In Vitro Evaluation of Electrochemotherapy Combined with Sotorasib in Pancreatic Carcinoma Cell Lines Harboring Distinct KRAS Mutations
Abstract
1. Introduction
2. Results
2.1. Selective Cytotoxicity of Sotorasib in KRAS G12C-Mutated Pancreatic Carcinoma Cell Line
2.2. Potentiation of Cytotoxic Drug Effectiveness by ECT and Combined Therapy
3. Discussion
4. Materials and Methods
4.1. Cell Lines
4.2. Drugs
4.3. Sotorasib Treatment
4.4. Cell Survival
4.5. ECT and Combined Treatment of ECT and Sotorasib
4.6. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BLM | bleomycin |
CDDP | cisplatin |
ECT | electrochemotherapy |
KRAS | Kirsten rat sarcoma viral oncogene homolog |
References
- Zhao, Z.Y.; Liu, W. Pancreatic Cancer: A Review of Risk Factors, Diagnosis, and Treatment. Technol. Cancer Res. Treat. 2020, 19, 1533033820962117. [Google Scholar] [CrossRef] [PubMed]
- Morganti, A.G.; Massaccesi, M.; La Torre, G.; Caravatta, L.; Piscopo, A.; Tambaro, R.; Sofo, L.; Sallustio, G.; Ingrosso, M.; MacChia, G.; et al. A Systematic Review of Resectability and Survival after Concurrent Chemoradiation in Primarily Unresectable Pancreatic Cancer. Ann. Surg. Oncol. 2010, 17, 194–205. [Google Scholar] [CrossRef] [PubMed]
- Kolbeinsson, H.M.; Chandana, S.; Wright, G.P.; Chung, M. Pancreatic Cancer: A Review of Current Treatment and Novel Therapies. J. Investig. Surg. 2023, 3, 2129884. [Google Scholar] [CrossRef] [PubMed]
- Torphy, R.J.; Fujiwara, Y.; Schulick, R.D. Pancreatic Cancer Treatment: Better, but a Long Way to Go. Surg. Today 2020, 50, 1117–1125. [Google Scholar] [CrossRef]
- Conroy, T.; Pfeiffer, P.; Vilgrain, V.; Lamarca, A.; Seufferlein, T.; O’Reilly, E.M.; Hackert, T.; Golan, T.; Prager, G.; Haustermans, K.; et al. Pancreatic Cancer: ESMO Clinical Practice Guideline for Diagnosis, Treatment and Follow-Up☆. Ann. Oncol. 2023, 34, 987–1002. [Google Scholar] [CrossRef]
- Luo, J. KRAS Mutation in Pancreatic Cancer. Semin. Oncol. 2021, 48, 10–18. [Google Scholar] [CrossRef]
- Strickler, J.H.; Satake, H.; George, T.J.; Yaeger, R.; Hollebecque, A.; Garrido-Laguna, I.; Schuler, M.; Burns, T.F.; Coveler, A.L.; Falchook, G.S.; et al. Sotorasib in KRAS p.G12C–Mutated Advanced Pancreatic Cancer. N. Engl. J. Med. 2023, 388, 33–43. [Google Scholar] [CrossRef]
- Canon, J.; Rex, K.; Saiki, A.Y.; Mohr, C.; Cooke, K.; Bagal, D.; Gaida, K.; Holt, T.; Knutson, C.G.; Koppada, N.; et al. The Clinical KRAS(G12C) Inhibitor AMG 510 Drives Anti-Tumour Immunity. Nature 2019, 575, 217–223. [Google Scholar] [CrossRef]
- Hendriks, L.E.; Kerr, K.M.; Menis, J.; Mok, T.S.; Nestle, U.; Passaro, A.; Peters, S.; Planchard, D.; Smit, E.F.; Solomon, B.J.; et al. Oncogene-Addicted Metastatic Non-Small-Cell Lung Cancer: ESMO Clinical Practice Guideline for Diagnosis, Treatment and Follow-Up☆. Ann. Oncol. 2023, 34, 339–357. [Google Scholar] [CrossRef]
- Huang, L.; Guo, Z.; Wang, F.; Fu, L. KRAS Mutation: From Undruggable to Druggable in Cancer. Signal Transduct. Target. Ther. 2021, 6, 386. [Google Scholar] [CrossRef]
- Hunter, J.C.; Manandhar, A.; Carrasco, M.A.; Gurbani, D.; Gondi, S.; Westover, K.D. Biochemical and Structural Analysis of Common Cancer-Associated KRAS Mutations. Mol. Cancer Res. 2015, 13, 1325–1335. [Google Scholar] [CrossRef]
- Hong, D.S.; Fakih, M.G.; Strickler, J.H.; Desai, J.; Durm, G.A.; Shapiro, G.I.; Falchook, G.S.; Price, T.J.; Sacher, A.; Denlinger, C.S.; et al. KRAS G12C Inhibition with Sotorasib in Advanced Solid Tumors. N. Engl. J. Med. 2020, 383, 1207–1217. [Google Scholar] [CrossRef]
- Sersa, G.; Ursic, K.; Cemazar, M.; Heller, R.; Bosnjak, M.; Campana, L.G. Biological Factors of the Tumour Response to Electrochemotherapy: Review of the Evidence and a Research Roadmap. Eur. J. Surg. Oncol. 2021, 47, 1836–1846. [Google Scholar] [CrossRef]
- Hadzialjevic, B.; Omerzel, M.; Trotovsek, B.; Cemazar, M.; Jesenko, T.; Sersa, G.; Djokic, M. Electrochemotherapy Combined with Immunotherapy—A Promising Potential in the Treatment of Cancer. Front. Immunol. 2024, 14, 1336866. [Google Scholar] [CrossRef] [PubMed]
- Gehl, J.; Sersa, G.; Matthiessen, L.W.; Muir, T.; Soden, D.; Occhini, A.; Quaglino, P.; Curatolo, P.; Campana, L.G.; Kunte, C.; et al. Updated Standard Operating Procedures for Electrochemotherapy of Cutaneous Tumours and Skin Metastases. Acta Oncol. 2018, 57, 874–882. [Google Scholar] [CrossRef] [PubMed]
- Dežman, R.; Čemažar, M.; Serša, G.; Seliškar, A.; Erjavec, V.; Trotovšek, B.; Gašljevič, G.; Bošnjak, M.; Lampreht Tratar, U.; Kos, B.; et al. Safety and Feasibility of Electrochemotherapy of the Pancreas in a Porcine Model. Pancreas 2020, 49, 1168–1173. [Google Scholar] [CrossRef]
- Girelli, R.; Prejanò, S.; Cataldo, I.; Corbo, V.; Martini, L.; Scarpa, A.; Claudio, B. Feasibility and Safety of Electrochemotherapy (ECT) in the Pancreas: A Pre-Clinical Investigation. Radiol. Oncol. 2015, 49, 147–154. [Google Scholar] [CrossRef]
- Granata, V.; Fusco, R.; Piccirillo, M.; Palaia, R.; Petrillo, A.; Lastoria, S.; Izzo, F. Electrochemotherapy in Locally Advanced Pancreatic Cancer: Preliminary Results. Int. J. Surg. 2015, 18, 230–236. [Google Scholar] [CrossRef]
- Granata, V.; Fusco, R.; Setola, S.V.; Piccirillo, M.; Leongito, M.; Palaia, R.; Granata, F.; Lastoria, S.; Izzo, F.; Petrillo, A. Early Radiological Assessment of Locally Advanced Pancreatic Cancer Treated with Electrochemotherapy. World J. Gastroenterol. 2017, 23, 4767. [Google Scholar] [CrossRef]
- Čebron, Z.; Djokić, M.; Petrič, M.; Čemažar, M.; Bošnjak, M.; Serša, G.; Trotovšek, B. Intraoperative Electrochemotherapy of the Posterior Resection Surface after Pancreaticoduodenectomy: Preliminary Results of a Hybrid Approach Treatment of Pancreatic Cancer. Bioelectrochemistry 2024, 155, 108576. [Google Scholar] [CrossRef]
- Bosnjak, M.; Jesenko, T.; Markelc, B.; Cerovsek, A.; Sersa, G.; Cemazar, M. Sunitinib Potentiates the Cytotoxic Effect of Electrochemotherapy in Pancreatic Carcinoma Cells. Radiol. Oncol. 2022, 56, 164–172. [Google Scholar] [CrossRef]
- Bosnjak, M.; Jesenko, T.; Markelc, B.; Janzic, L.; Cemazar, M.; Sersa, G. PARP Inhibitor Olaparib Has a Potential to Increase the Effectiveness of Electrochemotherapy in BRCA1 Mutated Breast Cancer in Mice. Bioelectrochemistry 2021, 140, 107832, Erratum in Bioelecterochemstry 2021, 141, 107865. https://doi: 10.1016/j.bioelechem.2021.107865. [Google Scholar] [CrossRef]
- Dolinsek, T.; Prosen, L.; Cemazar, M.; Potocnik, T.; Sersa, G. Electrochemotherapy with Bleomycin Is Effective in BRAF Mutated Melanoma Cells and Interacts with BRAF Inhibitors. Radiol. Oncol. 2016, 50, 274–279. [Google Scholar] [CrossRef]
- Yang, F.; He, Y.; Ge, N.; Guo, J.; Yang, F.; Sun, S. Exploring KRAS-Mutant Pancreatic Ductal Adenocarcinoma: A Model Validation Study. Front. Immunol. 2023, 14, 1203459. [Google Scholar] [CrossRef]
- Xia, J.; Zheng, L.; Zhang, H.; Fan, Q.; Liu, H.; Wang, O.; Yan, H. Drug Resistance Analysis of Pancreatic Cancer Based on Universally Differentially Expressed Genes. Int. J. Mol. Sci. 2025, 26, 3936. [Google Scholar] [CrossRef] [PubMed]
- Muscella, A.; Cossa, L.G.; Stefàno, E.; Rovito, G.; Benedetti, M.; Fanizzi, F.P.; Marsigliante, S. Different Cytotoxic Effects of Cisplatin on Pancreatic Ductal Adenocarcinoma Cell Lines. Int. J. Mol. Sci. 2024, 25, 13662. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, P.; O’Donovan, T.R.; McKenna, S.L.; Forde, P.F. Electrochemotherapy Causes Caspase-Independent Necrotic-Like Death in Pancreatic Cancer Cells. Cancers 2019, 11, 1177. [Google Scholar] [CrossRef] [PubMed]
- Kesar, U.; Markelc, B.; Jesenko, T.; Ursic Valentinuzzi, K.; Cemazar, M.; Strojan, P.; Sersa, G. Effects of Electrochemotherapy on Immunologically Important Modifications in Tumor Cells. Vaccines 2023, 11, 925. [Google Scholar] [CrossRef]
- Gabriel, B.; Teissié, J. Control by Electrical Parameters of Short- and Long-Term Cell Death Resulting from Electropermeabilization of Chinese Hamster Ovary Cells. Biochim. Biophys. Acta Mol. Cell Res. 1995, 1266, 171–178. [Google Scholar] [CrossRef]
- Batista Napotnik, T.; Polajžer, T.; Miklavčič, D. Cell Death Due to Electroporation—A Review. Bioelectrochemistry 2021, 141, 107871. [Google Scholar] [CrossRef]
- Han, X.; Zhang, N.; Zhang, Y.; Li, Z.; Wang, Y.; Mao, L.; He, T.; Li, Q.; Zhao, J.; Chen, X.; et al. Survival Model Database of Human Digestive System Cells Exposed to Electroporation Pulses: An in Vitro and in Silico Study. Front. Public Health 2022, 10, 948562. [Google Scholar] [CrossRef]
- Teissié, J.; Eynard, N.; Gabriel, B.; Rols, M.P. Electropermeabilization of Cell Membranes. Adv. Drug Deliv. Rev. 1999, 35, 3–19. [Google Scholar] [CrossRef]
- Čemazar, M.; Jarm, T.; Miklavčič, D.; Maček Lebar, A.; Ihan, A.; Kopitar, N.A.; Serša, G. Effect of Electric-Field Intensity on Electropermeabilization and Electrosensitivity of Various Tumor-Cell Lines in Vitro. Electro- Magnetobiology 1998, 17, 263–272. [Google Scholar] [CrossRef]
- Komel, T.; Bosnjak, M.; Kranjc Brezar, S.; De Robertis, M.; Mastrodonato, M.; Scillitani, G.; Pesole, G.; Signori, E.; Sersa, G.; Cemazar, M. Gene Electrotransfer of IL-2 and IL-12 Plasmids Effectively Eradicated Murine B16.F10 Melanoma. Bioelectrochemistry 2021, 141, 107843. [Google Scholar] [CrossRef]
- Spector, S.A.; Tyndall, M.; Kelley, E. Effects of Acyclovir Combined with Other Antiviral Agents on Human Cytomegalovirus. Am. J. Med. 1982, 73, 36–39. [Google Scholar] [CrossRef]
Title 1 | Q | 2SE | Effect |
---|---|---|---|
ECT BLM 0.0001 + 0.25 sotorasib | −0.107 | 0.12 | additive |
ECT BLM 0.001 + 0.25 sotorasib | −0.062 | 0.08 | additive |
ECT BLM 0.01 + 0.25 sotorasib | −0.15 | 0.09 | additive |
ECT CDDP 0.05 + 0.25 sotorasib | 0.12 | 0.23 | additive |
ECT CDDP 0.5 + 0.25 sotorasib | 0.06 | 0.21 | additive |
ECT CDDP 5 + 0.25 sotorasib | 0.19 | 0.21 | additive |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jesenko, T.; Omerzel, M.; Zivic, T.; Sersa, G.; Cemazar, M. In Vitro Evaluation of Electrochemotherapy Combined with Sotorasib in Pancreatic Carcinoma Cell Lines Harboring Distinct KRAS Mutations. Int. J. Mol. Sci. 2025, 26, 7165. https://doi.org/10.3390/ijms26157165
Jesenko T, Omerzel M, Zivic T, Sersa G, Cemazar M. In Vitro Evaluation of Electrochemotherapy Combined with Sotorasib in Pancreatic Carcinoma Cell Lines Harboring Distinct KRAS Mutations. International Journal of Molecular Sciences. 2025; 26(15):7165. https://doi.org/10.3390/ijms26157165
Chicago/Turabian StyleJesenko, Tanja, Masa Omerzel, Tina Zivic, Gregor Sersa, and Maja Cemazar. 2025. "In Vitro Evaluation of Electrochemotherapy Combined with Sotorasib in Pancreatic Carcinoma Cell Lines Harboring Distinct KRAS Mutations" International Journal of Molecular Sciences 26, no. 15: 7165. https://doi.org/10.3390/ijms26157165
APA StyleJesenko, T., Omerzel, M., Zivic, T., Sersa, G., & Cemazar, M. (2025). In Vitro Evaluation of Electrochemotherapy Combined with Sotorasib in Pancreatic Carcinoma Cell Lines Harboring Distinct KRAS Mutations. International Journal of Molecular Sciences, 26(15), 7165. https://doi.org/10.3390/ijms26157165