although its precise mechanism in tumor progression is still not well understood. Methods: To investigate this, we analyzed the expression and immune-related functions of CD318 using the publicly available data from The Cancer Genome Atlas (TCGA) across colorectal adenocarcinoma (COAD), cervical squamous cell carcinoma (CESC), lung adenocarcinoma (LUAD), and pancreatic adenocarcinoma (PAAD). Results: All four cancers exhibited a high level of CD318 expression. Notably, in CESC, LUAD, and PAAD, plasmin-mediated cleavage of CD318 leads to phosphorylation of SRC and protein kinase C delta (PKCδ), which activates HIF1α and/or p38 MAPK. These downstream effectors translocate to the nucleus and promote the transcriptional upregulation of TGFβ1, fostering an immunosuppressive tumor microenvironment through Treg cell recruitment. In contrast, this signaling cascade appears to be absent in COAD. Instead, our analysis indicate that intact CD318 in COAD interacts with the surface receptors CD96 and CD160, which are found on CD8+ T cells and NK cells. Conclusions: This interaction enhances cytotoxic immune responses in COAD by promoting CD8+ T cell and NK cell activity, offering a possible explanation for the favorable prognosis associated with high CD318 expression in COAD, compared to the poorer outcomes observed in CESC, LUAD, and PAAD. Full article
Show Figures

Figure 1

17 pages, 3681 KiB  
Article
Sensitivity of Pancreatic Cancer Cell Lines to Clinically Approved FAK Inhibitors: Enhanced Cytotoxicity Through Combination with Oncolytic Coxsackievirus B3
by Anja Geisler, Babette Dieringer, Leslie Elsner, Maxim Girod, Sophie Van Linthout, Jens Kurreck and Henry Fechner
Int. J. Mol. Sci. 2025, 26(14), 6877; https://doi.org/10.3390/ijms26146877 - 17 Jul 2025
Viewed by 288
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer characterized by a dense desmoplastic stroma and a highly immunosuppressive tumor microenvironment (TME). The focal adhesion kinase (FAK), a non-receptor tyrosine kinase, is considered a critical regulator of various cellular processes involved in cancer [...] Read more.
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer characterized by a dense desmoplastic stroma and a highly immunosuppressive tumor microenvironment (TME). The focal adhesion kinase (FAK), a non-receptor tyrosine kinase, is considered a critical regulator of various cellular processes involved in cancer development. FAK inhibitors (FAKi) have proven to be promising therapeutics for cancer treatment including for pancreatic cancer. As monotherapy, however, FAKi showed only a modest effect in clinical studies. In this study, we investigated the cytotoxicity of six FAKi (Defactinib, CEP-37440, VS-4718, VS-6062, Ifebemtinib and GSK2256098) used in clinical trials on five pancreatic tumor cell lines. We further examined whether their anti-tumor activity can be enhanced by combination with the oncolytic coxsackievirus B3 (CVB3) strain PD-H. IC50 analyses identified Defactinib and CEP-37440 as the most potent inhibitors of tumor cell growth. VS-4718, VS-6062, and Ifebemtinib showed slightly lower activity, while GSK2256098 was largely ineffective. The combination of Defactinib, CEP-37440, VS-4718, and VS-6062 with PD-H resulted in varying effects on cytotoxicity, depending on the cell line and the specific FAKi, ranging from no enhancement to a pronounced increase. Using the Chou–Talalay method, we determined combination indices (CI), revealing synergistic, additive, but also antagonistic interactions between the respective FAKi and PD-H. Considering both oncolytic efficacy and the CI, the greatest enhancement in oncolytic activity was achieved when VS-4718 or CEP-37440 was combined with PD-H. These findings indicate that co-treatment with PD-H can potentiate the therapeutic activity of the selected FAKi and may represent a novel strategy to improve treatment outcomes in PDAC. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Therapies of Pancreatic Cancer: 2nd Edition)
Show Figures

Figure 1

Back to TopTop