Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (426)

Search Parameters:
Keywords = outlet locating

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 43516 KiB  
Article
Retail Development and Corporate Environmental Disclosure: A Spatial Analysis of Land-Use Change in the Veneto Region (Italy)
by Giovanni Felici, Daniele Codato, Alberto Lanzavecchia, Massimo De Marchi and Maria Cristina Lavagnolo
Sustainability 2025, 17(15), 6669; https://doi.org/10.3390/su17156669 - 22 Jul 2025
Viewed by 325
Abstract
Corporate environmental claims often neglect the substantial ecological impact of land-use changes. This case study examines the spatial dimension of retail-driven land-use transformation by analyzing supermarket expansion in the Veneto region (northern Italy), with a focus on a large grocery retailer. We evaluated [...] Read more.
Corporate environmental claims often neglect the substantial ecological impact of land-use changes. This case study examines the spatial dimension of retail-driven land-use transformation by analyzing supermarket expansion in the Veneto region (northern Italy), with a focus on a large grocery retailer. We evaluated its corporate environmental claims by assessing land consumption patterns from 1983 to 2024 using Geographic Information Systems (GIS). The GIS-based methodology involved geocoding 113 Points of Sale (POS—individual retail outlets), performing photo-interpretation of historical aerial imagery, and classifying land-cover types prior to construction. We applied spatial metrics such as total converted surface area, land-cover class frequency across eight categories (e.g., agricultural, herbaceous, arboreal), and the average linear distance between afforestation sites and POS developed on previously rural land. Our findings reveal that 65.97% of the total land converted for Points of Sale development occurred in rural areas, primarily agricultural and herbaceous lands. These landscapes play a critical role in supporting urban biodiversity and providing essential ecosystem services, which are increasingly threatened by unchecked land conversion. While the corporate sustainability reports and marketing strategies emphasize afforestation efforts under their “We Love Nature” initiative, our spatial analysis uncovers no evidence of actual land-use conversion. Additionally, reforestation activities are located an average of 40.75 km from converted sites, undermining their role as effective compensatory measures. These findings raise concerns about selective disclosure and greenwashing, driving the need for more comprehensive and transparent corporate sustainability reporting. The study argues for stronger policy frameworks to incentivize urban regeneration over greenfield development and calls for the integration of land-use data into corporate sustainability disclosures. By combining geospatial methods with content analysis, the research offers new insights into the intersection of land use, business practices, and environmental sustainability in climate-vulnerable regions. Full article
Show Figures

Figure 1

34 pages, 12075 KiB  
Article
Offset Temperature and Amplitude–Frequency Effect on Convection Heat Transfer in Partially Gradient Porous Cavity with Different Outlet Port Locations
by Luma F. Ali and Amjad J. Humaidi
Processes 2025, 13(7), 2279; https://doi.org/10.3390/pr13072279 - 17 Jul 2025
Viewed by 328
Abstract
Based on admirable porous media performance and the popularity of additive manufacturing technology, gradient porous media are progressively being applied in increasing fields. In this study, convection heat transfer within a square vented cavity, partially occupied by two copper metal foam layers of [...] Read more.
Based on admirable porous media performance and the popularity of additive manufacturing technology, gradient porous media are progressively being applied in increasing fields. In this study, convection heat transfer within a square vented cavity, partially occupied by two copper metal foam layers of 10 and 20 PPI saturated with nanofluid, was assessed numerically. The left wall was heated uniformly and non-uniformly by applying multi-frequency spatial heating following a sinusoidal function. Governing equations, including continuity, the Darcy–Brinkmann–Forchheimer model, and local thermal non-equilibrium energy equations, were adopted and solved by employing the finite volume method. The influences of relevant parameters, including nanoparticle concentrations 0%φ10%, Reynolds number (1Re100), inlet and outlet port aspect ratios 0.1D/H0.4, three outlet vent opening locations (So=0 left, (So=H/2D/2) middle, and (So=HD) right), sinusoidal offset temperature (θo=0.5, 1), frequency (f=1, 3, 5), and amplitude (A=01), were examined. The results demonstrate that flow and heat transfer fields are impacted mainly by these parameters. Streamlines are more intensified at the upper-left corner when the outlet opening vent is shifted towards the right-corner upper wall. Fluid- and solid-phase Nusselt number increases Re, D/H, θo, A, and f are raised, specifically when A0.3. The Nusselt number remains constant when the frequency is raised from 3 to 5, definitely when D/H0.25. In uniform and non-uniform heating cases, the Nusselt number of both phases remains constant as the outlet port is shifted right for Re10 and slightly for higher Re as the outlet vent location is translated from left to right. Full article
Show Figures

Figure 1

18 pages, 3353 KiB  
Article
An Evaluation of a Novel Air Pollution Abatement System for Ammonia Emissions Reduction in a UK Livestock Building
by Andrea Pacino, Antonino La Rocca, Donata Magrin and Fabio Galatioto
Atmosphere 2025, 16(7), 869; https://doi.org/10.3390/atmos16070869 - 17 Jul 2025
Viewed by 337
Abstract
Agriculture and animal feeding operations are responsible for 87% of ammonia emissions in the UK. Controlling NH3 concentrations below 20 ppm is crucial to preserve workers’ and livestock’s well-being. Therefore, ammonia control systems are required for maintaining adequate air quality in livestock [...] Read more.
Agriculture and animal feeding operations are responsible for 87% of ammonia emissions in the UK. Controlling NH3 concentrations below 20 ppm is crucial to preserve workers’ and livestock’s well-being. Therefore, ammonia control systems are required for maintaining adequate air quality in livestock facilities. This study assessed the ammonia reduction efficiency of a novel air pollution abatement (APA) system used in a pig farm building. The monitoring duration was 11 weeks. The results were compared with the baseline from a previous pig cycle during the same time of year in 2023. A ventilation-controlled room was monitored during a two-phase campaign, and the actual ammonia concentrations were measured at different locations within the site and at the inlet/outlet of the APA system. A 98% ammonia reduction was achieved at the APA outlet through NH3 absorption in tap water. Ion chromatography analyses of farm water samples revealed NH3 concentrations of up to 530 ppm within 83 days of APA operation. Further scanning electron microscopy and energy-dispersive X-ray inspections revealed the presence of salts and organic/inorganic matter in the solid residues. This research can contribute to meeting current ammonia regulations (NECRs), also by reusing the process water as a potential nitrogen fertiliser in agriculture. Full article
(This article belongs to the Special Issue Impacts of Anthropogenic Emissions on Air Quality)
Show Figures

Figure 1

48 pages, 25839 KiB  
Article
Research on Control of Ammonia Fuel Leakage and Explosion Risks in Ship Engine Rooms
by Zhongcheng Wang, Jie Zhu, Xiaoyu Liu, Jingjun Zhong and Peng Liang
Fire 2025, 8(7), 271; https://doi.org/10.3390/fire8070271 - 9 Jul 2025
Viewed by 519
Abstract
Due to the unique physicochemical properties of ammonia fuel, any leakages in the engine room will inevitably endanger ship safety. This study focuses on investigating the diffusion behavior of ammonia fuel within the engine room during ship navigation after leakage, aiming to identify [...] Read more.
Due to the unique physicochemical properties of ammonia fuel, any leakages in the engine room will inevitably endanger ship safety. This study focuses on investigating the diffusion behavior of ammonia fuel within the engine room during ship navigation after leakage, aiming to identify hazardous points and implement measures, such as installing air-blowing and extraction devices, to mitigate the risks. To address potential leakage risks in ammonia-fueled ships, a simplified three-dimensional computational model was developed based on ship design drawings and field investigations. ANSYS Fluent software (2024 R2) was employed to simulate ammonia fuel leakage from pipelines and equipment, analyzing the diffusion patterns of leakage at different locations and evaluating the impact of adding air-blowing and extraction devices on leaked fuel in the engine room. The simulation results demonstrate that leakage at point 3 poses the greatest operational hazard, and ammonia fuel leakage during navigation generates combustible gas mixtures within the explosion limit range around the main engine, severely threatening both vessel safety and crew lives. Installing air-blowing and extraction devices in high-risk areas effectively reduces the explosion limit range of ammonia fuel, with air outlet 3 showing optimal mitigation effectiveness against ammonia fuel leakage during ship transportation. Full article
(This article belongs to the Special Issue Clean Combustion and New Energy)
Show Figures

Figure 1

21 pages, 14961 KiB  
Article
Unsteady Flow Analysis Inside an Electric Submersible Pump with Impeller Blade Perforation
by Siyuan Li, Yang Zhang, Jianhua Bai, Jinming Dai, Hua Zhang, Jian Wang and Ling Zhou
Water 2025, 17(12), 1790; https://doi.org/10.3390/w17121790 - 14 Jun 2025
Viewed by 402
Abstract
The electric submersible pump (ESP) is a critical component in subsurface resource extraction systems, yet the presence of gas in the working medium significantly affects its performance. To investigate the impact of impeller perforation on gas–liquid mixing and internal flow characteristics, unsteady numerical [...] Read more.
The electric submersible pump (ESP) is a critical component in subsurface resource extraction systems, yet the presence of gas in the working medium significantly affects its performance. To investigate the impact of impeller perforation on gas–liquid mixing and internal flow characteristics, unsteady numerical simulations were conducted based on the Euler–Euler multiphase flow model. The transient evolution of the gas phase distribution, flow behavior, and liquid phase turbulent entropy generation rate was analyzed under an inlet gas volume fraction of 5%. Results show that under part-load flow conditions, impeller perforation reduces the amplitude of dominant frequency fluctuations and enhances periodicity, thereby mitigating low-frequency disturbances. Under design flow conditions, it leads to stronger dominant frequencies and intensified low-frequency fluctuations. Gas phase distribution varies little under low and design flow rates, while at high flow rates, gas accumulations shift from the midsection to the outlet with rotor rotation. As the flow rate increases, liquid velocity rises, and flow streamlines become more uniform within the channels. Regions of high entropy generation coincide with high gas concentration zones: they are primarily located near the impeller inlet and suction side under low flow, concentrated at the inlet and mid-passage under design flow, and significantly reduced and shifted toward the impeller outlet under high flow conditions. The above results indicate that the perforation design of ESP impellers should be optimized according to operating conditions to improve gas dispersion paths and flow channel geometry. Under off-design conditions, perforations can enhance operational stability and transport performance, while under design conditions, the location and size of the perforations must be precisely controlled to balance efficiency and vibration suppression. Full article
(This article belongs to the Special Issue Hydraulics and Hydrodynamics in Fluid Machinery, 2nd Edition)
Show Figures

Figure 1

20 pages, 11457 KiB  
Article
Numerical Simulation of Dispersion and Ventilation of Hydrogen Clouds in Case of Leakage Inside a Large-Scale Industrial Building
by Khaled Yassin, Stephan Kelm and Ernst-Arndt Reinecke
Hydrogen 2025, 6(2), 40; https://doi.org/10.3390/hydrogen6020040 - 11 Jun 2025
Viewed by 882
Abstract
As the attention to using hydrogen as a potential energy storage medium for power generation and mobility increases, hydrogen production, storage, and transportation safety should be considered. For instance, hydrogen’s extreme physical and chemical properties and the wide range of flammable concentrations raise [...] Read more.
As the attention to using hydrogen as a potential energy storage medium for power generation and mobility increases, hydrogen production, storage, and transportation safety should be considered. For instance, hydrogen’s extreme physical and chemical properties and the wide range of flammable concentrations raise many concerns about the current safety measures in processing other flammable gases. Hydrogen cloud accumulation in the case of leakage in confined spaces can lead to reaching the hydrogen lower flammability limit (LFL) within seconds if the hydrogen is not properly evacuated from the space. At Jülich Research Centre, hydrogen mixed with natural gas is foreseen to be used as a fuel for the central heating system of the campus. In this work, the release, dispersion, formation, and spread of the hydrogen cloud in the case of hydrogen leakage inside the central utility building of the campus are numerically simulated using the OpenFOAM-based containmentFOAM CFD codes. Additionally, different ventilation scenarios are simulated to investigate the behavior of the hydrogen cloud. The results show that locating exhaust openings close to the ceiling and the potential leakage source can be the most effective way to safely evacuate hydrogen from the building. Additionally, locating the exhaust outlets near the ceiling can decrease the combustible cloud volume by more than 25% compared to side openings far below the ceiling. Also, hydrogen concentrations can reach the LFL in case of improper forced ventilation after only 8 s, while it does not exceed 0.15% in the case of natural ventilation under certain conditions. The results of this work show the significant effect of locating exhaust outlets near the ceiling and the importance of natural ventilation to mitigate the effects of hydrogen leakage. The approach illustrated in this study can be used to study hydrogen dispersion in closed buildings in case of leakage and the proper design of the ventilation outlets for closed spaces with hydrogen systems. Full article
Show Figures

Figure 1

20 pages, 1345 KiB  
Article
Evaluating the Impact of Bridge Construction on Flood Control Capacity in the Eastern Coastal Regions of China Based on Hydrodynamic Modeling
by Haijing Gao, Jianyong Hu, Hai Zhao, Dajiang He, Sai Zhang, Dongmei Shi, Puxi Li, Zhen Zhang and Jingyuan Cui
Water 2025, 17(11), 1675; https://doi.org/10.3390/w17111675 - 31 May 2025
Viewed by 593
Abstract
Constructions located in rivers play a critical role in mitigating flood risks and supporting sustainable economic development. However, the specific impacts of bridge construction on local flood dynamics have not been thoroughly examined. This study addresses this research gap using hydrodynamic modeling with [...] Read more.
Constructions located in rivers play a critical role in mitigating flood risks and supporting sustainable economic development. However, the specific impacts of bridge construction on local flood dynamics have not been thoroughly examined. This study addresses this research gap using hydrodynamic modeling with the one-dimensional MIKE11 module in MIKE Zero. A case study of the Nanyang (NY) Road Bridge in Zhejiang Province analyzed backwater effects at critical locations, including the Shili (SL) River outlet and Chengqing (CQ) Harbor. Unsteady flow simulations quantified changes in backwater height and backwater length upstream and downstream of the bridge, assessing their influence on flood conveyance capacity. The results indicate a narrowing of the river channel by approximately 4.8 m at the bridge location. Additionally, under flood conditions corresponding to 5-year, 10-year, and 20-year return periods, upstream water levels increased by 1 cm (6.53 m), 4 cm (7.15 m), and 5 cm (7.75 m), respectively. This research provides valuable insights and a scientific basis for developing flood control strategies, optimizing bridge design, and planning infrastructure projects, thereby enhancing regional flood safety and supporting sustainable economic development. Full article
Show Figures

Figure 1

30 pages, 6072 KiB  
Article
Investigation on the Effect of Opening Size and Position on Wind-Driven Cross-Ventilation in an Isolated Gable Roof Building
by Hacımurat Demir and Burak Aktepe
Appl. Sci. 2025, 15(11), 6190; https://doi.org/10.3390/app15116190 - 30 May 2025
Viewed by 531
Abstract
In this study, the influence of window opening sizes and positions on wind-induced cross ventilation performance in an isolated gable roof building was numerically investigated using the k-ω SST turbulence model. The results obtained from numerical analyses to evaluate the ventilation efficiency of [...] Read more.
In this study, the influence of window opening sizes and positions on wind-induced cross ventilation performance in an isolated gable roof building was numerically investigated using the k-ω SST turbulence model. The results obtained from numerical analyses to evaluate the ventilation efficiency of different configurations show that larger inlet openings significantly increase the ventilation rates and the WO5 model reaches the highest ventilation rate of 0.004089 m3/s with an improvement of 37.27% compared to the reference model. As with the WO1 model, smaller inlet openings limited the air intake, reducing ventilation efficiency and indoor air quality. In terms of outlet window opening sizes, the LO5 model showed the highest ventilation efficiency, improving ventilation by 28% compared to reference model, while smaller outlet openings, as in the LO1 model, were associated with significantly lower performance. Additionally, when evaluating window opening locations, configurations with higher exit openings generally exhibited superior ventilation rates. The best overall ventilation performance was achieved in the Upper-Lower configuration at 0.003129 m3/s. The findings emphasized the critical role of window design in natural ventilation performance. Larger and strategically located window openings optimize airflow, increase ventilation efficiency and improve indoor air quality, providing valuable information for energy-efficient building design. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

20 pages, 733 KiB  
Article
Energy Optimization in Hotels: Strategies for Efficiency in Hot Water Systems
by Yarelis Valdivia Nodal, Luis Angel Iturralde Carrera, Araceli Zapatero-Gutiérrez, Mario Antonio Álvarez Guerra Plasencia, Royd Reyes Calvo, José M. Álvarez-Alvarado and Juvenal Rodríguez-Reséndiz
Algorithms 2025, 18(6), 301; https://doi.org/10.3390/a18060301 - 22 May 2025
Viewed by 587
Abstract
This paper presents a procedure for the energy optimization of domestic hot water (DHW) systems in hotels located in tropical climates that use centralized air conditioning systems. The study aims to maximize heat recovery from chillers and reduce the fuel consumption of auxiliary [...] Read more.
This paper presents a procedure for the energy optimization of domestic hot water (DHW) systems in hotels located in tropical climates that use centralized air conditioning systems. The study aims to maximize heat recovery from chillers and reduce the fuel consumption of auxiliary heaters by optimizing operational variables such as water mass flow in the primary and secondary DHW circuits and outlet temperature of the backup system. The optimization is implemented using genetic algorithms (GA), which enable the identification of the most efficient flow configurations under variable thermal demand conditions. The proposed methodology integrates a thermoenergetic model validated with real operational data and considers the dynamic behavior of hotel occupancy and water demand. The results show that the optimized strategy reduces auxiliary heating use by up to 75%, achieving annual energy savings of 8244 kWh, equivalent to 2.3 tons of fuel, and preventing the emission of 10.5 tons of CO2. This study contributes to the design of sustainable energy systems in the hospitality sector and provides replicable strategies for similar climatic and operational contexts. Full article
(This article belongs to the Section Combinatorial Optimization, Graph, and Network Algorithms)
Show Figures

Figure 1

19 pages, 4459 KiB  
Article
Reduction of the Cavitation Noise in an Automotive Heater Core
by Jeonga Lee, Woojae Jang, Yoonhyung Lee and Jintai Chung
Appl. Sci. 2025, 15(10), 5737; https://doi.org/10.3390/app15105737 - 20 May 2025
Viewed by 417
Abstract
This study investigates the mechanism behind the cavitation-induced noise in an automotive heater core and proposes a structural solution to eliminate it. Abnormal noise during cold-start conditions in a compact passenger vehicle was traced to cavitation in the heater core of the heating, [...] Read more.
This study investigates the mechanism behind the cavitation-induced noise in an automotive heater core and proposes a structural solution to eliminate it. Abnormal noise during cold-start conditions in a compact passenger vehicle was traced to cavitation in the heater core of the heating, ventilation, and air conditioning (HVAC) system. Controlled bench tests, in-vehicle measurements, and computational fluid dynamics (CFD) simulations were conducted to analyze flow behavior and identify the precise location and conditions for cavitation onset. Results showed that high flow rates and low coolant pressure generated vapor bubbles near the junction of the upper tank and outlet pipe, producing distinctive impulsive noise and vibration signals. Flow visualization using a transparent pipe and accelerometer data confirmed cavitation collapse at this location. CFD analysis indicated that the original geometry created a high-velocity, low-pressure region conducive to cavitation. A redesigned outlet with a tapered transition and larger diameter significantly improved flow conditions, raising the cavitation index and eliminating cavitation events. Experimental validation confirmed the effectiveness of the modified design. These findings contribute to improving the acoustic performance and reliability of automotive HVAC systems and offer broader insights into cavitation mitigation in fluid systems. Full article
Show Figures

Figure 1

14 pages, 4675 KiB  
Article
A Numerical Simulation Study on the Spread of Mine Water Inrush in Complex Roadways
by Donglin Fan, Shoubiao Li, Peidong He, Sushe Chen, Xin Zou and Yang Wu
Water 2025, 17(10), 1434; https://doi.org/10.3390/w17101434 - 9 May 2025
Viewed by 382
Abstract
Emergency water release from underground reservoirs is characterized by its suddenness and significant harm. The quantitative prediction of water spreading processes in mine tunnels is crucial for enhancing underground safety. The study focuses on an underground roadway in a coal mine, constructing a [...] Read more.
Emergency water release from underground reservoirs is characterized by its suddenness and significant harm. The quantitative prediction of water spreading processes in mine tunnels is crucial for enhancing underground safety. The study focuses on an underground roadway in a coal mine, constructing a three-dimensional physical model of the complex tunnel network to explore the spatiotemporal characteristics of water flow spreading after water release in coal mine tunnels. The Volume of Fluid (VOF) model of the Eulerian multiphase flow was adopted to simulate the flow state of water in the roadway. The results indicate that after water release from the reservoir, water flows along the tunnel network towards locations with relatively lower altitude terrain. During the initial stage of water release, sloping tunnels act as barriers to water spreading. The water level height at each point in the tunnel network generally experiences three developmental stages: rapid rise, slow increase, and stable equilibrium. The water level height in the tunnel area near the water release outlet rises sharply within a time range of 550 s; tunnels farther from the water release outlet experience a rapid rise in water level height only after 13,200 s. The final stable equilibrium water level in the tunnel depends on the location of the water release outlet and the relative height of the terrain, with a water level height ranging from 0.3 to 3.3 m. The maximum safe evacuation time for personnel within a radius of 300 m from the drainage outlet is only 1 h. In contrast, areas farther away from the drainage location benefit from the water storage capacity of the complex tunnel network and have significantly extended evacuation opportunities. Full article
Show Figures

Figure 1

25 pages, 2242 KiB  
Article
Next-Gen Video Watermarking with Augmented Payload: Integrating KAZE and DWT for Superior Robustness and High Transparency
by Himanshu Agarwal, Shweta Agarwal, Farooq Husain and Rajeev Kumar
AppliedMath 2025, 5(2), 53; https://doi.org/10.3390/appliedmath5020053 - 6 May 2025
Viewed by 1697
Abstract
Background: The issue of digital piracy is increasingly prevalent, with its proliferation further fueled by the widespread use of social media outlets such as WhatsApp, Snapchat, Instagram, Pinterest, and X. These platforms have become hotspots for the unauthorized sharing of copyrighted materials without [...] Read more.
Background: The issue of digital piracy is increasingly prevalent, with its proliferation further fueled by the widespread use of social media outlets such as WhatsApp, Snapchat, Instagram, Pinterest, and X. These platforms have become hotspots for the unauthorized sharing of copyrighted materials without due recognition to the original creators. Current techniques for digital watermarking are inadequate; they frequently choose less-than-ideal locations for embedding watermarks. This often results in a compromise on maintaining critical relationships within the data. Purpose: This research aims to tackle the growing problem of digital piracy, which represents a major risk to rights holders in various sectors, most notably those involved in entertainment. The goal is to devise a robust watermarking approach that effectively safeguards intellectual property rights and guarantees rightful earnings for those who create content. Approach: To address the issues at hand, this study presents an innovative technique for digital video watermarking. Utilizing the 2D-DWT along with the KAZE feature detection algorithm, which incorporates the Accelerated Segment Test with Zero Eigenvalue, scrutinize and pinpoint data points that exhibit circular symmetry. The KAZE algorithm pinpoints a quintet of stable features within the brightness aspect of video frames to act as central embedding sites. This research selects the chief embedding site by identifying the point of greatest intensity on a specific arc segment on a circle’s edge, while three other sites are chosen based on principles of circular symmetry. Following these procedures, the proposed method subjects videos to several robustness tests to simulate potential disturbances. The efficacy of the proposed approach is quantified using established objective metrics that confirm strong correlation and outstanding visual fidelity in watermarked videos. Moreover, statistical validation through t-tests corroborates the effectiveness of the watermarking strategy in maintaining integrity under various types of assaults. This fortifies the team’s confidence in its practical deployment. Full article
Show Figures

Figure 1

20 pages, 9089 KiB  
Article
Investigation and Monitoring of Sinkhole Subsidence and Collapse: Additional Data on the Case Study in Alcalá de Ebro (Zaragoza, Spain)
by Alberto Gracia, Francisco Javier Torrijo, Alberto García and Alberto Boix
Land 2025, 14(5), 1006; https://doi.org/10.3390/land14051006 - 6 May 2025
Viewed by 487
Abstract
Alcalá de Ebro is located 35 km northwest of the city of Zaragoza, on the right bank of the Ebro River at the outlet of a ravine (Juan Gastón) towards the river, with a catchment area of more than 230 km2. [...] Read more.
Alcalá de Ebro is located 35 km northwest of the city of Zaragoza, on the right bank of the Ebro River at the outlet of a ravine (Juan Gastón) towards the river, with a catchment area of more than 230 km2. Over time, urbanisation and agricultural development have eliminated the last stretch of the drainage channel, and these water inputs have been channelled underground, filtering through the ground. This section of the Ebro Valley rests on a marly tertiary substratum, which promotes dissolution-subbing processes that can lead to sinkholes. The ground tends to sink gradually or suddenly collapse. Many studies have been carried out to understand not only the origin of the phenomenon but also its geometry and the area affected by it in the town of Alcalá de Ebro. In this sense, it has been possible to model an area around the main access road, where numerous collapsing sinkholes have been found, blocking the road and affecting houses. It also affects the embankment that protects the town from the floods of the river Ebro. These studies have provided specific knowledge, enabling us to evaluate and implement underground consolidation measures, which have shown apparent success. Several injection campaigns have been carried out, initially with expansion resins and finally with columnar development, using special low-mobility mortars to fill and consolidate the undermined areas and prevent new subsidence. These technical solutions propose a method of ground treatment that we believe is novel for this type of geological process. The results have been satisfactory, but it is considered necessary to continue monitoring the situation and to extend attention to a wider area to prevent, as far as possible, new problems of subsidence and collapse. In this sense, the objective is to continue the control and monitoring of possible phenomena related to subsidence problems in the affected area and its immediate surroundings, to detect and, if necessary, anticipate subsidence or collapse phenomena that could affect the body of the embankment. Full article
Show Figures

Figure 1

18 pages, 22994 KiB  
Article
Design of a Proton Exchange Membrane Electrolyzer
by Torsten Berning
Hydrogen 2025, 6(2), 30; https://doi.org/10.3390/hydrogen6020030 - 2 May 2025
Viewed by 2971
Abstract
A novel design of a proton exchange membrane electrolyzer is presented. In contrast to previous designs, the flow field plates are round and oriented horizontally with the feed water entering from a central hole and spreading evenly outward over the anode flow field [...] Read more.
A novel design of a proton exchange membrane electrolyzer is presented. In contrast to previous designs, the flow field plates are round and oriented horizontally with the feed water entering from a central hole and spreading evenly outward over the anode flow field in radial, interdigitated flow channels. The cathode flow field consists of a spiral channel with an outlet hole near the outside of the bipolar plate. This results in anode and cathode flow channels that run perpendicular to avoid shear stresses. The novel sealing concept requires only o-rings, which press against the electrolyte membrane and are countered by circular gaskets that are placed over the flow channels to prevent the membrane from penetrating the channels, which makes for a much more economical sealing concept compared to prior designs using custom-made gaskets. Hydrogen leaves the electrolyzer through a vertical outward pipe placed off-center on top of the electrolyzer. The electrolyzer stack is housed in a cylinder to capture the oxygen and water vapor, which is then guided into a heat exchanger section, located underneath the electrolyzer partition. The function of the heat exchanger is to preheat the incoming fresh water and condense the escape water, thus improving the efficiency. It also serves as internal phase separator in that a level sensor controls the water level and triggers a recirculation pump for the condensate, while the oxygen outlet is located above the water level and can be connected to a vacuum pump to allow for electrolyzer operation at sub-ambient pressure to further increase efficiency and/or reduce the iridium loading. Full article
Show Figures

Figure 1

14 pages, 2156 KiB  
Article
Influence of Deposition Time and Location on the Pyrolysis Performance of Grease in Kitchen Flues
by Zidong Guo, Hailing Yue and Tianwei Zhang
Fire 2025, 8(5), 173; https://doi.org/10.3390/fire8050173 - 30 Apr 2025
Viewed by 322
Abstract
In the high-temperature cooking process of Chinese-style catering, the oil fume accumulates on the inner wall of the flue during the cooling process, forming grease stains, which can easily trigger flue fires and cause a kitchen fire. Statistics indicate flue fires are a [...] Read more.
In the high-temperature cooking process of Chinese-style catering, the oil fume accumulates on the inner wall of the flue during the cooling process, forming grease stains, which can easily trigger flue fires and cause a kitchen fire. Statistics indicate flue fires are a primary cause of kitchen fires in China. The changes in the composition of grease stains are due to different freezing points, which will adhere to different parts of the flue and be repeatedly heated and cooled if not cleaned in time. This leads to changes in combustion performance, subsequently affecting the progression of flue fire propagation. This paper takes grease deposits with different deposition times and locations in the flue of commercial kitchens as the research object. The research selected a medium-sized commercial kitchen flue (kitchen chimney) in Langfang City, with deposition times of the parts of the inlet and outlet for 2 months and grease in the inlet for a deposition time of 7 days, 60 days, and more than 1 year. This paper analyzed the grease deposits at different deposition positions at the flue inlet and outlet using a thermogravimetric analyzer and a gas-mass spectrometer. It is found that the primary components of the grease at the outlet have low molecular weight, thermal decomposition starting temperature ignition temperature, and activation energy in the first stage and will catch fire first; the grease at the inlet has a high comprehensive combustion performance, and the combustion is violent with little effect from the oxygen supply. Then, the pyrolysis analysis of grease stains located at the entrance of the flue is performed at different deposition times under air and nitrogen atmosphere. The results showed that the pyrolysis process of grease stains with a more than 1 year deposition time consists of two stages. One stage is the first weightlessness stage, which has the lowest activation energy, the longest combustion process, and the greatest fire risk; the other is the pyrolysis combustion process of grease stains with a deposition time of 7 days. Its activation energy is the highest, and the fire risk is the smallest. The research results can be a reference for the setting of the fire dampers and the cleaning time for the flue. Full article
Show Figures

Figure 1

Back to TopTop