Spatiotemporal Patterns of Cropland Sustainability in Black Soil Zones Based on Multi-Source Remote Sensing: A Case Study of Heilongjiang, China
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Preprocessing
2.3. Method for Evaluation of Cropland Sustainability
2.3.1. Indicator Selection
- Soil capacity characteristics
- 2.
- Natural capacity characteristics
- 3.
- Management level characteristics
- 4.
- Cropland productivity characteristics
2.3.2. Calculation of the Evaluation Indicator Weights
- 1.
- Standardization of indicator data
- 2.
- Calculation of the entropy value
- 3.
- Calculation of the indicator weight
2.3.3. Calculation of the Cropland Sustainability Score
2.3.4. Obstacle Factor Diagnosis Model and Spatial Autocorrelation Analysis
3. Results
3.1. Spatiotemporal Changes in Cropland Sustainability in Heilongjiang Province
3.2. Spatiotemporal Pattern of Cropland Sustainability in Black Soil Zones of Heilongjiang Province
3.3. Obstacle Factors of Cropland Sustainability
4. Discussion
4.1. Construction of a Comprehensive Cropland Sustainability Evaluation Indicator System for the Black Soil Region
4.2. Potential Driving Mechanisms of the Spatial and Temporal Changes in Cropland Sustainability
4.3. Suggestions for Improvements in Cropland Sustainability
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, X.; He, Y.; Jiang, H. China’s Food Security during the 14th Five-Year Plan Period: Situation, Problems and Counter Measures. Reform 2020, 9, 27–39. [Google Scholar]
- Kong, X. Food Security: The Role of Cultivated Land Cannot Be Ignored—A Response to Mr. MAO Yushi’s “1.8 Billion Mu Red Line Has Nothing to Do with Food Security”. China Land 2011, 6, 57–60. [Google Scholar]
- Wang, J.; Tao, P.; Yuan, Y.; Li, Z.; Yang, J. PSR-Based Evaluation of the Cultivated Land Quality in Hailun City of Heilongjiang Province. Geol. Resour. 2020, 29, 525–532. [Google Scholar] [CrossRef]
- Xiang, H.; Zhang, J.; Mao, D.; Wang, Z.; Qiu, Z.; Yan, H. Identifying Spatial Similarities and Mismatches between Supply and Demand of Ecosystem Services for Sustainable Northeast China. Ecol. Indic. 2022, 134, 108501. [Google Scholar] [CrossRef]
- Hurni, H.; Giger, M.; Liniger, H.; Mekdaschi Studer, R.; Messerli, P.; Portner, B.; Schwilch, G.; Wolfgramm, B.; Breu, T. Soils, Agriculture and Food Security: The Interplay between Ecosystem Functioning and Human Well-Being. Curr. Opin. Environ. Sustain. 2015, 15, 25–34. [Google Scholar] [CrossRef]
- Lessmann, M.; Ros, G.H.; Young, M.D.; de Vries, W. Global Variation in Soil Carbon Sequestration Potential through Improved Cropland Management. Glob. Change Biol. 2022, 28, 1162–1177. [Google Scholar] [CrossRef]
- Qi, X.; Feng, K.; Sun, L.; Zhao, D.; Huang, X.; Zhang, D.; Liu, Z.; Baiocchi, G. Rising Agricultural Water Scarcity in China Is Driven by Expansion of Irrigated Cropland in Water Scarce Regions. One Earth 2022, 5, 1139–1152. [Google Scholar] [CrossRef]
- Yang, R.; Xu, S.; Gu, B.; He, T.; Zhang, H.; Fang, K.; Xiao, W.; Ye, Y. Stabilizing Unstable Cropland towards Win-Win Sustainable Development Goals. Environ. Impact Assess. Rev. 2024, 105, 107395. [Google Scholar] [CrossRef]
- Xu, W.; Yang, X.; Cui, B.; Xu, Z. Analysis of the Soil Thickness and the Degradation Degree of the Typical Slope Farmland in the Black Soil Region of Northeast China. Sci. Soil Water Conserv. 2021, 19, 28–36. [Google Scholar] [CrossRef]
- Liang, X.; Jin, X.; Han, B.; Sun, R.; Li, H.; Zhang, X.; Lin, J. Strategic Analysis and Path Exploration of “Grain Storage in Land and Technology” in the New Era. Chin. J. Agric. Resour. Reg. Plan. 2022, 43, 1–12. [Google Scholar]
- Duan, D.; Sun, X.; Wang, C.; Zha, Y.; Yu, Q.; Yang, P. A Remote Sensing Approach to Estimating Cropland Sustainability in the Lateritic Red Soil Region of China. Remote Sens. 2024, 16, 1069. [Google Scholar] [CrossRef]
- Miao, Y.; Stewart, B.A.; Zhang, F. Long-Term Experiments for Sustainable Nutrient Management in China. A Review. Agron. Sustain. Dev. 2011, 31, 397–414. [Google Scholar] [CrossRef]
- Wen, L.; Lei, M.; Zhang, B.; Kong, X.; Liao, Y.; Chen, W. Significant Increase in Gray Water Footprint Enhanced the Degradation Risk of Cropland System in China since 1990. J. Clean. Prod. 2023, 423, 138715. [Google Scholar] [CrossRef]
- Zhong, W.; Zhong, C. Evaluation Index System and Evaluation of Sustainable Utilization of Cultivated Land in the Southwest Frontier Mountain Area. Chin. J. Agric. Resour. Reg. Plan. 2018, 39, 48–53, 217. [Google Scholar]
- Li, M.; Zhou, Y.; Wang, Y.; Singh, V.P.; Li, Z.; Li, Y. An Ecological Footprint Approach for Cropland Use Sustainability Based on Multi-Objective Optimization Modelling. J. Environ. Manag. 2020, 273, 111147. [Google Scholar] [CrossRef]
- Xie, H.; Huang, Y.; Choi, Y.; Shi, J. Evaluating the Sustainable Intensification of Cultivated Land Use Based on Emergy Analysis. Technol. Forecast. Soc. Change 2021, 165, 120449. [Google Scholar] [CrossRef]
- Kühling, I.; Atoev, S.; Trautz, D. Sustainable Intensification in Dryland Cropping Systems—Perspectives for Adaptions across the Western Siberian Grain Belt. Agriculture 2018, 8, 63. [Google Scholar] [CrossRef]
- Okolo, C.C.; Dippold, M.A.; Gebresamuel, G.; Zenebe, A.; Haile, M.; Bore, E. Assessing the Sustainability of Land Use Management of Northern Ethiopian Drylands by Various Indicators for Soil Health. Ecol. Indic. 2020, 112, 106092. [Google Scholar] [CrossRef]
- Li, Q.; Guo, W.; Sun, X.; Yang, A.; Qu, S.; Chi, W. The Differentiation in Cultivated Land Quality between Modern Agricultural Areas and Traditional Agricultural Areas: Evidence from Northeast China. Land 2021, 10, 842. [Google Scholar] [CrossRef]
- Zhao, C.; Zhou, Y.; Jiang, J.; Xiao, P.; Wu, H. Spatial Characteristics of Cultivated Land Quality Accounting for Ecological Environmental Condition: A Case Study in Hilly Area of Northern Hubei Province, China. Sci. Total Environ. 2021, 774, 145765. [Google Scholar] [CrossRef]
- Song, W.; Zhang, H.; Zhao, R.; Wu, K.; Li, X.; Niu, B.; Li, J. Study on Cultivated Land Quality Evaluation from the Perspective of Farmland Ecosystems. Ecol. Indic. 2022, 139, 108959. [Google Scholar] [CrossRef]
- Areal, F.J.; Jones, P.J.; Mortimer, S.R.; Wilson, P. Measuring Sustainable Intensification: Combining Composite Indicators and Efficiency Analysis to Account for Positive Externalities in Cereal Production. Land Use Policy 2018, 75, 314–326. [Google Scholar] [CrossRef]
- Zou, R.; Peng, Y.; Yang, H.; Hu, Y.; Liu, L.; Mao, X. Multifunctional Evaluation and Analysis of Synergistic Relationships: A Cognitive Framework for the Sustainable Use of Cropland in China. Agronomy 2024, 14, 284. [Google Scholar] [CrossRef]
- Duan, D.; Sun, X.; Liang, S.; Sun, J.; Fan, L.; Chen, H.; Xia, L.; Zhao, F.; Yang, W.; Yang, P. Spatiotemporal Patterns of Cultivated Land Quality Integrated with Multi-Source Remote Sensing: A Case Study of Guangzhou, China. Remote Sens. 2022, 14, 1250. [Google Scholar] [CrossRef]
- Tang, M.; Wang, C.; Ying, C.; Mei, S.; Tong, T.; Ma, Y.; Wang, Q. Research on Cultivated Land Quality Restriction Factors Based on Cultivated Land Quality Level Evaluation. Sustainability 2023, 15, 7567. [Google Scholar] [CrossRef]
- Wan, W.; Liu, Z.; Li, B.; Fang, H.; Wu, H.; Yang, H. Evaluating Soil Erosion by Introducing Crop Residue Cover and Anthropogenic Disturbance Intensity into Cropland C-Factor Calculation: Novel Estimations from a Cropland-Dominant Region of Northeast China. Soil Tillage Res. 2022, 219, 105343. [Google Scholar] [CrossRef]
- Zhang, T.; Lei, Q.; Du, X.; Luo, J.; An, M.; Fan, B.; Zhao, Y.; Wu, S.; Ma, Y.; Liu, H. Adaptability Analysis and Model Development of Various LS-Factor Formulas in RUSLE Model: A Case Study of Fengyu River Watershed, China. Geoderma 2023, 439, 116664. [Google Scholar] [CrossRef]
- Lesk, C.; Anderson, W.; Rigden, A.; Coast, O.; Jägermeyr, J.; McDermid, S.; Davis, K.F.; Konar, M. Compound Heat and Moisture Extreme Impacts on Global Crop Yields under Climate Change. Nat. Rev. Earth Environ. 2022, 3, 872–889. [Google Scholar] [CrossRef]
- Gu, W.; Ma, G.; Wang, R.; Scherer, L.; He, P.; Xia, L.; Zhu, Y.; Bi, J.; Liu, B. Climate Adaptation through Crop Migration Requires a Nexus Perspective for Environmental Sustainability in the North China Plain. Nat. Food 2024, 5, 569–580. [Google Scholar] [CrossRef]
- Shi, Y.; Duan, W.; Fleskens, L.; Li, M.; Hao, J. Study on Evaluation of Regional Cultivated Land Quality Based on Resource-Asset-Capital Attributes and Its Spatial Mechanism. Appl. Geogr. 2020, 125, 102284. [Google Scholar] [CrossRef]
- Chen, A.; Hao, Z.; Wang, R.; Zhao, H.; Hao, J.; Xu, R.; Duan, H. Cultivated Land Sustainable Use Evaluation from the Perspective of the Water–Land–Energy–Food Nexus: A Case Study of the Major Grain-Producing Regions in Quzhou, China. Agronomy 2023, 13, 2362. [Google Scholar] [CrossRef]
- Lyu, X.; Peng, W.; Niu, S.; Qu, Y.; Xin, Z. Evaluation of Sustainable Intensification of Cultivated Land Use According to Farming Households’ Livelihood Types. Ecol. Indic. 2022, 138, 108848. [Google Scholar] [CrossRef]
- Li, Y.; Chang, C.; Zhao, Y.; Wang, Z.; Li, T.; Li, J.; Dou, J.; Fan, R.; Wang, Q.; Yang, J.; et al. Evaluation System Transformation of Multi-Scale Cultivated Land Quality and Analysis of Its Spatio-Temporal Variability. Sustainability 2021, 13, 10100. [Google Scholar] [CrossRef]
- Xu, W.; Jin, J.; Jin, X.; Xiao, Y.; Ren, J.; Liu, J.; Sun, R.; Zhou, Y. Analysis of Changes and Potential Characteristics of Cultivated Land Productivity Based on MODIS EVI: A Case Study of Jiangsu Province, China. Remote Sens. 2019, 11, 2041. [Google Scholar] [CrossRef]
- Duan, D.; Li, X.; Liu, Y.; Meng, Q.; Li, C.; Lin, G.; Guo, L.; Guo, P.; Tang, T.; Su, H.; et al. County-Level Cultivated Land Quality Evaluation Using Multi-Temporal Remote Sensing and Machine Learning Models: From the Perspective of National Standard. Remote Sens. 2024, 16, 3427. [Google Scholar] [CrossRef]
- Wang, M.; Liu, X.; Liu, Z.; Wang, F.; Li, X.; Hou, G.; Zhao, S. Evaluation and Driving Force Analysis of Cultivated Land Quality in Black Soil Region of Northeast China. Chin. Geogr. Sci. 2023, 33, 601–615. [Google Scholar] [CrossRef]
- Zhan, X.; Ding, S.; Ding, Q.; Mei, S.; Tong, T.; Ma, Y.; Ma, Z.; Guo, N. Analysis of Impact of Well-Facilitated Farmland Construction—Engineering Measures on Farmland Quality. Sustainability 2023, 15, 6443. [Google Scholar] [CrossRef]
- Zhong, J.; Li, Z.; Zhang, D.; Yang, J.; Zhu, J. An Evaluation Framework for Urban Ecological Compensation Priority in China Based on Meta-Analysis and Fuzzy Comprehensive Evaluation. Ecol. Indic. 2024, 158, 111284. [Google Scholar] [CrossRef]
- Molla, S.H. Rukhsana Fuzzy-AHP and GIS-Based Modeling for Food Grain Cropping Suitability in Sundarban, India. Nat. Resour. Res. 2024, 33, 1913–1940. [Google Scholar] [CrossRef]
- Li, Y.; Chang, C.; Wang, Z.; Li, T.; Li, J.; Zhao, G. Identification of Cultivated Land Quality Grade Using Fused Multi-Source Data and Multi-Temporal Crop Remote Sensing Information. Remote Sens. 2022, 14, 2109. [Google Scholar] [CrossRef]
- Zhang, X.; Qiao, W.; Lu, Y.; Sun, S.; Yin, Q. Construction and Application of Urban Water System Connectivity Evaluation Index System Based on PSR-AHP-Fuzzy Evaluation Method Coupling. Ecol. Indic. 2023, 153, 110421. [Google Scholar] [CrossRef]
- Cheng, H.; Zhu, L.; Meng, J. Fuzzy Evaluation of the Ecological Security of Land Resources in Mainland China Based on the Pressure-State-Response Framework. Sci. Total Environ. 2022, 804, 150053. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, Y.; Li, X.; Feng, R.; Gong, Y.; Jiang, Y.; Guan, X.; Li, S. Combing Remote Sensing Information Entropy and Machine Learning for Ecological Environment Assessment of Hefei-Nanjing-Hangzhou Region, China. J. Environ. Manag. 2023, 325, 116533. [Google Scholar] [CrossRef]
- Cao, X.; Wei, C.; Xie, D. Evaluation of Scale Management Suitability Based on the Entropy-TOPSIS Method. Land 2021, 10, 416. [Google Scholar] [CrossRef]
- Yang, J.; Song, Q.; Lu, M.; Zha, Y.; Wu, W. The Supporting Path of Science and Technology to the Construction of China’s “Black Soil Granary”. Chin. J. Agric. Resour. Reg. Plan. 2025, 46, 13–21. [Google Scholar]
- Wang, J.; Xu, X.; Pei, J.; Li, S. Current Situations of Black Soil Quality and Facing Opportunities and Challenges in Northeast China. Chin. J. Soil Sci. 2021, 52, 695–701. [Google Scholar] [CrossRef]
- Gao, J.; Zhu, Y.; Zhao, R. Black Soil Protection in China: Policy Evolution, Realistic Obstacles and Optimization Paths. J. Northeast. Univ. (Soc. Sci.) 2024, 26, 82–89. [Google Scholar] [CrossRef]
- Ministry of Agriculture and Rural Affairs of the People’s Republic of China; National Development and Reform Commission of the People’s Republic of China; Ministry of Finance of the People’s Republic of China; Ministry of Land and Resources; Ministry of Environmental Protection; Ministry of Water Resources. Notice of the Ministry of Agriculture and Rural Affairs, National Development and Reform Commission, Ministry of Finance, Ministry of Natural Resources, Ministry of Ecology and Environment, Joint Circular of Ministry of Water Resources on Printing and Distributing the Northeast China Black Soil Protection Master Plan (2017–2030); Ministry of Agriculture and Rural Affairs of the People’s Republic of China: Beijing, China, 2017.
- Ministry of Agriculture and Rural Affairs of the People’s Republic of China; National Development and Reform Commission of the People’s Republic of China; Ministry of Finance of the People’s Republic of China; Ministry of Water Resources; Ministry of Science and Technology of the People’s Republic of China; Chinese Academy of Sciences; National Forestry and Grassland Administration. Notice of the Ministry of Agriculture and Rural Affairs, National Development and Reform Commission, Ministry of Finance, Ministry of Water Resources, Ministry of Science and Technology, Chinese Academy of Sciences, Joint Circular of National Forestry and Grassland Administration on Printing and Distributing the National Black Soil Protection Project Implementation Plan (2021–2025); Ministry of Agriculture and Rural Affairs of the People’s Republic of China: Beijing, China, 2021.
- The National People’s Congress of China. Black Soil Protection Law of the People’s Republic of China; Vol. Order No. 115 of the President of the People’s Republic of China; The National People’s Congress of China: Beijing, China, 2022; pp. 1–8.
- Zhen, Z.; Chen, S.; Yin, T.; Gastellu-Etchegorry, J.-P. Improving Crop Mapping by Using Bidirectional Reflectance Distribution Function (BRDF) Signatures with Google Earth Engine. Remote Sens. 2023, 15, 2761. [Google Scholar] [CrossRef]
- Xu, S.; Xiao, W.; Yu, C.; Chen, H.; Tan, Y. Mapping Cropland Abandonment in Mountainous Areas in China Using the Google Earth Engine Platform. Remote Sens. 2023, 15, 1145. [Google Scholar] [CrossRef]
- Bégué, A.; Arvor, D.; Bellon, B.; Betbeder, J.; De Abelleyra, D.; Ferraz, R.P.D.; Lebourgeois, V.; Lelong, C.; Simões, M.; Verón, S.R. Remote Sensing and Cropping Practices: A Review. Remote Sens. 2018, 10, 99. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, C.; Wang, E.; Mao, X.; Liu, Y.; Hu, Z. Raster Scale Farmland Productivity Assessment with Multi-Source Data Fusion—A Case of Typical Black Soil Region in Northeast China. Remote Sens. 2024, 16, 1435. [Google Scholar] [CrossRef]
- Li, X.; Shi, Z.; Xing, Z.; Wang, M.; Wang, M. Dynamic Evaluation of Cropland Degradation Risk by Combining Multi-Temporal Remote Sensing and Geographical Data in the Black Soil Region of Jilin Province, China. Appl. Geogr. 2023, 154, 102920. [Google Scholar] [CrossRef]
- Li, K.; Wang, C.; Rong, G.; Wei, S.; Liu, C.; Yang, Y.; Sudu, B.; Guo, Y.; Sun, Q.; Zhang, J. Dynamic Evaluation of Agricultural Drought Hazard in Northeast China Based on Coupled Multi-Source Data. Remote Sens. 2023, 15, 57. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China. China Statistical Yearbook 2023; China Statistics Press: Beijing, China, 2023; ISBN 978-7-5230-0190-5.
- Xia, Z.; Peng, Y.; Lin, C.; Wen, Y.; Liu, H.; Liu, Z. A Spatial Frequency/Spectral Indicator-Driven Model for Estimating Cultivated Land Quality Using the Gradient Boosting Decision Tree and Genetic Algorithm-Back Propagation Neural Network. Int. Soil Water Conserv. Res. 2022, 10, 635–648. [Google Scholar] [CrossRef]
- Hu, Q.; Chen, Y.; Hu, J.; Cai, Z.; Wang, Z.; Yin, G.; Xu, B. A Novel Framework to Integrate Cropland Quantity and Quality from Pixel to County Level: Implications for Requisition–Compensation Balance of Farmland Policy in China. Land Degrad. Dev. 2024, 35, 1155–1167. [Google Scholar] [CrossRef]
- GB/T 33469-2016; Cultivated Land Quality Grade. Standards Press of China: Beijing, China, 2016.
- Yao, D.; Pei, J.; Wang, J. Temporal-Spatial Changes in Cultivated Land Quality in a Black Soil Region of Northeast China. Chin. J. Eco-Agric. 2020, 28, 104–114. [Google Scholar] [CrossRef]
- Liu, Z.; Fu, B.; Liu, G.; Zhu, Y. Soil Quality: Concept, Indicators and Its Assessment. Acta Ecol. Sin. 2006, 26, 901–913. [Google Scholar]
- Zhang, W.L.; Kolbe, H.; Zhang, R.L. Research Progress of SOC Functions and Transformation Mechanisms. Sci. Agric. Sin. 2020, 53, 317–331. [Google Scholar]
- Liu, Y.; Pei, J.; Wang, J. Spatial Distribution and Relationship between Organic Matter and pH in the Typical Black Soil Region of Northeast China. J. Agric. Resour. Environ. 2019, 36, 738–743. [Google Scholar] [CrossRef]
- Zhou, W.; Zhao, L.; Hu, Y.; Liu, Z.; Wang, L.; Ye, C.; Mao, X.; Xie, X. Cultivated Land Quality Evaluated Using the RNN Algorithm Based on Multisource Data. Remote Sens. 2022, 14, 6014. [Google Scholar] [CrossRef]
- Qi, L.; Shi, P.; Dvorakova, K.; Van Oost, K.; Sun, Q.; Yu, H.; Van Wesemael, B. Detection of Soil Erosion Hotspots in the Croplands of a Typical Black Soil Region in Northeast China: Insights from Sentinel-2 Multispectral Remote Sensing. Remote Sens. 2023, 15, 1402. [Google Scholar] [CrossRef]
- Zeng, Y.; Hao, D.; Huete, A.; Dechant, B.; Berry, J.; Chen, J.M.; Joiner, J.; Frankenberg, C.; Bond-Lamberty, B.; Ryu, Y.; et al. Optical Vegetation Indices for Monitoring Terrestrial Ecosystems Globally. Nat. Rev. Earth Environ. 2022, 3, 477–493. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, M.; Lu, J.; Zhou, Q.; Ma, W. Evaluation of Ecological City and Analysis of Obstacle Factors under the Background of High-Quality Development: Taking Cities in the Yellow River Basin as Examples. Ecol. Indic. 2020, 118, 106771. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, M.; Liu, X.; Wang, F.; Li, X.; Wang, J.; Hou, G.; Zhao, S. Ecological Security Assessment and Warning of Cultivated Land Quality in the Black Soil Region of Northeast China. Land 2023, 12, 1005. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, J.; Teng, H.; Li, H. Coupling Coordination Analysis of the Quality Evaluation of Cultivated Land and Soil Erosion in Typical Black Soil Areas Using TOPSIS Method. Trans. Chin. Soc. Agric. Eng. 2023, 39, 82–94. [Google Scholar] [CrossRef]
- Ren, S.; Song, C.; Ye, S.; Cheng, F.; Akhmadov, V.; Kuzyakov, Y. Land Use Evaluation Considering Soil Properties and Agricultural Infrastructure in Black Soil Region. Land Degrad. Dev. 2023, 34, 5373–5388. [Google Scholar] [CrossRef]
- Wang, S.; Liu, X.; Chen, X.; Song, M. An Evaluative Study of Economic Security from the Perspective of Land Resource Assets. Land Use Policy 2024, 139, 107062. [Google Scholar] [CrossRef]
- Jiang, Y. Study on Sustainable Utilization Evaluation of Cultivated Land Resources in Heilongjiang Province. Master’s Thesis, Heilongjiang University, Harbin, China, 2025. [Google Scholar]
- Liang, X.; Jin, X.; Dou, Y.; Zhang, X.; Li, H.; Wang, S.; Meng, F.; Tan, S.; Zhou, Y. Mapping Sustainability-Oriented China’s Cropland Use Stability. Comput. Electron. Agric. 2024, 219, 108823. [Google Scholar] [CrossRef]
- Han, B.; Jin, X.; Sun, R.; Li, H.; Liang, X.; Zhou, Y. Understanding Land-Use Sustainability with a Systematical Framework: An Evaluation Case of China. Land Use Policy 2023, 132, 106767. [Google Scholar] [CrossRef]
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences. Northeast China Black Soil Conservation and Utilization Report (2022); White Paper and Report Series on Northeast China’s Black Soil; Chinese Academy of Sciences: Beijing, China, 2023; pp. 1–57. [Google Scholar]
- Smith, P.; Ashmore, M.R.; Black, H.I.J.; Burgess, P.J.; Evans, C.D.; Quine, T.A.; Thomson, A.M.; Hicks, K.; Orr, H.G. REVIEW: The Role of Ecosystems and Their Management in Regulating Climate, and Soil, Water and Air Quality. J. Appl. Ecol. 2013, 50, 812–829. [Google Scholar] [CrossRef]
- Li, F.; Yan, W.; Zhao, Y.; Jiang, R. The Regulation and Management of Water Resources in Groundwater Over-Extraction Area Based on ET. Theor. Appl. Climatol. 2021, 146, 57–69. [Google Scholar] [CrossRef]
- Guo, D.; Olesen, J.E.; Manevski, K.; Ma, X. Optimizing Irrigation Schedule in a Large Agricultural Region under Different Hydrologic Scenarios. Agric. Water Manag. 2021, 245, 106575. [Google Scholar] [CrossRef]
- Mallareddy, M.; Thirumalaikumar, R.; Balasubramanian, P.; Naseeruddin, R.; Nithya, N.; Mariadoss, A.; Eazhilkrishna, N.; Choudhary, A.K.; Deiveegan, M.; Subramanian, E.; et al. Maximizing Water Use Efficiency in Rice Farming: A Comprehensive Review of Innovative Irrigation Management Technologies. Water 2023, 15, 1802. [Google Scholar] [CrossRef]
- Ao, M.; Zhang, X.; Guan, Y. Research and Practice of Conservation Tillage in Black Soil Region of Northeast China. Bull. Chin. Acad. Sci. 2021, 36, 1203–1215. [Google Scholar] [CrossRef]
- Xu, K.; Yi, X.; Zhang, Z. Promotion Suggestions for the Protection and Utilization of Northeast Black Soil by ‘Bei’an Model’. North. Hortic. 2024, 19, 142–147. [Google Scholar]
- Han, X.; Zou, W.; Yang, F. Main Achievements, Challenges, and Recommendations of Black Soil Conservation and Utilization in China. Bull. Chin. Acad. Sci. 2021, 36, 1194–1202. [Google Scholar] [CrossRef]
- Choudhury, D.; Kumar, P.; Zhimo, V.Y.; Sahoo, J. Crop Rotation Patterns and Soil Health Management. In Bioremediation of Emerging Contaminants from Soils; Elsevier: Amsterdam, The Netherlands, 2024; pp. 565–589. [Google Scholar]
- Zou, Y.; Liu, Z.; Chen, Y.; Wang, Y.; Feng, S. Crop Rotation and Diversification in China: Enhancing Sustainable Agriculture and Resilience. Agriculture 2024, 14, 1465. [Google Scholar] [CrossRef]
- Ministry of Agriculture and Rural Affairs of the People’s Republic of China. Notice of the Ministry of Agriculture and Rural Affairs on Printing and Distributing the National High-Standard Farmland Construction Plan (2021–2030); Ministry of Agriculture and Rural Affairs of the People’s Republic of China: Beijing, China, 2021.
- Ministry of Agriculture and Rural Affairs of the People’s Republic of China. Ministry of Finance of the People’s Republic of China Notice of the Ministry of Agriculture and Rural Affairs Joint Circular of the Ministry of Finance on Printing and Distributing the Northeast China Black Soil Conservation Tillage Action Plan (2020–2025); Ministry of Agriculture and Rural Affairs of the People’s Republic of China: Beijing, China, 2020.
- Han, L. Heilongjiang: Well-Facilitated Farmland Shows Its Skills under Flood Conditions. Farmers’ Daily, 7 August 2024; p. 6. [Google Scholar]
- Department of Agriculture and Rural Affairs of Jilin Province. Jilin: Science and Technology Empower to Build “Black Soil Granary”. Farmers’ Daily, 25 September 2024; p. 8. [Google Scholar]
- Yu, X.; Yang, M.; Zhang, R. Take the Lead in Building All Permanent Basic Farmland into Well-Facilitated Farmland. Farmers’ Daily, 11 March 2024; p. 5. [Google Scholar]
- Zhang, N.; Du, G.; Zhang, R. Theoretical Analysis of Black Soil Quality for the Development of Modern Agriculture. Resour. Sci. 2023, 45, 926–938. [Google Scholar] [CrossRef]
- Wang, X.; Müller, C.; Elliot, J.; Mueller, N.D.; Ciais, P.; Jägermeyr, J.; Gerber, J.; Dumas, P.; Wang, C.; Yang, H.; et al. Global Irrigation Contribution to Wheat and Maize Yield. Nat. Commun. 2021, 12, 1235. [Google Scholar] [CrossRef] [PubMed]
- Singh, A. Soil Salinization Management for Sustainable Development: A Review. J. Environ. Manag. 2021, 277, 111383. [Google Scholar] [CrossRef]
- Zhang, W.; Yu, Q.; Tang, H.; Liu, J.; Wu, W. Conservation Tillage Mapping and Monitoring Using Remote Sensing. Comput. Electron. Agric. 2024, 218, 108705. [Google Scholar] [CrossRef]
- Liu, W.; He, C.; Han, S.; Lin, B.; Liu, W.; Dang, Y.P.; Zhao, X.; Zhang, H. Enhancing Soil Ecosystem Multifunctionality through Combined Conservation Tillage and Legume-Based Crop Rotation in the North China Plain. Agric. Ecosyst. Environ. 2025, 379, 109355. [Google Scholar] [CrossRef]
Criterion Layer | Indicator | Data Source | Year | Resolution |
---|---|---|---|---|
Soil capacity | Soil organic carbon (SOC) | Harmonized World Soil Database (http://www.fao.org/soils-portal, accessed on 28 September 2024) High-Resolution National Soil Information Grids of China (http://www.geodata.cn, accessed on 7 September 2023) | 2010/2018 | 250 m |
Potential of hydrogen (pH) | ||||
Soil texture (ST) | ||||
Cation exchange capacity (CEC) | ||||
Natural capacity | River distance (RD) | China 1:100,000 water system dataset (http://www.geodata.cn, accessed on 4 November 2023) | 2017 | - (Points) |
Slope (S) | The Shuttle Radar Topography Mission (SRTM) digital elevation dataset (https://www.earthdata.nasa.gov, accessed on 15 August 2023) | 2000 | 90 m | |
Annual precipitation (AP) | Climate Data (http://data.cma.cn, accessed on 6 September 2023) | 2010/2020 | - (Points) | |
≥10 °C accumulated temperature (AT10) | ||||
Management level | Effective irrigation amount (EIA) | MOD 16A2 (https://earthdata.nasa.gov, accessed on 10 July 2024) | 2010/2020 | 250 m |
Road accessibility (RA) | Global Roads Open Access Dataset (https://www.earthdata.nasa.gov, accessed on 8 August 2023) Multi-period road spatial distribution data for 1995/2012/2016/2018/2020 in China (https://www.resdc.cn, accessed on 21 August 2023) | 2010/2020 | - (Lines) | |
Centralized contiguity (CC) | China’s Land Use/Cover Datasets (CLCD) (https://zenodo.org, accessed on 10 August 2023) | 2010/2020 | 30 m | |
Crop productivity | High cropland productivity (HP) | MOD 13Q1 (https://earthdata.nasa.gov, accessed on 28 June 2024) | 2010/2020 | 250 m |
Stable cropland productivity (SP) |
Target Layer | Criterion Layer | Indicator Layer | Unit | Indicator Interpretation | Weight |
---|---|---|---|---|---|
Cropland sustainability | Soil capacity | Soil organic carbon (SOC) | g/kg | Content of organic matter containing C | 0.0524 |
Potential of hydrogen (pH) | - | pH value of soil surface | 0.0807 | ||
Soil texture (ST) | - | Composition of mineral particles with different particle sizes | 0.0624 | ||
Cation exchange capacity (CEC) | cmol(+)/kg | The ability of soil to adsorb nutrients and eventually release them back into the soil solution | 0.0709 | ||
Natural capacity | River distance (RD) | km | Distance from cropland to the river | 0.0534 | |
Slope | ° | Steepness or inclination of cropland | 0.0474 | ||
Annual precipitation (AP) | mm | Climatic conditions | 0.0769 | ||
≥10 °C accumulated temperature (AT10) | °C | Climatic conditions | 0.0528 | ||
Management level | Effective irrigation amount (EIA) | mm | Effective irrigation amount of cropland | 0.0586 | |
Road accessibility (RA) | km | Distance from the cropland to the nearest road | 0.0480 | ||
Centralized contiguity (CC) | - | Contig landscape index | 0.0515 | ||
Crop productivity | High cropland productivity (HP) | - | Mean of EVI for five consecutive years | 0.0571 | |
Stable cropland productivity (SP) | - | CV of EVI for five consecutive years | 0.0551 |
Criterion Layer | Mean in 2010 | Mean in 2020 | Indicator Layer | Mean in 2010 | Mean in 2020 |
---|---|---|---|---|---|
Soil capacity | 16.6087 | 19.1937 | Soil organic carbon (SOC) | 6.1525 | 5.2880 |
Potential of hydrogen (pH) | 0.4492 | 2.6912 | |||
Soil texture (ST) | 1.1415 | 4.4843 | |||
Cation exchange capacity (CEC) | 8.8279 | 6.7302 | |||
Natural capacity | 21.7745 | 21.4170 | River distance (RD) | 5.8938 | 5.8853 |
Slope | 5.9724 | 5.9723 | |||
Annual precipitation (AP) | 4.8091 | 4.7577 | |||
≥10 °C accumulated temperature (AT10) | 5.0991 | 4.8016 | |||
Management level | 17.0984 | 17.9115 | Effective irrigation amount (EIA) | 4.9852 | 5.6250 |
Road accessibility (RA) | 5.7540 | 5.8864 | |||
Centralized contiguity (CC) | 6.3557 | 6.3976 | |||
Crop productivity | 5.5260 | 6.7632 | High cropland productivity (HP) | 4.1868 | 4.3760 |
Stable cropland productivity (SP) | 1.3392 | 2.3872 | |||
Cropland sustainability score | 61.2036 | 65.4823 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Wang, L.; Zou, J.; Fan, L.; Zha, Y. Spatiotemporal Patterns of Cropland Sustainability in Black Soil Zones Based on Multi-Source Remote Sensing: A Case Study of Heilongjiang, China. Remote Sens. 2025, 17, 2044. https://doi.org/10.3390/rs17122044
Yang J, Wang L, Zou J, Fan L, Zha Y. Spatiotemporal Patterns of Cropland Sustainability in Black Soil Zones Based on Multi-Source Remote Sensing: A Case Study of Heilongjiang, China. Remote Sensing. 2025; 17(12):2044. https://doi.org/10.3390/rs17122044
Chicago/Turabian StyleYang, Jing, Li Wang, Jinqiu Zou, Lingling Fan, and Yan Zha. 2025. "Spatiotemporal Patterns of Cropland Sustainability in Black Soil Zones Based on Multi-Source Remote Sensing: A Case Study of Heilongjiang, China" Remote Sensing 17, no. 12: 2044. https://doi.org/10.3390/rs17122044
APA StyleYang, J., Wang, L., Zou, J., Fan, L., & Zha, Y. (2025). Spatiotemporal Patterns of Cropland Sustainability in Black Soil Zones Based on Multi-Source Remote Sensing: A Case Study of Heilongjiang, China. Remote Sensing, 17(12), 2044. https://doi.org/10.3390/rs17122044