Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,057)

Search Parameters:
Keywords = oxidized chitosan

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2582 KiB  
Article
Photolysis, Photocatalysis, and Sorption of Caffeine in Aqueous Media in the Presence of Chitosan Membrane and Chitosan/TiO2 Composite Membrane
by Juliana Prando, Ingrid Luíza Reinehr, Luiz Jardel Visioli, Alexandre Tadeu Paulino and Heveline Enzweiler
Processes 2025, 13(8), 2439; https://doi.org/10.3390/pr13082439 - 1 Aug 2025
Viewed by 235
Abstract
Sorption and advanced oxidative processes (AOPs) are potential strategies for the removal of organic compounds, such as caffeine, from aqueous media. Such strategies tend to be more promising when combined with biopolymeric membranes as sorbents and photocatalyst supports. Therefore, the aim of the [...] Read more.
Sorption and advanced oxidative processes (AOPs) are potential strategies for the removal of organic compounds, such as caffeine, from aqueous media. Such strategies tend to be more promising when combined with biopolymeric membranes as sorbents and photocatalyst supports. Therefore, the aim of the present study was to investigate sorption and AOP parameters in the performance of chitosan membranes and chitosan/TiO2 composite membranes in individual and hybrid systems involving the photolysis, photocatalysis, and sorption of caffeine. Caffeine degradation by photolysis was 19.51 ± 1.14, 28.61 ± 0.05, and 30.64 ± 6.32%, whereas caffeine degradation by photocatalysis with catalytic membrane was 18.33 ± 2.20, 20.83 ± 1.49, and 31.41 ± 3.08% at pH 6, 7, and 8, respectively. In contrast, photocatalysis with the dispersed catalyst achieved degradation of 93.56 ± 2.12, 36.42 ± 2.59, and 31.41 ± 1.07% at pH 6, 7, and 8, respectively. These results indicate that ions present in the buffer solutions affect the net electrical charge on the surface of the composite biomaterial with the change in pH variation, occupying active sorption sites in the structure of the biomaterial, which was characterized by Fourier transform infrared spectrometry, thermogravimetric analysis, differential scanning thermogravimetry, and X-ray diffraction. Thus, it is verified that in a combined process of caffeine removal under UV irradiation and use of chitosan/TiO2 composite membranes in phosphate-buffered medium, the photolysis mechanism is predominant, with little or no contribution from sorption, and that the TiO2 catalyst promotes a significant reduction in the percentage of pollutant in the medium only when used dispersed and at low pH. Full article
Show Figures

Figure 1

17 pages, 3389 KiB  
Article
Enhanced OH Transport Properties of Bio-Based Anion-Exchange Membranes for Different Applications
by Suer Kurklu-Kocaoglu, Daniela Ramírez-Espinosa and Clara Casado-Coterillo
Membranes 2025, 15(8), 229; https://doi.org/10.3390/membranes15080229 - 31 Jul 2025
Viewed by 371
Abstract
The demand for anion exchange membranes (AEMs) is growing due to their applications in water electrolysis, CO2 reduction conversion and fuel cells, as well as water treatment, driven by the increasing energy demand and the need for a sustainable future. However, current [...] Read more.
The demand for anion exchange membranes (AEMs) is growing due to their applications in water electrolysis, CO2 reduction conversion and fuel cells, as well as water treatment, driven by the increasing energy demand and the need for a sustainable future. However, current AEMs still face challenges, such as insufficient permeability and stability in strongly acidic or alkaline media, which limit their durability and the sustainability of membrane fabrication. In this study, polyvinyl alcohol (PVA) and chitosan (CS) biopolymers are selected for membrane preparation. Zinc oxide (ZnO) and porous organic polymer (POP) nanoparticles are also introduced within the PVA-CS polymer blends to make mixed-matrix membranes (MMMs) with increased OH transport sites. The membranes are characterized based on typical properties for AEM applications, such as thickness, water uptake, KOH uptake, Cl and OH permeability and ion exchange capacity (IEC). The OH transport of the PVA-CS blend is increased by at least 94.2% compared with commercial membranes. The incorporation of non-porous ZnO and porous POP nanoparticles into the polymer blend does not compromise the OH transport properties. On the contrary, ZnO nanoparticles enhance the membrane’s water retention capacity, provide basic surface sites that facilitate hydroxide ion conduction and reinforce the mechanical and thermal stability. In parallel, POPs introduce a highly porous architecture that increases the internal surface area and promotes the formation of continuous hydrated pathways, essential to efficient OH mobility. Furthermore, the presence of POPs also contributes to reinforcing the mechanical integrity of the membrane. Thus, PVA-CS bio-based membranes are a promising alternative to conventional ion exchange membranes for various applications. Full article
(This article belongs to the Special Issue Membrane Technologies for Water Purification)
Show Figures

Figure 1

20 pages, 3148 KiB  
Article
Development and Evaluation of Graphene Oxide-Enhanced Chitosan Sponges as a Potential Antimicrobial Wound Dressing for Infected Wound Management
by Przemysław Sareło, Maria Wiśniewska-Wrona, Monika Sikora, Bartosz Mielan, Yuriy Gerasymchuk, Anna Wędzyńska, Vitalii Boiko, Dariusz Hreniak, Maria Szymonowicz, Beata Sobieszczańska and Magdalena Wawrzyńska
Int. J. Mol. Sci. 2025, 26(15), 7403; https://doi.org/10.3390/ijms26157403 - 31 Jul 2025
Viewed by 236
Abstract
Chronic infected wounds remain a major medical challenge, particularly in the context of increasing antibiotic resistance. The objective of this study was to develop and evaluate chitosan-based (CS) sponges enhanced with graphene oxide (GO) as potential antimicrobial wound dressings. The composite sponges were [...] Read more.
Chronic infected wounds remain a major medical challenge, particularly in the context of increasing antibiotic resistance. The objective of this study was to develop and evaluate chitosan-based (CS) sponges enhanced with graphene oxide (GO) as potential antimicrobial wound dressings. The composite sponges were fabricated using microcrystalline CS (MKCh) and 5% (w/w) GO, followed by freeze-drying and γ-sterilization (25 kGy). Physico-mechanical characterization showed that GO incorporation did not significantly alter tensile strength, while absorption and sorption capacities were improved, especially after sterilization. Structural and spectroscopic analyses confirmed increased porosity and molecular interaction between CS and GO. Cytocompatibility was verified in vitro using L-929 fibroblasts, with no cytotoxic effects observed in indirect contact. Antimicrobial activity tests demonstrated that GO-modified dressings exhibited enhanced activity against E. coli and S. aureus, though results were strain-dependent and not uniformly superior to CS alone. Notably, antifungal efficacy against C. albicans was reduced with GO addition. Overall, the developed GO-enriched CS sponges present favorable biocompatibility, mechanical resilience, and selective antimicrobial activity, supporting their potential application in chronic wound management. Further optimization of GO concentration and formulation is warranted to maximize antimicrobial efficacy across a broader spectrum of pathogens. Full article
Show Figures

Figure 1

22 pages, 3894 KiB  
Article
3D-Printed Biocompatible Frames for Electrospun Nanofiber Membranes: An Enabling Biofabrication Technology for Three-Dimensional Tissue Models and Engineered Cell Culture Platforms
by Adam J. Jones, Lauren A. Carothers, Finley Paez, Yanhao Dong, Ronald A. Zeszut and Russell Kirk Pirlo
Micromachines 2025, 16(8), 887; https://doi.org/10.3390/mi16080887 - 30 Jul 2025
Viewed by 433
Abstract
Electrospun nanofiber membranes (ESNFMs) are exceptional biomaterials for tissue engineering, closely mimicking the native extracellular matrix. However, their inherent fragility poses significant handling, processing, and integration challenges, limiting their widespread application in advanced 3D tissue models and biofabricated devices. This study introduces a [...] Read more.
Electrospun nanofiber membranes (ESNFMs) are exceptional biomaterials for tissue engineering, closely mimicking the native extracellular matrix. However, their inherent fragility poses significant handling, processing, and integration challenges, limiting their widespread application in advanced 3D tissue models and biofabricated devices. This study introduces a novel and on-mat framing technique utilizing extrusion-based printing of a UV-curable biocompatible resin (Biotough D90 MF) to create rigid, integrated support structures directly on chitosan–polyethylene oxide (PEO) ESNFMs. We demonstrate fabrication of these circular frames via precise 3D printing and a simpler manual stamping method, achieving robust mechanical stabilization that enables routine laboratory manipulation without membrane damage. The resulting framed ESNFMs maintain structural integrity during subsequent processing and exhibit excellent biocompatibility in standardized extract assays (116.5 ± 12.2% normalized cellular response with optimized processing) and acceptable performance in direct contact evaluations (up to 78.2 ± 32.4% viability in the optimal configuration). Temporal assessment revealed characteristic cellular adaptation dynamics on nanofiber substrates, emphasizing the importance of extended evaluation periods for accurate biocompatibility determination of three-dimensional scaffolds. This innovative biofabrication approach overcomes critical limitations of previous handling methods, transforming delicate ESNFMs into robust, easy-to-use components for reliable integration into complex cell culture applications, barrier tissue models, and engineered systems. Full article
(This article belongs to the Special Issue Advanced Biomaterials and Biofabrication)
Show Figures

Figure 1

24 pages, 5342 KiB  
Article
Esterase and Peroxidase Are Involved in the Transformation of Chitosan Films by the Fungus Fusarium oxysporum Schltdl. IBPPM 543
by Natalia N. Pozdnyakova, Tatiana S. Babicheva, Daria S. Chernova, Irina Yu. Sungurtseva, Andrey M. Zakharevich, Sergei L. Shmakov and Anna B. Shipovskaya
J. Fungi 2025, 11(8), 565; https://doi.org/10.3390/jof11080565 - 29 Jul 2025
Viewed by 316
Abstract
The majority of studies of fungal utilization of chitosan are associated with the production of a specific enzyme, chitosanase, which catalyzes the hydrolytic cleavage of the macrochain. In our opinion, the development of approaches to obtaining materials with new functional properties based on [...] Read more.
The majority of studies of fungal utilization of chitosan are associated with the production of a specific enzyme, chitosanase, which catalyzes the hydrolytic cleavage of the macrochain. In our opinion, the development of approaches to obtaining materials with new functional properties based on non-destructive chitosan transformation by living organisms and their enzyme systems is promising. This study was conducted using a wide range of classical and modern methods of microbiology, biochemistry, and physical chemistry. The ability of the ascomycete Fusarium oxysporum Schltdl. to modify films of chitosan with average-viscosity molecular weights of 200, 450, and 530 kDa was discovered. F. oxysporum was shown to use chitosan as the sole source of carbon/energy and actively overgrew films without deformations and signs of integrity loss. Scanning electron microscopy (SEM) recorded an increase in the porosity of film substrates. An analysis of the FTIR spectra revealed the occurrence of oxidation processes and crosslinking of macrochains without breaking β-(1,4)-glycosidic bonds. After F. oxysporum growth, the resistance of the films to mechanical dispersion and the degree of ordering of the polymer structure increased, while their solubility in the acetate buffer with pH 4.4 and sorption capacity for Fe2+ and Cu2+ decreased. Elemental analysis revealed a decrease in the nitrogen content in chitosan, which may indicate its inclusion into the fungal metabolism. The film transformation was accompanied by the production of extracellular hydrolase (different from chitosanase) and peroxidase, as well as biosurfactants. The results obtained indicate a specific mechanism of aminopolysaccharide transformation by F. oxysporum. Although the biochemical mechanisms of action remain to be analyzed in detail, the results obtained create new ways of using fungi and show the potential for the use of Fusarium and/or its extracellular enzymes for the formation of chitosan-containing materials with the required range of functional properties and qualities for biotechnological applications. Full article
(This article belongs to the Special Issue Innovative Applications and Biomanufacturing of Fungi)
Show Figures

Graphical abstract

15 pages, 2384 KiB  
Article
Optimization of TEMPO-Mediated Oxidation of Chitosan to Enhance Its Antibacterial and Antioxidant Activities
by Abdellah Mourak, Aziz Ait-Karra, Mourad Ouhammou, Abdoussadeq Ouamnina, Abderrahim Boutasknit, Mohamed El Hassan Bouchari, Najat Elhadiri and Abdelhakim Alagui
Polysaccharides 2025, 6(3), 65; https://doi.org/10.3390/polysaccharides6030065 - 28 Jul 2025
Viewed by 155
Abstract
This study systematically investigated the oxidation of chitosan using the TEMPO/NaClO/NaBr catalytic system under varying experimental conditions, namely temperature, reaction time, and pH, in order to optimize the oxidation process. Response surface methodology (RSM) was employed to determine the optimal parameters for maximizing [...] Read more.
This study systematically investigated the oxidation of chitosan using the TEMPO/NaClO/NaBr catalytic system under varying experimental conditions, namely temperature, reaction time, and pH, in order to optimize the oxidation process. Response surface methodology (RSM) was employed to determine the optimal parameters for maximizing the efficiency of the reaction. The structural modifications to the chitosan following oxidation were confirmed using Fourier-transform infrared spectroscopy (FTIR), alongside additional analytical techniques, which validated the successful introduction of carbonyl and carboxyl functional groups. Solvent-cast films were prepared from both native and oxidized chitosan in order to evaluate their functional performance. The antibacterial activity of these films was assessed against Gram-negative (Salmonella) and Gram-positive (Streptococcus faecalis) bacterial strains. The oxidized chitosan films exhibited significantly enhanced antibacterial effects, particularly at shorter incubation periods. In addition, antioxidant activity was evaluated using DPPH radical scavenging and ferrous ion chelation assays, which both revealed a marked improvement in radical scavenging ability and metal ion binding capacity in oxidized chitosan. These findings confirm that TEMPO-mediated oxidation effectively enhances the physicochemical and bioactive properties of chitosan, highlighting its potential for biomedical and environmental applications. Full article
Show Figures

Figure 1

23 pages, 2056 KiB  
Article
Nanoceria Coated with Maltodextrin or Chitosan: Effects on Key Genes of Oxidative Metabolism, Proliferation, and Autophagy in Human Embryonic Lung Fibroblasts
by Elena V. Proskurnina, Madina M. Sozarukova, Elizaveta S. Ershova, Ekaterina A. Savinova, Larisa V. Kameneva, Natalia N. Veiko, Vladimir P. Saprykin, Khamzat K. Vyshegurov, Vladimir K. Ivanov and Svetlana V. Kostyuk
Molecules 2025, 30(15), 3078; https://doi.org/10.3390/molecules30153078 - 23 Jul 2025
Viewed by 296
Abstract
Nanoceria is a multifaceted enzyme-like catalyst of ROS-mediated (reactive oxygen species) reactions, which results in its multiple biomedical applications. Biodegradable polysaccharide coatings improve biocompatibility, while the effects of these coatings on the ROS-related activity of nanoceria in cells need thorough studies. Here, we [...] Read more.
Nanoceria is a multifaceted enzyme-like catalyst of ROS-mediated (reactive oxygen species) reactions, which results in its multiple biomedical applications. Biodegradable polysaccharide coatings improve biocompatibility, while the effects of these coatings on the ROS-related activity of nanoceria in cells need thorough studies. Here, we used human embryonic lung fibroblasts to study the effects of maltodextrin and chitosan coatings on cellular oxidative metabolism of nanoceria by examining cell viability, mitochondrial potential, accumulation of nanoparticles in cells, intracellular ROS, expression of NOX4 (NADPH oxidase 4), NRF2 (nuclear factor erythroid 2-related factor 2), NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells), and STAT3 (signal transducer and activator of transcription 3) proteins as well as the expression of biomarkers of DNA damage/repair, cell proliferation, and autophagy. Both types of polysaccharide-coated nanoceria were non-toxic up to millimolar concentrations. For maltodextrin-coated nano-CeO2, in contrast to bare nanoparticles, there was no oxidative DNA damage/repair with moderate activation of NOX4 expression. Like bare nanoceria, maltodextrin-coated nanoparticles demonstrate the proliferative impact and do not activate autophagy. However, maltodextrin-coated nanoparticles have an activating impact on mitochondrial potential and the NF-κB pathway. Chitosan-coated nanoceria causes short-term intracellular oxidative stress, activation of the expression of NOX4, STAT3, and NRF2, oxidative DNA damage, and double-strand breaks accompanied by activation of DNA repair systems. In contrast to maltodextrin-coated nanoparticles, chitosan-coated nanoceria inhibits the NF-κB pathway and activates autophagy. These findings would be useful in the development of advanced nanoceria-based pharmaceuticals and contribute to the understanding of the biochemical properties of nanoceria as a modulator of ROS-dependent signaling pathways. Full article
Show Figures

Figure 1

8 pages, 2222 KiB  
Proceeding Paper
Advanced 3D Polymeric Sponges Offer Promising Solutions for Addressing Environmental Challenges in Qatar’s Marine Ecosystems
by Mohamed Helally, Mostafa H. Sliem and Noora Al-Qahtani
Mater. Proc. 2025, 22(1), 4; https://doi.org/10.3390/materproc2025022004 - 18 Jul 2025
Viewed by 215
Abstract
The increasing incidence of oil contamination in many aquatic ecosystems, particularly in oil-rich regions such as Qatar, poses significant threats to marine life and human activities. Our study addresses the critical need for effective and eco-friendly oil-water separation techniques, focusing on developing graphene [...] Read more.
The increasing incidence of oil contamination in many aquatic ecosystems, particularly in oil-rich regions such as Qatar, poses significant threats to marine life and human activities. Our study addresses the critical need for effective and eco-friendly oil-water separation techniques, focusing on developing graphene and chitosan-based three-dimensional (3D) polymeric sponges. These materials have demonstrated potential due to their high porosity and surface area, which can be enhanced through surface treatment to improve hydrophobicity and oleophilicity. This study introduces a new technique dependent on the optimization of the graphene oxide (GO) concentration within the composite sponge to achieve a superior oil uptake capacity (51.4 g oil/g sponge at 3% GO), and the detailed characterization of the material’s performance in separating heavy oil-water emulsions. Our study seeks to answer key questions regarding the performance of these modified sponges and their scalability for industrial applications. This research directly aligns with Qatar’s environmental goals and develops sustainable oil-water separation technologies. It addresses the pressing challenges of oil spills, ultimately contributing to improved marine ecosystem protection and efficient resource recovery. Full article
Show Figures

Figure 1

11 pages, 1422 KiB  
Article
Towards Precision Nutrition: A Novel Smartphone-Connected Biosensor for Point-of-Care Detection of β-Hydroxybutyrate in Human Blood and Saliva
by Cristina Tortolini, Massimiliano Caprio, Daniele Gianfrilli, Andrea Lenzi and Riccarda Antiochia
Sensors 2025, 25(14), 4336; https://doi.org/10.3390/s25144336 - 11 Jul 2025
Viewed by 380
Abstract
Precision nutrition is an emerging approach that tailors dietary recommendations based on an individual’s unique genetic, metabolic, microbiome, and lifestyle factors. β-hydroxybutyrate (β-HB) is a key ketone body produced during fat metabolism, especially in states of fasting, low-carbohydrate intake, or prolonged exercise. Therefore, [...] Read more.
Precision nutrition is an emerging approach that tailors dietary recommendations based on an individual’s unique genetic, metabolic, microbiome, and lifestyle factors. β-hydroxybutyrate (β-HB) is a key ketone body produced during fat metabolism, especially in states of fasting, low-carbohydrate intake, or prolonged exercise. Therefore, monitoring β-HB levels provides valuable insights into an individual’s metabolic state, making it an essential biomarker for precision and personalized nutrition. A smartphone-connected electrochemical biosensor for single-use, rapid, low-cost, accurate, and selective detection of β-HB in whole blood and saliva at the Point-of-Care (POC) is reported. A graphite screen-printed carbon electrode modified with potassium ferricyanide (Fe(III)GSPE) was used as an electrode platform for the deposition of β-hydroxybutyrate dehydrogenase (HBDH), nicotinamide adenine dinucleotide oxidized form (NAD+), and chitosan nanoparticles (ChitNPs). An outer poly(vinyl) chloride (PVC) diffusion-limiting membrane was used to protect the modified electrode. The biosensor showed a linear range in the clinically relevant range, between 0.4 and 8 mM, with a detection limit (LOD) of 0.1 mM. The biosensor was tested on human blood and saliva samples, and the results were compared to those obtained with a commercial ketone meter, showing excellent agreement. Full article
(This article belongs to the Special Issue Feature Papers in Biomedical Sensors 2025)
Show Figures

Figure 1

24 pages, 8205 KiB  
Article
Preparation and Characterization of Magnesium Implants with Functionalized Surface with Enhanced Biological Activity Obtained via PEO Process
by Julia Radwan-Pragłowska, Julita Śmietana, Łukasz Janus, Aleksandra Sierakowska-Byczek, Karol Łysiak and Klaudia Kuźmiak
Processes 2025, 13(7), 2144; https://doi.org/10.3390/pr13072144 - 5 Jul 2025
Viewed by 350
Abstract
This study presents the development and comprehensive evaluation of magnesium-based implants with surface modifications using selected polymers and bioactive compounds. The implants were fabricated via plasma electrolytic oxidation (PEO), followed by the application of chitosan, polydopamine (PDA), and gold nanoparticles as bioactive surface [...] Read more.
This study presents the development and comprehensive evaluation of magnesium-based implants with surface modifications using selected polymers and bioactive compounds. The implants were fabricated via plasma electrolytic oxidation (PEO), followed by the application of chitosan, polydopamine (PDA), and gold nanoparticles as bioactive surface coatings. In vitro experiments, including FT-IR spectroscopy, scanning electron microscopy (SEM), wettability tests, biodegradation assays in simulated body fluid (SBF), electrochemical corrosion analysis, and cytotoxicity tests using MG-63 osteoblast-like cells, were employed to assess the physicochemical and biological properties of the materials. The PEO + PDA-modified samples demonstrated the highest corrosion resistance (−1.15 V corrosion potential), enhanced cell viability (~95%), and favorable surface wettability (contact angle ~12.5°), outperforming other tested configurations. These findings suggest that PEO combined with PDA offers a synergistic effect, leading to superior biocompatibility and degradation control compared to unmodified magnesium or single-coating strategies. The developed implants hold promise for orthopedic applications requiring biodegradable, bioactive, and cytocompatible materials. Full article
(This article belongs to the Special Issue Biochemical Processes for Sustainability, 2nd Edition)
Show Figures

Figure 1

24 pages, 4729 KiB  
Article
Formulation and Stability of Quercetin-Loaded Pickering Emulsions Using Chitosan/Gum Arabic Nanoparticles for Topical Skincare Applications
by Mathukorn Sainakham, Paemika Arunlakvilart, Napatwan Samran, Pattavet Vivattanaseth and Weeraya Preedalikit
Polymers 2025, 17(13), 1871; https://doi.org/10.3390/polym17131871 - 4 Jul 2025
Viewed by 548
Abstract
Natural polymer-based nanoparticles have emerged as promising stabilizers for Pickering emulsions, offering biocompatibility, environmental sustainability, and improved protection of active compounds. This study developed chitosan/gum arabic (CH/GA) nanoparticles as solid stabilizers for quercetin-loaded Pickering emulsions to enhance the stability and antioxidant bioactivity of [...] Read more.
Natural polymer-based nanoparticles have emerged as promising stabilizers for Pickering emulsions, offering biocompatibility, environmental sustainability, and improved protection of active compounds. This study developed chitosan/gum arabic (CH/GA) nanoparticles as solid stabilizers for quercetin-loaded Pickering emulsions to enhance the stability and antioxidant bioactivity of quercetin (QE), a plant-derived flavonoid known for its potent radical-scavenging activity but limited by oxidative degradation. A systematic formulation strategy was employed to evaluate the effects of CH/GA concentration (0.5–2.0% w/v), oil type (olive, soybean, sunflower, and coconut), and oil volume fraction (ϕ = 0.5–0.7) on emulsion stability. The formulation containing 1.5% CH/GA and olive oil at ϕ = 0.6 exhibited optimal physical and interfacial stability. Quercetin (0.1% w/w) was incorporated into the optimized emulsions and characterized for long-term stability, particle size, droplet morphology, rheology, antioxidant activity (DPPH), cytocompatibility, and intracellular reactive oxygen species (ROS) protection using HaCaT keratinocytes. The olive oil-based formulation (D1-QE) exhibited greater viscosity retention and antioxidant stability than its soybean-based counterpart (E2-QE) under both room temperature (RT) and accelerated heating–cooling (H/C) storage conditions. Confocal microscopy confirmed the accumulation of CH/GA nanoparticles at the oil–water interface, forming a dense interfacial barrier and enhancing emulsion stability. HPLC analysis showed that D1-QE retained 92.8 ± 0.5% of QE at RT and 82.8 ± 1.5% under H/C conditions after 30 days. Antioxidant activity was largely preserved, with only 4.7 ± 1.7% and 14.9 ± 4.8% loss of DPPH radical scavenging activity at RT and H/C, respectively. Cytotoxicity testing in HaCaT keratinocytes confirmed that the emulsions were non-toxic at 1 mg/mL QE and effectively reduced H2O2-induced oxidative stress, decreasing intracellular ROS levels by 75.16%. These results highlight the potential of CH/GA-stabilized Pickering emulsions as a polymer-based delivery system for maintaining the stability and functional antioxidant activity of QE in bioactive formulations. Full article
Show Figures

Figure 1

19 pages, 5973 KiB  
Article
Chitosan-Modified SBA-15 as a Support for Transition Metal Catalysts in Cyclohexane Oxidation and Photocatalytic Hydrogen Evolution
by Assemgul S. Auyezkhanova, Alima K. Zharmagambetova, Eldar T. Talgatov, Aigul I. Jumekeyeva, Sandugash N. Akhmetova, Zhannur K. Myltykbayeva, Imge Kalkan, Atıf Koca, Akzhol A. Naizabayev and Aigul T. Zamanbekova
Catalysts 2025, 15(7), 650; https://doi.org/10.3390/catal15070650 - 3 Jul 2025
Viewed by 536
Abstract
This work aims to study the catalytic properties of Fe, Cr, and Cu catalysts deposited on chitosan–silica (SBA-15) composites in liquid phase oxidation of cyclohexane (CH) with H2O2 and photocatalytic hydrogen evolution reaction. The catalysts were obtained by consecutive adsorption [...] Read more.
This work aims to study the catalytic properties of Fe, Cr, and Cu catalysts deposited on chitosan–silica (SBA-15) composites in liquid phase oxidation of cyclohexane (CH) with H2O2 and photocatalytic hydrogen evolution reaction. The catalysts were obtained by consecutive adsorption of chitosan (CS) and metal ions (Fe3+, Cr3+, Cu2+) on SBA-15 at ambient conditions. Characterization of the catalysts by XRD, IR spectroscopy, XPS, TEM, SEM, etc., showed the CS and metal ion adsorption on the solid support. Modification with CS provided better immobilization of the metal ions on SBA-15. The synthesized catalysts demonstrated different performance in liquid phase oxidation of cyclohexane with H2O2 under mild conditions at 40 °C and atmospheric pressure. Cyclohexane conversion on Fe–CS/SBA-15 (18.5%) and Cr–CS/SBA-15 (21.6%) was higher than on Cu–CS/SBA-15 (9.3%). The influence of different conditions of the reaction such as time, temperature, catalyst dosage, substrate and oxidant ratio on cyclohexane conversion in the presence of the most efficient Cr–CS/SBA-15 catalyst was also studied. The optimal reaction conditions were found to be the following: duration of reaction—4 h, temperature of reaction—50 °C, mcat—0.03 g, a substrate/H2O2 ratio of 1:3. In addition, Cr–CS/SBA-15 and Fe–CS/SBA-15 catalysts were studied in a photocatalytic H2 evolution reaction. The Fe-containing catalyst demonstrated superior efficiency in photocatalytic H2 evolution. The total volume of hydrogen produced within 3 h was 103 mL/g. Thus, this study demonstrates that chitosan possesses promising potential in the design of the supported catalysts for cyclohexane oxidation and photocatalytic hydrogen evolution reactions. Full article
(This article belongs to the Special Issue Homogeneous and Heterogeneous Catalytic Oxidation and Reduction)
Show Figures

Graphical abstract

22 pages, 1280 KiB  
Article
Development and Optimization of a Quercetin-Loaded Chitosan Lactate Nanoparticle Hydrogel with Antioxidant and Antibacterial Properties for Topical Skin Applications
by Raghda Yazidi, Majdi Hammami, Hamza Ghadhoumi, Ameni Ben Abdennebi, Sawssen Selmi, Kamel Zayani, Karima Horchani-Naifer, Iness Bettaieb Rebey and Moufida Saidani Tounsi
Cosmetics 2025, 12(4), 141; https://doi.org/10.3390/cosmetics12040141 - 3 Jul 2025
Viewed by 872
Abstract
Nanotechnology has revolutionized dermocosmetic innovation by improving the stability, bioavailability, and efficacy of active ingredients. In this study, we developed and optimized a novel xanthan gum-based hydrogel containing quercetin-loaded chitosan lactate nanoparticles for antioxidant and antimicrobial skincare applications. Chitosan was converted to its [...] Read more.
Nanotechnology has revolutionized dermocosmetic innovation by improving the stability, bioavailability, and efficacy of active ingredients. In this study, we developed and optimized a novel xanthan gum-based hydrogel containing quercetin-loaded chitosan lactate nanoparticles for antioxidant and antimicrobial skincare applications. Chitosan was converted to its lactate form to enhance water solubility and enable nanoparticle formation at physiological pH via ionic gelation with citric acid. The formulation was optimized using Box–Behnken response surface methodology to achieve minimal particle size and maximal zeta potential. The final gel was structured with xanthan gum as the gelling polymer, into which the optimized nanoparticles were incorporated to create a stable and bioactive hydrogel system. Encapsulation efficiency was measured separately to assess the effectiveness of drug loading. The optimized nanoparticles exhibited a mean diameter of 422.02 nm, a zeta potential of +29.49 mV, and a high quercetin encapsulation efficiency (76.9%), corresponding to the proportion of quercetin retained in the nanoparticle matrix relative to the total amount initially used in the formulation. Antioxidant assays (TAC, DPPH, and reducing power) confirmed superior radical-scavenging activity of the nanoformulation compared to the base hydrogel. Antibacterial tests showed strong inhibition against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus, with MIC values comparable to streptomycin. Accelerated stability studies demonstrated excellent physicochemical and microbiological stability over 60 days. This natural, bioactive, and eco-friendly formulation represents a promising platform for next-generation cosmeceuticals targeting oxidative stress and skin-related pathogens. Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2025)
Show Figures

Figure 1

20 pages, 6620 KiB  
Article
Protective Effects of Zein/Ferulic Acid (FA)–Pectin (PEC)/Chitosan (CS) Nanocomplexes on DSS-Induced Ulcerative Colitis in Mice
by Yifei Guo, Xinyu Yu, Rongrong He, Jianfei Pei, Haiming Chen and Weijun Chen
Foods 2025, 14(13), 2345; https://doi.org/10.3390/foods14132345 - 1 Jul 2025
Viewed by 377
Abstract
Ferulic acid (FA) exhibits beneficial properties in ulcerative colitis (UC) pathogenesis, while sensitivity to the environment and enzymes limits its use in UC therapy. Therefore, this study aims to develop a colon-targeted nanocomplex delivery system using FA and investigate its protective effects and [...] Read more.
Ferulic acid (FA) exhibits beneficial properties in ulcerative colitis (UC) pathogenesis, while sensitivity to the environment and enzymes limits its use in UC therapy. Therefore, this study aims to develop a colon-targeted nanocomplex delivery system using FA and investigate its protective effects and underlying regulatory mechanisms in UC mice. A novel Zein/FA–pectin (PEC)/chitosan (CS) nanocomplex was successfully fabricated in this study. Through systematic adjustment of the PEC/CS-to-Zein/FA ratio, optimal encapsulation efficiency (60.1%) and loading capacity (26.2%) were achieved. The characterized data indicated that hydrogen bonds, electrostatic interactions, and hydrophobic forces were the main driving forces maintaining the formation of the nanocomplexes, accompanied by alterations in the secondary structure of Zein. The Zein/FA–PEC/CS nanocomplexes demonstrated excellent thermal/storage particle size stability and exhibited both protective and sustained-release effects of FA during simulated gastrointestinal digestion. Furthermore, the results demonstrated that the nanocomplexes potentially alleviate UC by regulating inflammatory cytokines, oxidative stress, and gut microbiota. Compared to unencapsulated FA, the nanocomplexes have a better effect on alleviating UC symptoms. In summary, Zein/FA–PEC/CS nanocomplexes have promising prospects in alleviating colitis in UC mice. Full article
Show Figures

Figure 1

25 pages, 1414 KiB  
Review
Chlorin Activity Enhancers for Photodynamic Therapy
by Maciej Michalak, Jakub Szymczyk, Aleksandra Pawska, Marcin Wysocki, Dominika Janiak, Daniel Ziental, Marcin Ptaszek, Emre Güzel and Lukasz Sobotta
Molecules 2025, 30(13), 2810; https://doi.org/10.3390/molecules30132810 - 30 Jun 2025
Viewed by 544
Abstract
Photodynamic therapy (PDT) is a non-invasive therapeutic method with over a century of medical use, especially in dermatology, ophthalmology, dentistry, and, notably, cancer treatment. With an increasing number of clinical trials, there is growing demand for innovation in PDT. Despite being a promising [...] Read more.
Photodynamic therapy (PDT) is a non-invasive therapeutic method with over a century of medical use, especially in dermatology, ophthalmology, dentistry, and, notably, cancer treatment. With an increasing number of clinical trials, there is growing demand for innovation in PDT. Despite being a promising treatment for cancer and bacterial infections, PDT faces limitations such as poor water solubility of many photosensitizers (PS), limited light penetration, off-target accumulation, and tumor hypoxia. This review focuses on chlorins—well-established macrocyclic PSs known for their strong activity and clinical relevance. We discuss how nanotechnology addresses PDT’s limitations and enhances therapeutic outcomes. Nanocarriers like lipid-based (liposomes, micelles), polymer-based (cellulose, chitosan, silk fibroin, polyethyleneimine, PLGA), and carbon-based ones (graphene oxide, quantum dots, MOFs), and nanospheres are promising platforms that improve chlorin performance and reduce side effects. This review also explores their use in Antimicrobial Photodynamic Therapy (aPDT) against multidrug-resistant bacteria and in oncology. Recent in vivo studies demonstrate encouraging results in preclinical models using nanocarrier-enhanced chlorins, though clinical application remains limited. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

Back to TopTop