Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (269)

Search Parameters:
Keywords = paddy irrigation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 10615 KiB  
Article
Cultivated Land Quality Evaluation and Constraint Factor Identification Under Different Cropping Systems in the Black Soil Region of Northeast China
by Changhe Liu, Yuzhou Sun, Xiangjun Liu, Shengxian Xu, Wentao Zhou, Fengkui Qian, Yunjia Liu, Huaizhi Tang and Yuanfang Huang
Agronomy 2025, 15(8), 1838; https://doi.org/10.3390/agronomy15081838 - 29 Jul 2025
Viewed by 185
Abstract
Cultivated land quality is a key factor in ensuring sustainable agricultural development. Exploring differences in cultivated land quality under distinct cropping systems is essential for developing targeted improvement strategies. This study takes place in Shenyang City—located in the typical black soil region of [...] Read more.
Cultivated land quality is a key factor in ensuring sustainable agricultural development. Exploring differences in cultivated land quality under distinct cropping systems is essential for developing targeted improvement strategies. This study takes place in Shenyang City—located in the typical black soil region of Northeast China—as a case area to construct a cultivated land quality evaluation system comprising 13 indicators, including organic matter, effective soil layer thickness, and texture configuration. A minimum data set (MDS) was separately extracted for paddy and upland fields using principal component analysis (PCA) to conduct a comprehensive evaluation of cultivated land quality. Additionally, an obstacle degree model was employed to identify the limiting factors and quantify their impact. The results indicated the following. (1) Both MDSs consisted of seven indicators, among which five were common: ≥10 °C accumulated temperature, available phosphorus, arable layer thickness, irrigation capacity, and organic matter. Parent material and effective soil layer thickness were unique to paddy fields, while landform type and soil texture were unique to upland fields. (2) The cultivated land quality index (CQI) values at the sampling point level showed no significant difference between paddy (0.603) and upland (0.608) fields. However, their spatial distributions diverged significantly; paddy fields were dominated by high-grade land (Grades I and II) clustered in southern areas, whereas uplands were primarily of medium quality (Grades III and IV), with broader spatial coverage. (3) Major constraint factors for paddy fields were effective soil layer thickness (21.07%) and arable layer thickness (22.29%). For upland fields, the dominant constraints were arable layer thickness (27.57%), organic matter (25.40%), and ≥10 °C accumulated temperature (23.28%). Available phosphorus and ≥10 °C accumulated temperature were identified as shared constraint factors affecting quality classification in both systems. In summary, cultivated land quality under different cropping systems is influenced by distinct limiting factors. The construction of cropping-system-specific MDSs effectively improves the efficiency and accuracy of cultivated land quality assessment, offering theoretical and methodological support for land resource management in the black soil regions of China. Full article
(This article belongs to the Section Innovative Cropping Systems)
Show Figures

Figure 1

15 pages, 2232 KiB  
Article
A Multi-Objective Approach for Improving Ecosystem Services and Mitigating Environmental Externalities in Paddy Fields and Its Emergy Analysis
by Naven Ramdat, Hongshuo Zou, Shiwen Sheng, Min Fu, Yingying Huang, Yaonan Cui, Yiru Wang, Rui Ding, Ping Xu and Xuechu Chen
Water 2025, 17(15), 2244; https://doi.org/10.3390/w17152244 - 29 Jul 2025
Viewed by 289
Abstract
Traditional intensive agricultural system impedes ecological functions, such as nutrient cycling and biodiversity conservation, resulting in excessive nitrogen discharge, CH4 emission, and ecosystem service losses. To enhance critical ecosystem services and mitigate environmental externalities in paddy fields, we developed a multi-objective agricultural [...] Read more.
Traditional intensive agricultural system impedes ecological functions, such as nutrient cycling and biodiversity conservation, resulting in excessive nitrogen discharge, CH4 emission, and ecosystem service losses. To enhance critical ecosystem services and mitigate environmental externalities in paddy fields, we developed a multi-objective agricultural system (MIA system), which combines two eco-functional units: paddy wetlands and Beitang (irrigation water collection pond). Pilot study results demonstrated that the MIA system enhanced biodiversity and inhibited pest outbreak, with only a marginal reduction in rice production compared with the control. Additionally, the paddy wetland effectively removed nitrogen, with removal rates of total nitrogen and dissolved inorganic nitrogen ranging from 0.06 to 0.65 g N m−2 d−1 and from 0.02 to 0.22 g N m−2 d−1, respectively. Continuous water flow in the paddy wetland reduced the CH4 emission by 84.4% compared with the static water conditions. Furthermore, a simulation experiment indicated that tide flow was more effective in mitigating CH4 emission, with a 68.3% reduction compared with the drying–wetting cycle treatment. The emergy evaluation demonstrated that the MIA system outperformed the ordinary paddy field when considering both critical ecosystem services and environmental externalities. The MIA system exhibited higher emergy self-sufficiency ratio, emergy yield ratio, and emergy sustainable index, along with a lower environmental load ratio. Additionally, the system required minimal transformation, thus a modest investment. By presenting the case of the MIA system, we provide a theoretical foundation for comprehensive management and assessment of agricultural ecosystems, highlighting its significant potential for widespread application. Full article
Show Figures

Figure 1

17 pages, 784 KiB  
Article
A Survey-Based Emission Inventory of Greenhouse Gases Released from Rice Production on Consolidated Land in the Red River Delta of Vietnam
by Dinh Thi Hai Van, Nguyen Thi Kim Oanh and Nguyen Thi Bich Yen
Atmosphere 2025, 16(7), 794; https://doi.org/10.3390/atmos16070794 - 30 Jun 2025
Viewed by 456
Abstract
In this study, relevant rice cultivation data were collected through a local survey, and the life cycle assessment (LCA) method was employed to quantify greenhouse gas (GHG) emissions from rice production on consolidated land in the Red River Delta (RRD). Systematic sampling was [...] Read more.
In this study, relevant rice cultivation data were collected through a local survey, and the life cycle assessment (LCA) method was employed to quantify greenhouse gas (GHG) emissions from rice production on consolidated land in the Red River Delta (RRD). Systematic sampling was used in face-to-face interviews with 45 rice farming households in a representative commune of Hai Duong province. Specific GHG emissions were significantly higher in the summer crop (averaged at 11.4 t CO2-eq/ha or 2.2 t CO2-eq/t grain) than in the spring crop (6.8 t CO2-eq/ha or 1.2 t CO2-eq/t grain). Methane was a dominant GHG emitted from paddy fields, contributing 84% of the total emissions of CO2-eq in the summer crop and 73% in the spring crop. Fertilizer use and N2O emissions accounted for 9% of emissions in the summer crop and 16% in the spring crop. Energy consumption for machinery and irrigation added a further 4% and 8%, respectively. Annually, as of 2023, the rice production activities in the RRD release 7.3 Tg of CO2-eq (100 years), a significant contribution to the national GHG emissions. GHG emissions under alternative scenarios of rice straw management were assessed. This study highlights the role of land consolidation in improving water management, which contributes to lowering emissions. Based on the findings, several mitigation measures could be identified, including improved irrigation practices, optimized fertilizer use, and the promotion of sustainable rice straw management practices. Full article
Show Figures

Figure 1

18 pages, 1601 KiB  
Article
Dual Role of Iron Oxides in Stabilizing Particulate and Mineral-Associated Organic Carbon Under Field Management in Paddies
by Hang Guo, Linxian Liao, Junzeng Xu, Wenyi Wang, Peng Chen, Zhihui Min, Yajun Luan, Yu Han and Keke Bao
Agriculture 2025, 15(13), 1385; https://doi.org/10.3390/agriculture15131385 - 27 Jun 2025
Viewed by 328
Abstract
The interactions between iron oxides and organic carbon within the particulate organic matter (POM) and mineral-associated organic matter (MAOM) fractions in paddy soils remain insufficiently understood, yet they are likely crucial for unlocking the carbon sequestration potential of these systems. In this study, [...] Read more.
The interactions between iron oxides and organic carbon within the particulate organic matter (POM) and mineral-associated organic matter (MAOM) fractions in paddy soils remain insufficiently understood, yet they are likely crucial for unlocking the carbon sequestration potential of these systems. In this study, we investigated the distribution of soil iron oxides and organic carbon within POM and MAOM fractions following 10 years of continuous irrigation and organic amendment management. We also examined the relationship between iron oxide transformation and these two SOC (soil organic carbon) fractions. Our results demonstrated that, under both flooded irrigation and controlled irrigation regimes, straw return or manure application effectively enhanced soil carbon sequestration, as evidenced by increases in both POM-C (POM-associated organic carbon) and MAOM-C (MAOM-associated organic carbon) contents. Meanwhile, exogenous carbon inputs promoted the transformation of crystalline iron oxides into short-range ordered iron oxides and iron oxide colloids, thereby enhancing the activation and complexation degree of soil iron oxides and facilitating the formation of Fe-bound organic carbon. Further regression analysis revealed that the activation degree of iron oxides had a stronger influence on POM-C, whereas the complexation degree had a greater effect on MAOM-C. This implies that exogenous carbon inputs are effective in promoting soil carbon sequestration in both flooded and water-saving irrigated rice paddies and that iron oxide transformation plays a key role in mediating this effect. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

22 pages, 2370 KiB  
Article
Effects of Land Use Conversion from Upland Field to Paddy Field on Soil Temperature Dynamics and Heat Transfer Processes
by Jun Yi, Mengyi Xu, Qian Ren, Hailin Zhang, Muxing Liu, Yuanhang Fei, Shenglong Li, Hanjiang Nie, Qi Li, Xin Ni and Yongsheng Wang
Land 2025, 14(7), 1352; https://doi.org/10.3390/land14071352 - 26 Jun 2025
Viewed by 348
Abstract
Investigating soil temperature and the heat transfer process is essential for understanding water–heat changes and energy balance in farmland. The conversion from upland fields (UFs) to paddy fields (PFs) alters the land cover, irrigation regimes, and soil properties, leading to differences in soil [...] Read more.
Investigating soil temperature and the heat transfer process is essential for understanding water–heat changes and energy balance in farmland. The conversion from upland fields (UFs) to paddy fields (PFs) alters the land cover, irrigation regimes, and soil properties, leading to differences in soil temperature, thermal properties, and heat fluxes. Our study aimed to quantify the effects of converting UFs to PFs on soil temperature and heat transfer processes, and to elucidate its underlying mechanisms. A long-term cultivated UF and a newly developed PF (converted from a UF in May 2015) were selected for this study. Soil water content (SWC) and temperature were monitored hourly over two years (June 2017 to June 2019) in five soil horizons (i.e., 10, 20, 40, 60, and 90 cm) at both fields. The mean soil temperature differences between the UF and PF at each depth on the annual scale varied from −0.1 to 0.4 °C, while they fluctuated more significantly on the seasonal (−0.9~1.8 °C), monthly (−1.5~2.5 °C), daily (−5.6~4.9 °C), and hourly (−7.3~11.3 °C) scales. The SWC in the PF was significantly higher than that in the UF, primarily due to differences in tillage practices, which resulted in a narrower range of soil temperature variation in the PF. Additionally, the SWC and soil physicochemical properties significantly altered the soil’s thermal properties. Compared with the UF, the volumetric heat capacity (Cs) at the depths of 10, 20, 40, 60, and 90 cm in the PF changed by 8.6%, 19.0%, 5.5%, −4.3%, and −2.9%, respectively. Meanwhile, the thermal conductivity (λθ) increased by 1.5%, 18.3%, 19.0%, 9.0%, and 25.6%, respectively. Moreover, after conversion from the UF to the PF, the heat transfer direction changed from downward to upward in the 10–20 cm soil layer, resulting in a 42.9% reduction in the annual average soil heat flux (G). Furthermore, the differences in G between the UF and PF were most significant in the summer (101.9%) and most minor in the winter (12.2%), respectively. The conversion of the UF to the PF increased the Cs and λθ, ultimately reducing the range of soil temperature variation and changing the direction of heat transfer, which led to more heat release from the soil. This study reveals the effects of farmland use type conversion on regional land surface energy balance, providing theoretical underpinnings for optimizing agricultural ecosystem management. Full article
Show Figures

Figure 1

19 pages, 1954 KiB  
Article
Biochar Makes Soil Organic Carbon More Labile, but Its Carbon Sequestration Potential Remains Large in an Alternate Wetting and Drying Paddy Ecosystem
by Wanning Dai, Zhengrong Bao, Jun Meng, Taotao Chen and Xiao Liang
Agronomy 2025, 15(7), 1547; https://doi.org/10.3390/agronomy15071547 - 25 Jun 2025
Cited by 1 | Viewed by 418
Abstract
Given the worsening global climate change that drives drought frequency and irrigation water shortages, implementing water-conserving practices like alternate wetting and drying (AWD) is now critically urgent. Biochar is widely used for soil carbon sequestration. However, there is limited information on the effects [...] Read more.
Given the worsening global climate change that drives drought frequency and irrigation water shortages, implementing water-conserving practices like alternate wetting and drying (AWD) is now critically urgent. Biochar is widely used for soil carbon sequestration. However, there is limited information on the effects of biochar on soil organic carbon (SOC) and its labile fractions in paddy fields, especially under AWD. A two-year field experiment was conducted with two irrigation regimes (CF: continuous flooding irrigation; AWD) as the main plots and 0 (B0) and 20 t ha−1 (B1) biochar as sub-plots. AWD had no effect on the SOC and particulate organic carbon (POC) content, but increased the dissolved organic carbon (DOC), microbial biomass carbon (MBC), easily oxidizable organic carbon (EOC), light fraction organic carbon (LFOC), and carbon pool management index (CPMI) at 0–10 cm depths, by 24.4–56.4%, 12.6–17.7%, 9.2–16.8%, 25.6–28.1%, and 11.3–18.6%, respectively. Biochar increased SOC while also increasing DOC, MBC, EOC, LFOC, POC, and CPMI at 0–20 cm depths, by 18.4–53.3%, 14.7–70.2%, 17.4–22.3%, 10.2–27.6%, 95.2–188.3%, 46.6–224%, and 5.6–27.2, respectively, making SOC more labile under AWD. Our results highlight that biochar still holds great potential for improving soil quality and carbon sequestration under AWD, and the combination of biochar and AWD can achieve the synergistic optimization of the food–water–carbon sequestration trade-off, which is beneficial to sustainable agricultural production. Full article
(This article belongs to the Special Issue Biochar’s Role in the Sustainability of Agriculture)
Show Figures

Figure 1

16 pages, 1699 KiB  
Article
Climate Change Adaptation Knowledge Among Rice Farmers in Lake Toba Highland, Indonesia
by Rizabuana Ismail, Erika Revida, Suwardi Lubis, Emmy Harso Kardhinata, Raras Sutatminingsih, Ria Manurung, Bisru Hafi, Rahma Hayati Harahap and Devi Sihotang
Sustainability 2025, 17(13), 5715; https://doi.org/10.3390/su17135715 - 21 Jun 2025
Viewed by 700
Abstract
Climate change has increasingly disrupted traditional farming systems, particularly in highland areas where environmental changes are more pronounced. This study explores how rice farmers in the Lake Toba highlands, Indonesia—both irrigated and non-irrigated—have gradually shifted away from traditional knowledge (TK) in response to [...] Read more.
Climate change has increasingly disrupted traditional farming systems, particularly in highland areas where environmental changes are more pronounced. This study explores how rice farmers in the Lake Toba highlands, Indonesia—both irrigated and non-irrigated—have gradually shifted away from traditional knowledge (TK) in response to climate challenges and what new adaptation strategies have emerged to sustain rice production. This study employed a descriptive qualitative approach with a broad and holistic perspective. Data were collected from 130 purposively selected rice farmers in two sub-districts: Harian (irrigated) and Pangururan (non-irrigated). Data were gathered through in-depth interviews guided by semi-structured statements, focusing on farmers’ lived experiences and adaptation strategies across the rice farming cycle—from planting to harvesting. The findings revealed that while the two groups differ in water access and environmental conditions, they show similar trends in shifting away from traditional indicators. Farmers increasingly adopted new adaptation strategies such as joining farmer groups, using water pumps in non-irrigated areas, switching to more climate-resilient crop varieties, and adjusting planting calendars based on personal observation rather than inherited natural signs. This shift from traditional to practical, experience-based strategies reflects farmers’ responses to the fading reliability of traditional knowledge under changing climatic conditions. Despite the loss of symbolic TK practices, farmers continue to demonstrate resilience through peer collaboration and contextual decision-making. This study highlights the need to strengthen farmer-led adaptation while preserving valuable elements of TK. Future research should expand across the Lake Toba highlands and incorporate quantitative methods to capture broader patterns of local adaptation. Full article
(This article belongs to the Section Social Ecology and Sustainability)
Show Figures

Figure 1

26 pages, 3626 KiB  
Article
Spatiotemporal Patterns of Cropland Sustainability in Black Soil Zones Based on Multi-Source Remote Sensing: A Case Study of Heilongjiang, China
by Jing Yang, Li Wang, Jinqiu Zou, Lingling Fan and Yan Zha
Remote Sens. 2025, 17(12), 2044; https://doi.org/10.3390/rs17122044 - 13 Jun 2025
Viewed by 366
Abstract
Sustainable cropland management is essential in maintaining national food security. In the black soil regions of China, which are key areas for commercial grain production, sustainable land use must be achieved urgently. To address the absence of integrated, large-scale, remote sensing-based sustainability frameworks [...] Read more.
Sustainable cropland management is essential in maintaining national food security. In the black soil regions of China, which are key areas for commercial grain production, sustainable land use must be achieved urgently. To address the absence of integrated, large-scale, remote sensing-based sustainability frameworks in China’s black soil zones, we developed a comprehensive evaluation system with 13 indicators from four dimensions: the soil capacity, the natural capacity, the management level, and crop productivity. With this system and the entropy weight method, we systematically analyzed the spatiotemporal patterns of cropland sustainability in the selected black soil regions from 2010 to 2020. Additionally, a diagnostic model was applied to identify the key limiting factors constraining improvements in cropland sustainability. The results revealed that cropland sustainability in Heilongjiang Province has increased by 7% over the past decade, largely in the central and northeastern regions of the study area, with notable gains in soil capacity (+15.6%), crop productivity (+22.4%), and the management level (+4.8%). While the natural geographical characteristics show no obvious improvement in the overall score, they display significant spatial heterogeneity (with better conditions in the central/eastern regions than in the west). Sustainability increased the most in sloping dry farmland and paddy fields, followed by plain dry farmland and arid windy farmland areas. The soil organic carbon content and effective irrigation amount were the main obstacles affecting improvements in cropland sustainability in black soil regions. Promoting the implementation of technical models, strengthening investment in cropland infrastructure, and enhancing farmer engagement in black soil conservation are essential in ensuring long-term cropland sustainability. These findings provide a solid foundation for sustainable agricultural development, contributing to global food security and aligning with SDG 2 (zero hunger). Full article
(This article belongs to the Special Issue Advances in Remote Sensing for Soil Property Mapping)
Show Figures

Figure 1

17 pages, 1053 KiB  
Review
Exploring the Roles of Plant Growth-Promoting Rhizobacteria (PGPR) and Alternate Wetting and Drying (AWD) in Sustainable Rice Cultivation
by Chesly Kit Kobua, Yu-Min Wang and Ying-Tzy Jou
Soil Syst. 2025, 9(2), 61; https://doi.org/10.3390/soilsystems9020061 - 11 Jun 2025
Viewed by 784
Abstract
Rice sustains a large global population, making its sustainable production vital for food security. Alternate wetting-and-drying (AWD) irrigation offers a promising approach to reducing water use in rice paddies but can impact grain yields. Plant growth-promoting rhizobacteria (PGPR) can enhance rice productivity under [...] Read more.
Rice sustains a large global population, making its sustainable production vital for food security. Alternate wetting-and-drying (AWD) irrigation offers a promising approach to reducing water use in rice paddies but can impact grain yields. Plant growth-promoting rhizobacteria (PGPR) can enhance rice productivity under AWD cultivation conditions. This review explores integrating PGPR into AWD systems, focusing on their mechanisms for promoting growth and water stress resilience. It examines diverse microbial communities, particularly bacteria, and their contributions to nutrient acquisition, root development, and other beneficial processes in rice under fluctuating moisture, as well as the influence of AWD on rice’s structural and physiological development. The challenges and opportunities of AWD are also addressed, along with the importance of bacterial selection and interactions with the native soil microbiome. This synthesizes current research to provide an overview of PGPR’s potential to improve sustainable and productive rice cultivation under AWD. Future studies can leverage powerful tools such as e-DNA and NGS for a deeper understanding of these complex interactions. Full article
(This article belongs to the Special Issue Microbial Community Structure and Function in Soils)
Show Figures

Figure 1

13 pages, 3247 KiB  
Article
Multiscale Water Cycle Mechanisms and Return Flow Utilization in Paddy Fields of Plain Irrigation Districts
by Jie Zhang, Yujiang Xiong, Peihua Jiang, Niannian Yuan and Fengli Liu
Agriculture 2025, 15(11), 1178; https://doi.org/10.3390/agriculture15111178 - 29 May 2025
Viewed by 347
Abstract
This study aimed to reveal the characteristics of returned water in paddy fields at different scales and the rules of its reuse in China’s Ganfu Plain Irrigation District through multiscale (field, lateral canal, main canal, small watershed) observations, thereby optimizing water resource management [...] Read more.
This study aimed to reveal the characteristics of returned water in paddy fields at different scales and the rules of its reuse in China’s Ganfu Plain Irrigation District through multiscale (field, lateral canal, main canal, small watershed) observations, thereby optimizing water resource management and improving water use efficiency. Subsequent investigations during the 2021–2022 double-cropping rice seasons revealed that the tillering stage emerged as a critical drainage period, with 49.5% and 52.2% of total drainage occurring during this phase in early and late rice, respectively. Multiscale drainage heterogeneity displayed distinct patterns, with early rice following a “decrease-increase” trend while late rice exhibited “decrease-peak-decline” dynamics. Smaller scales (field and lateral canal) produced 37.1% higher drainage than larger scales (main canal and small watershed) during the reviving stage. In contrast, post-jointing-booting stages showed 103.6% higher drainage at larger scales. Return flow utilization peaked at the field-lateral canal scales, while dynamic regulation of Fangxi Lake’s storage capacity achieved 60% reuse efficiency at the watershed scale. We propose an integrated optimization strategy combining tillering-stage irrigation/drainage control, multiscale hydraulic interception (control gates and pond weirs), and dynamic watershed storage scheduling. This framework provides theoretical and practical insights for enhancing water use efficiency and mitigating non-point source pollution in plain irrigation districts. Full article
(This article belongs to the Section Agricultural Water Management)
Show Figures

Figure 1

20 pages, 3031 KiB  
Article
Effects of Drainage Control on Non-Point Source Pollutant Loads in the Discharges from Rice Paddy Fields
by Sunyoung Jeon, Dogun Kim and Seokoh Ko
Water 2025, 17(11), 1650; https://doi.org/10.3390/w17111650 - 29 May 2025
Viewed by 514
Abstract
Non-point source (NPS) pollution from agriculture accounts for more than 20% of the total pollution load in the Republic of Korea, with the highest nutrient balance among OECD countries. Rice paddy fields are among the most important NPSs because of their large area, [...] Read more.
Non-point source (NPS) pollution from agriculture accounts for more than 20% of the total pollution load in the Republic of Korea, with the highest nutrient balance among OECD countries. Rice paddy fields are among the most important NPSs because of their large area, intensive fertilizer use, intensive use of irrigation water, and subsequent drainage. Therefore, the use of controlled drainage in paddy fields (Test) was evaluated for reduction in the discharged volumes and pollutant loads in drainage and stormwater runoff in comparison to plots using traditional drainages (Control). The results show that the loads were highly variable and that the reductions in the annual load of biochemical oxygen demand (BOD), suspended solid (SS), total nitrogen (T-N), total phosphorus (T-P), and total organic carbon (TOC) in the Test compared to that of the Control were 31.0 ± 28.9%, 83.5 ± 11.8%, 65.4 ± 12.2%, 69.1 ± 21.7%, and 64.9 ± 12.9%, respectively. It was shown that discharge in the post-harrowing and transplanting drainage (HD) was predominantly responsible for the total loads; therefore, the load reduction in HD was evaluated further at additional sites. The reduction at all studied sites was highly variable and as follows: 30.0 ± 33.6%, 70.9 ± 24.6%, 32.2 ± 45.5%, 45.7 ± 37.0%, and 27.0 ± 71.5%, for BOD, SS, T-N, T-P, and TOC, respectively. It was also demonstrated that controlled drainage contributed significantly to reducing the loads and volume of stormwater runoff from paddy fields. Correlations between paddy field conditions and multiple regression showed that the loads were significantly related to paddy water quality. The results of this study strongly suggest that controlled drainage is an excellent alternative for reducing the discharge of NPS pollutants from paddy fields. It is also suggested that the best discharge control would be achieved by combinations of various discharge mitigation alternatives, such as the management of irrigation, drainage, and fertilization, as well as drainage treatment, supported by more field tests, identification of the fates of pollutants, effects of rainfall, and climate changes. Full article
(This article belongs to the Special Issue Basin Non-Point Source Pollution)
Show Figures

Figure 1

23 pages, 36340 KiB  
Article
Understanding Unsustainable Irrigation Practices in a Regionally Contested Large River Basin in Peninsular India Through the Lens of the Water–Energy–Food–Environment (WEFE) Nexus
by Bhawana Gupta and John S. Rowan
Water 2025, 17(11), 1644; https://doi.org/10.3390/w17111644 - 29 May 2025
Viewed by 817
Abstract
Water management is a long-standing source of dispute between the riparian states of Karnataka and Tamil Nadu. Recently, these disputes have intensified due to impacts from climate change and Bangalore’s rapid growth to megacity status. Despite well-defined national water governance instruments, competition between [...] Read more.
Water management is a long-standing source of dispute between the riparian states of Karnataka and Tamil Nadu. Recently, these disputes have intensified due to impacts from climate change and Bangalore’s rapid growth to megacity status. Despite well-defined national water governance instruments, competition between state actors and limited access to reliable hydrometric data have led to a fragmented regulatory regime, allowing unchecked exploitation of surface and groundwater resources. Meanwhile, subsidised energy for groundwater pumping incentivises the unsustainable irrigation of high-value, water-intensive crops, resulting in overextraction and harm to aquatic ecosystems. Here, we employ a water–energy–food–environment (WEFE) nexus approach to examine the socio-political, economic, and environmental factors driving unsustainable irrigation practices in the Cauvery River Basin (CRB) of Southern India. Our methodology integrates spatially explicit analysis using digitised irrigation census data, theoretical energy modelling, and crop water demand simulations to assess groundwater use patterns and energy consumption for irrigation and their links with governance and economic growth. We analyse spatio-temporal irrigation patterns across the whole basin (about 85,000 km2) and reveal the correlation between energy access and groundwater extraction. Our study highlights four key findings. First, groundwater pumping during the Rabi (short-rain) season consumes 24 times more energy than during the Kharif (long-rain) season, despite irrigating 40% less land. Second, the increasing depth of borewells, driven by falling water table levels, is a major factor in rising energy consumption. Third, energy input is highest in regions dominated by paddy cultivation. Fourth, water pumping in the Cauvery region accounts for about 16% of India’s agricultural energy use, despite covering only 4% of the country’s net irrigated area. Our study reinforces the existing literature advocating for holistic, catchment-wide planning, aligned with all UN Sustainable Development Goals. Full article
Show Figures

Figure 1

11 pages, 4020 KiB  
Article
Responses of Soil Microbial Communities to Biogas Slurry Irrigation in Paddy Fields: Interactions with Environmental Factors
by Die Hu, Man Yu, Yuying Qiao, Yiping Shang, Yufei Yan, Shunyue Wang and Xiaoyang Chen
Water 2025, 17(11), 1577; https://doi.org/10.3390/w17111577 - 23 May 2025
Viewed by 426
Abstract
Biogas slurry (BS), a nutrient-rich byproduct of anaerobic digestion, is increasingly utilized in agriculture to enhance soil fertility and crop productivity. However, the long-term effects of BS on soil microbial communities in paddy fields have not been thoroughly investigated. This study investigated the [...] Read more.
Biogas slurry (BS), a nutrient-rich byproduct of anaerobic digestion, is increasingly utilized in agriculture to enhance soil fertility and crop productivity. However, the long-term effects of BS on soil microbial communities in paddy fields have not been thoroughly investigated. This study investigated the impacts of continuous BS irrigation over 0–3 years on soil microbial diversity, community composition, and their relationships with environmental factors in southeastern China. The results showed that bacterial diversity (Shannon index) significantly decreased from 6.96 (0 year) to 6.58 (3 years) (p < 0.05), while fungal diversity displayed a U-shaped trend, initially declining to 4.13 (1 year) and subsequently recovering to 4.86 (3 years) (p < 0.05). Dominant bacterial phyla such as Chloroflexi and Bacteroidetes increased in abundance under BS treatment, whereas Gemmatimonadetes decreased. Fungal communities shifted, with Mortierellomycota replacing Basidiomycota as the dominant phylum. Redundancy analysis (RDA) accounted for 91% and 74.9% of the variance in bacterial and fungal communities, respectively. Correlation analysis further indicated that soil available nitrogen and Cr were the primary drivers of bacterial community composition (p < 0.001), whereas soil available potassium and Cd were the key factors influencing the fungal community structure (p < 0.001). This study highlights that BS application alters microbial dynamics, favoring anaerobic bacteria and suppressing pathogenic fungi like Fusarium, thereby supporting sustainable soil management in rice cultivation systems. Full article
Show Figures

Figure 1

21 pages, 2943 KiB  
Article
Microstructure and Microorganisms Alternation of Paddy Soil: Interplay of Biochar and Water-Saving Irrigation
by Jiazhen Hu, Shihong Yang, Wim M. Cornelis, Mairan Zhang, Qian Huang, Haonan Qiu, Suting Qi, Zewei Jiang, Yi Xu and Lili Zhu
Plants 2025, 14(10), 1498; https://doi.org/10.3390/plants14101498 - 16 May 2025
Viewed by 404
Abstract
Biochar application and controlled irrigation (CI) enhance water conservation, lower emissions, and increase crop yields. However, the synergistic effects on the relationship between paddy soil microstructure and microbiome remain poorly understood. This study investigates the impact of different irrigation regimes and biochar applications [...] Read more.
Biochar application and controlled irrigation (CI) enhance water conservation, lower emissions, and increase crop yields. However, the synergistic effects on the relationship between paddy soil microstructure and microbiome remain poorly understood. This study investigates the impact of different irrigation regimes and biochar applications on soil physicochemical properties, soil microstructure, and the composition and functions of soil microorganisms in paddy soil. The CA treatment (CI with 60 t/hm2 biochar) showed higher abundances of Mycobacteriaceae, Streptomycetaceae, Comamonadaceae, and Nocardioidaceae than the CK treatment (CI without biochar), which was attributed to two main factors. First, CA increased the pore throat equivalent radius (EqR), throat surface area (SAR), total throat number (TTN), volume fraction (VF), and connected porosity (CP) by 1.47–9.61%, 7.50–25.21%, 41.55–45.99%, 61.12–73.04%, and 46.36–93.75%, respectively, thereby expanding microbial habitats and providing refuges for microorganisms. Second, CA increased the cation exchange capacity (CEC), mean weight diameter (MWD), soil organic carbon (SOC), and total nitrogen (TN) by 22.14–25.06%, 42.24–56.61%, 22.98–56.5%, and 9.41–87.83%, respectively, reinforcing soil structural stability and carbon storage, which promoted microbial community diversity. FK (flood irrigation without biochar) showed no significant correlations with these environmental factors. Compared to CK soil metabolites at Level 2 and Level 3, FK exhibited higher levels of the citrate cycle, indicating that changes in water and oxygen environments due to CI reduced soil organic matter decomposition and carbon cycle. CA and CK strongly correlated with the soil microstructure (VF, CP, TTN, SAR, EqR), and CA notably enhanced soil metabolites related to the synthesis and degradation of ketone bodies, suggesting that biochar can mitigate the adverse metabolomic effects of CI. These results indicate that biochar application in CI paddy fields highlights the critical role of soil microstructure in microbial composition and function and better supports soil sustainability. Full article
Show Figures

Figure 1

28 pages, 12669 KiB  
Article
Paddy Field Scale Evapotranspiration Estimation Based on Two-Source Energy Balance Model with Energy Flux Constraints and UAV Multimodal Data
by Tian’ao Wu, Kaihua Liu, Minghan Cheng, Zhe Gu, Weihua Guo and Xiyun Jiao
Remote Sens. 2025, 17(10), 1662; https://doi.org/10.3390/rs17101662 - 8 May 2025
Cited by 5 | Viewed by 673
Abstract
Accurate evapotranspiration (ET) monitoring is important for making scientific irrigation decisions. Unmanned aerial vehicle (UAV) remote sensing platforms allow for the flexible and efficient acquisition of field data, providing a valuable approach for large-scale ET monitoring. This study aims to enhance [...] Read more.
Accurate evapotranspiration (ET) monitoring is important for making scientific irrigation decisions. Unmanned aerial vehicle (UAV) remote sensing platforms allow for the flexible and efficient acquisition of field data, providing a valuable approach for large-scale ET monitoring. This study aims to enhance the accuracy and reliability of ET estimation in rice paddies through two synergistic approaches: (1) integrating the energy flux diurnal variations into the Two-Source Energy Balance (TSEB) model, which considers the canopy and soil temperature components separately, for physical estimation and (2) optimizing the flight altitudes and observation times for thermal infrared (TIR) data acquisition to enhance the data quality. The results indicated that the energy flux in rice paddies followed a single-peak diurnal pattern dominated by net radiation (Rn). The diurnal variation in the ratio of soil heat flux (G) to Rn could be well fitted by the cosine function with a max value and peak time (R2 > 0.90). The optimal flight altitude and time (50 m and 11:00 am) for improved identification of temperature differentiation between treatments were further obtained through cross-comparison. These adaptations enabled the TSEB model to achieve a satisfactory accuracy in estimating energy flux compared to the single-source SEBAL model, with R2 values of 0.8501 for RnG and 0.7503 for latent heat (LE), as well as reduced rRMSE values. In conclusion, this study presents a reliable method for paddy field scale ET estimation based on a calibrated TSEB model. Moreover, the integration of ground and UAV multimodal data highlights its potential for precise irrigation practices and sustainable water resource management. Full article
Show Figures

Figure 1

Back to TopTop